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Summary

Identifying dependency in multivariate data is a common inference task that arises in numerous 

applications. However, existing nonparametric independence tests typically require computation 

that scales at least quadratically with the sample size, making it difficult to apply them in the 

presence of massive sample sizes. Moreover, resampling is usually necessary to evaluate the 

statistical significance of the resulting test statistics at finite sample sizes, further worsening 

the computational burden. We introduce a scalable, resampling-free approach to testing the 

independence between two random vectors by breaking down the task into simple univariate 

tests of independence on a collection of 2 × 2 contingency tables constructed through sequential 

coarse-to-fine discretization of the sample space, transforming the inference task into a multiple 

testing problem that can be completed with almost linear complexity with respect to the sample 

size. To address increasing dimensionality, we introduce a coarse-to-fine sequential adaptive 

procedure that exploits the spatial features of dependency structures. We derive a finite-sample 

theory that guarantees the inferential validity of our adaptive procedure at any given sample size. 

We show that our approach can achieve strong control of the level of the testing procedure at 

any sample size without resampling or asymptotic approximation and establish its large-sample 

consistency. We demonstrate through an extensive simulation study its substantial computational 

advantage in comparison to existing approaches while achieving robust statistical power under 

various dependency scenarios, and illustrate how its divide-and-conquer nature can be exploited 

to not just test independence, but to learn the nature of the underlying dependency. Finally, we 

demonstrate the use of our method through analysing a dataset from a flow cytometry experiment.
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1. Introduction

Testing independence and learning the dependency structure in multivariate problems has 

been a central inference task since the very beginning of modern statistics, and the 

last two decades have witnessed a surge of interest in this problem among statisticians, 

engineers and computer scientists. A variety of different methods have been proposed for 

testing independence between two random vectors. For example, Székely & Rizzo (2009) 

generalized the product-moment covariance and correlation to the distance covariance and 

correlation. Bakirov et al. (2006), Meintanis & Iliopoulos (2008) and Fan et al. (2017) 

all developed nonparametric tests of independence based on the distance between the 

empirical joint characteristic function of the random vectors and the product of the marginal 

empirical characteristic functions of the two random vectors. Székely & Rizzo (2013) 

further considered an asymptotic scenario with the dimensionality of the vectors increasing 

to infinity while keeping the sample size fixed. In a different vein, Heller et al. (2013) 

formed a test based on univariate tests of independence between the distances of each of 

the random vectors from a central point. In machine learning, a class of kernel-based tests 

has also become popular. For example, Gretton et al. (2008) formed a test based on the 

eigenspectrum of covariance operators in a reproducing kernel Hilbert space. More recently, 

Pfister et al. (2018) generalized this approach to the multivariate case by embedding the 

joint distribution into a reproducing kernel Hilbert space. Weihs et al. (2018) defined a 

class of multivariate nonparametric measures that leads to multivariate extensions of the 

Bergsma–Dassios sign covariance. Lee et al. (2021) proposed using random projections to 

reduce multivariate independence testing to a univariate problem, and completed the latter 

using an ensemble approach combining the distance correlation and a binary expansion test 

statistic (Zhang, 2019). Berrett et al. (2021) developed a U-statistic-based permutation test. 

Shi et al. (2022) combined the distance covariance with the centre-outward ranks and signs 

to create a nonparametric test.

Beyond the task of testing, many authors have studied more generally the quantification and 

estimation of multivariate dependence. For example, Deb et al. (2020) recently proposed a 

new dependency measure for random variables on general topological spaces. In Sen & Deb 

(2022) a notion of multivariate rank is defined using the theory of measure transportation, 

and a multivariate rank version of the distance covariance is proposed. Other classical 

approaches include graph-based methods (Friedman & Rafsky, 1983; Berrett & Samworth, 

2019; Azadkia & Chatterjee, 2021) and copula-based methods (Jaworski et al., 2010).

With some recent exceptions, such as Deb et al. (2020), the existing multivariate 

independence tests generally require the computation of statistics at a computational 

complexity that scales at least quadratically in the sample size, making them impractical 

for datasets with sample sizes greater than, say, tens of thousands of observations. Many 
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of these multivariate methods also require resampling, in the form of either permutation or 

bootstrap, to evaluate statistical significance. This additional computational burden makes 

applications of these methods computationally expensive even for problems with moderate 

sample sizes.To overcome these challenges, some appeal to asymptotic approximations, 

either in large n or in large p (Székely & Rizzo, 2013; Pfister et al., 2018), to derive 

procedures that, when the asymptotic conditions are satisfied, do not require resampling. 

However, because it is hard to judge whether such conditions are true in multivariate 

settings, practitioners usually still resort to resampling to ensure validity.

A scalable testing strategy for data with massive sample sizes should ideally achieve (i) 

close to linear computational complexity in the sample size and (ii) finite-sample guarantees 

without the need for resampling or asymptotic approximation. We aim to introduce a 

framework that achieves these two desiderata. Specifically, instead of calculating a single 

test statistic for independence all at once, we take a multi-scale divide-and-conquer approach 

that breaks apart the nonparametric multivariate test of independence into simple univariate 

independence tests on a collection of 2 × 2 contingency tables defined by sequentially 

discretizing the original sample space at a cascade of scales. This approach transforms a 

complex nonparametric testing problem into a multiple testing problem involving simple 

tests that can be carried out efficiently. While such an approach was previously adopted by 

Ma & Mao (2019) for testing the independence between two scalar variables, the increasing 

dimensionality in the multivariate setting makes a brute-force, exhaustive approach as 

proposed therein computationally prohibitive and statistically inefficient. As such, we 

incorporate data adaptivity into the framework and introduce a coarse-to-fine sequential 

adaptive testing procedure that exploits the spatial characteristics of dependency structures 

to drastically reduce the number of univariate tests completed in the procedure. At the same 

time, we derive a finite-sample theory showing that, even with the additional adaptivity, 

exact inference, in terms of controlling the level of the test, can be achieved at any given 

sample size without resorting to either resampling or large-sample approximation. While 

the main focus of our paper is not on the asymptotic properties, we do also establish the 

asymptotic consistency of our method under suitable conditions.

Aside from these statistical and computational considerations, our approach also enjoys 

a feature highly relevant in practical applications. That is, its divide-and-conquer nature 

allows learning the structure of the underlying dependency. In many modern applications, 

not only is the practitioner interested in testing the presence of dependency, but usually in 

also understanding the nature of such dependency. By identifying and visualizing the 2 × 

2 tables on which the univariate independence test returns the most significant p-values, 

we can identify interesting dependency relationships otherwise hidden by the multivariate 

nature of the sample space and the complexity of the joint distribution. Lee et al. (2021) also 

aimed to learn the nature of the dependency through a multi-scale approach.

We carry out extensive simulation studies that examine the computational scalability and 

statistical power of our method in a variety of dependency scenarios and compare our 

method to a number of state-of-the-art approaches. We demonstrate an application of our 

method to a dataset from a flow cytometry experiment with a massive sample size.
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2. Method

2.1. Multi-scale 2 × 2 testing for multivariate independence

We start by introducing some notation that will be used throughout the paper as well as some 

concepts related to nested dyadic partitioning, which will be used for constructing the 2 × 2 

tables on which univariate independence tests are completed.

Let Ω = ΩX × ΩY denote a D-dimensional joint sample space of two random vectors X 
and Y, where ΩX and ΩY are respectively the marginal sample spaces of X and Y. For 

simplicity, we assume that ΩX = [0, 1]Dx and ΩY = [0, 1]Dy, that is, each marginal random 

variable of the two random vectors is supported on [0, 1]. This costs no generality as other 

random variables can be mapped onto the unit interval through, for example, a cumulative 

distribution function transform.

A partition P on a set S is a collection of disjoint nonempty subsets of S whose union is 

S. A nested dyadic partition on S is a sequence of partitions, P0, P1, …, Pκ, …, such that 

P0 = S , and for each κ ⩾ 1, the sets in Pκ are those generated by dividing each set in 

Pκ − 1 into two children. For example, if we consider a nested dyadic partition on [0, 1] 

generated from sequentially dividing sets into two halves in the middle of the interval, then 

we have a nested dyadic partition such that, for κ ⩾ 0, Pκ = (l − 1)/2κ, l/2κ
l ∈ 1, …, 2κ . 

We refer to this particular nested dyadic partition as the canonical nested dyadic partition, 

and note that ∪ Pκ generates the Borel σ-algebra. In the following, we consider only 

nested dyadic partitions that generate the Borel σ-algebra. Now let us assume that each 

dimension of Ω has a corresponding nested dyadic partition. For our purpose, the nested 

dyadic partition for each dimension can be distinct, but for ease of illustration, let us 

assume that they are all the canonical nested dyadic partitions on [0, 1]. We consider the 

cross-products of these marginal nested dyadic partitions on each dimension, which creates 

a cascade of partitions on the joint sample space. Specifically, for any vector of nonnegative 

integers k = k1, …, kD ∈ ℕ0
D, Pk1 × ⋯ × PkD forms a partition of Ω. The elements of this 

partition are rectangles of the form

A = A1 × A2 × ⋯ × AD with  Ad ∈ Pkd for all d = 1, 2, …, D .

The vector k encodes the level of A in the nested dyadic partition for each dimension of Ω. 

That is, kd is the level of the nested dyadic partition on [0, 1] to which the dth margin of A 
belongs. From now on, we refer to a set A of the above form as a cuboid. We refer to the 

sum r = k1 + ··· + kD as the resolution of A. Figure 1(a) illustrates a cuboid A of resolution 3 

in a three-dimensional sample space with canonical nested dyadic partitions on the margins.

We are now ready to construct the 2 × 2 tables on which to carry out univariate tests of 

independence. One can divide a cuboid A into four blocks according to the nested dyadic 

partition along any pair of its margins while keeping all other dimensions intact. For the 

division involving dimension i of X and dimension j of Y, we use Aij
00, Aij

01, Aij
10 and Aij

11
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to denote these four blocks. Figure 1(b) illustrates a division on the cuboid demonstrated in 

Fig. 1(a).

Suppose now that F is the joint sampling distribution of (X, Y); then, for the 2 × 2 division 

of A along the ith dimension of X and jth dimension of Y, we can define a corresponding 

odds ratio that characterizes the dependency in F on the 2 × 2 division,

θij(A) =
F Aij

10 F Aij
01

F Aij
00 F Aij11 .

An independent and identically distributed sample from F will give rise to a 2 × 2 

contingency table formed by the number of data points lying in the four blocks

where n(A) represents the number of data points in A.

One can test whether θij(A) = 1 based on this contingency table. While several standard tests 

are available for testing independence on a 2 × 2 table, we adopt Fisher’s exact test. As we 

will show in § 2.3, it turns out that the conditional nature of Fisher’s test plays a crucial 

role in our finite-sample theory; it ensures that the resulting testing procedure obtains exact 

validity at any finite sample size without resampling or asymptotics. Figure 2 illustrates two 

contingency tables on which Fisher’s test is applied for a cuboid A. In the following, we use 

pij(A) to represent the resulting p-value from the test on this particular 2 × 2 table.

How does testing those local nulls θij(A) = 1 relate to our original global hypothesis of X ⫫ 
Y? It is obvious that if X ⫫ Y then independence must hold, that is, θij(A) = 1 for any A and 

any pair of X-Y margins i and j. However, the reverse is not obvious. Does independence 

on these 2 × 2 tables formed under the marginal nested dyadic partitions also imply that X 
and Y are independent? If this is the case then one can test for independence between X and 

Y by testing whether θij(A) = 1 on the 2 × 2 tables. The next theorem confirms that this is 

indeed the case.

THEOREM 1. We have X ⫫ Y if and only if θij(A) = 1 for all pairs of dimension i of X and 
dimension j of Y on all cuboids A.

This theorem implies that one can in principle test for independence between two random 

vectors X and Y by exhaustively testing whether independence holds on each of the 2 × 

2 tables constructed on all cuboids up to some maximum resolution, aimed at identifying 

dependency structures up to a certain level of detail. This boils down to a multiple testing 

problem involving a collection of p-values computed on all of the 2 × 2 tables up to the 

maximal resolution. However, such a brute-force exhaustive scan is not practical when the 

dimensionality grows. If one were to exhaustively test independence on all possible 2 × 2 

tables of all cuboids up to even just a moderate resolution, the number of tests required 
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would quickly become prohibitive. Specifically, the total number of tests to be completed up 

to a resolution of R is

∑
ρ = 0

R
DxDy2ρ ρ + D − 1

D − 1 .

For multivariate problems of more than a handful of dimensions, one must be selective in 

carrying out the univariate tests. Beyond the consideration of computational practicality, 

reducing the number of tests is also desirable for the sake of statistical performance. Every 

additional test comes with a price in multiple testing control, and thus it is important to be 

discreet in choosing the tests to complete.

2.2. Multi-scale Fisher’s independence test: a coarse-to-fine adaptive testing procedure

Given the above considerations, we propose a data-adaptive strategy that selects in each 

resolution a subset of the available tables to test based on the statistical evidence attained 

on coarser resolutions. In particular, only the children of tables in the previous resolution 

whose p-values are below a prespecified threshold are selected for testing. Figure 3 provides 

an illustration. Suppose that cuboid A in resolution r satisfies pij(A) < p*, some preset 

threshold; then the four children cuboids, generated by dividing A in the ith or the jth 

dimension, are tested in resolution r+1. This coarse-to-fine testing procedure terminates at a 

maximal resolution Rmax, or when no cuboids at the current resolution have p-values passing 

the threshold.

The rationale behind this strategy is to exploit the spatial smoothness of dependency 

structures. When X and Y are dependent, adjacent and nested cuboids tend to contain 

empirical evidence for the dependency in a correlated manner. Here the correlation 

corresponds to our assumption about the underlying sampling distribution that its 

dependency structure is spatially smooth, not the sampling behaviour of the data points 

given the sampling distribution. Thus, using the statistical evidence at coarser resolutions 

to inform which cuboids to test in finer resolutions can lead to effective detection of the 

dependency structure.

Next we formally present the adaptive testing procedure that we call MULTIFIT, which stands 

for multi-scale Fisher’s independence test. We let C(r) denote the collection of cuboids at 

resolution r on which we carry out independence tests over all of the corresponding DxDy 2 

× 2 tables, one for each (i, j) pair of margins, where i and j are the indices for the X and Y 
margins, respectively. The MULTIFIT procedure consists of three main steps.

Step 0. Initialization: let C(0) be {Ω}, and let C(r) = ∅ for 1 ⩽ r ⩽ Rmax.

Step 1. Coarse-to-fine scanning: for r = 0 to r = Rmax, do the following.

a. Independence testing: apply Fisher’s exact test of independence to the DxDy 2 × 

2 tables of each cuboid A ∈ C(r) and record the p-values.
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b. Selection of cuboids to test for the next resolution: when r < Rmax, if the (i, j) 

table for a cuboid A ∈ C(r) has a p-value more significant than a threshold p*, 

add to C(r + 1) the four child cuboids of A generated from dividing A along the 

ith and the jth dimensions of X and Y, respectively, each generating two children.

Step 2. Multiple testing control: apply any valid multiple testing control procedure on the 

entire set of p-values generated by the algorithm, thereby controlling the level of the entire 

testing procedure at α.

Although the data-adaptive selection in Step 1(b) is designed to overcome the explosive 

number of tests required when the dimensionality is large, it is still often feasible to apply 

exhaustive testing up to some resolution R* < Rmax. In other words, one can test on all 

available cuboids up to resolution R*, and let the adaptive selection of the cuboids in Step 

1(b) kick in for resolutions beyond R*. In our software, we allow the user to specify a 

resolution R* below which exhaustive testing is adopted. A smaller value for R* will favour 

the detection of more global signals, while a larger R* will favour localized signals.

In our implementation of the testing procedure, we consider two different approaches for 

achieving the multiple testing control in Step 2.

Strategy 1 (A holistic approach to multiple testing).—Under this strategy, one 

applies multiple testing control on the entire set of p-values generated in Step 1 of the 

MULTIFIT procedure all at once, regardless of the resolution of the corresponding table. 

Simple choices of the multiple testing devices include Bonferroni and Holm corrections.

Strategy 2 (A resolution-specific approach to multiple testing).—Under this 

strategy, one applies multiple testing control in two stages: first on the p-values within 

each resolution level, producing an intermediate, intraresolution significance level for each 

resolution; and then in the second stage further correct these intraresolution p-values over all 

the resolutions, which will produce a valid, corrected overall p-value for testing the global 

null hypothesis of independence. This strategy has the benefit that one can now allocate a 

fixed level budget to each resolution, and thus avoids the possibility of loss in power due 

to having many more tables tested in high resolutions than coarse ones. This method is 

generally more powerful than the holistic approach for testing the global null hypothesis 

when a dependency structure exists in coarser resolutions.

An additional benefit of the resolution-specific approach is that it can be implemented with 

early stopping so that the MULTIFIT procedure can terminate as soon as there is sufficient 

evidence for rejecting the global null in the first few resolutions without continuing into 

testing on higher resolutions. This is possible because in this approach we bound the 

influence of tables in finer resolutions on the corrected significance level of tests in coarser 

resolutions. Our software implements this early stopping strategy for the resolution-specific 

approach to multiple testing, when Holm’s method is used for intraresolution correction 

along with Bonferroni’s method for cross-resolution correction. Early stopping can reduce 

the time complexity significantly in the presence of a global signal.

GORSKY and MA Page 7

Biometrika. Author manuscript; available in PMC 2022 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.3. Finite-sample validity and large-sample consistency

Because the multi-scale Fisher’s independence test formulates the test of independence as 

a multiple testing problem, its inferential validity rests on whether the p-values are indeed 

valid, i.e., that they are stochastically larger than a uniform random variable under the null 

hypothesis. The p-values for the cuboids selected in the MULTIFIT procedure are computed 

according to the central hypergeometric null distribution on the 2 × 2 tables. At first glance, 

these null distributions appear to ignore the data-adaptive selection of a cuboid A based 

on the evidence in its ancestral cuboids. As such, one may suspect that there might be a 

selection bias that causes such p-values to lose their face values.

The following theorem and corollary resolve this concern by showing that, interestingly, the 

distribution of all the selected 2 × 2 tables, given their marginal totals are independent of 

the event that they are selected in the procedure, and hence the p-values computed in the 

procedure are indeed still valid despite the adaptive sequential selection. Consequently, one 

can indeed control the level of the entire procedure using multiple testing methods based on 

these p-values.

THEOREM 2. Under the null hypothesis X ⫫ Y,

n Aij
00 ⫫ I A ∈ C(r) ∣ n Aij

0 ⋅ , n Aij
⋅ 0 , n(A)

for all cuboids A of resolution r and all pairs (i, j) of the margins, where 

n Aij
0 ⋅ = n Aij

00 + n Aij
01  and n Aij

⋅ 0 = n Aij
00 + n Aij

10 , and I A ∈ C(r)  is the indicator for 

the event that A is selected to be tested in the MULTIFIT procedure.

In other words, for any cuboid A, the conditional distribution of the 2 × 2 table on each pair 

of X-Y margins, given the corresponding marginal totals is the same central hypergeometric 

distribution when X ⫫ Y, whether or not we condition on the event that cuboid A is selected 

to be tested in the MULTIFIT procedure. As such, the p-values from Fisher’s exact tests 

applied on the adaptively selected tables in our procedure can be treated at face value, which 

justifies using multiple testing adjustment based on these p-values to control the level.

COROLLARY 1. The p-values computed during Step 1 of the MULTIFIT procedure are valid, 
and thus Step 2 of the procedure can control the level of the entire testing procedure at any 
given level α.

The above theorem and corollary provide a strong theoretical guarantee, unavailable to 

other existing methods, that the multi-scale Fisher’s independence test method attains exact 

control of the level at any finite sample size. This is an extremely important property in 

that, for multivariate sample spaces, traditional large n asymptotic controls of the level can 

often be inaccurate, and existing methods typically appeal to resampling strategies such as 

permutation to provide approximate finite-sample control of the level. But permutation is 

often computationally prohibitive in this context in that even just a single run of a test can be 

expensive, not to mention applying the same test hundreds to thousands of times. In contrast, 

the multi-scale Fisher’s independence test method achieves exact control of the level by a 
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single run of the procedure without resampling. We offer a numerical validation of level 

control through simulations in § 4.

The proof of Theorem 2 turns out to be conceptually interesting and elucidates why 

the adoption of Fisher’s exact test on each 2 × 2 table is critical to ensuring the 

exact finite-sample validity of the multi-scale Fisher’s independence test method. In 

particular, the event that a cuboid A is selected to be tested in the MULTIFIT procedure 

is in the σ-algebra generated by the p-values on all of its ancestral cuboids, which 

can be shown to be independent of the counts in the 2 × 2 table on A under the 

null hypothesis of independence once the corresponding marginal totals are conditioned 

upon. This independence is elucidated under a Bayesian network representation of 

the multivariate central hypergeometric distribution (Ma & Mao, 2019, Theorem 3). 

Accordingly, conditioning on the selection of a cuboid under the MULTIFIT procedure does 

not alter the null distribution of the p-values for the 2 × 2 tables on that cuboid, and thus 

the validity of the procedure is maintained even with the adaptive selection of the tables 

to test on. Another interesting feature of the MULTIFIT procedure, which is revealed in the 

proof of Theorem 2 and follows from the adoption of Fisher’s exact tests on the cuboids, 

is that the test under the MULTIFIT procedure is conditional on the marginal values of X 
and Y, and hence remains valid, in terms of level control, even after transforms on the 

data that are applied marginally to X and Y, respectively. These transforms, such as the 

empirical cumulative distribution function or rank transform applied to each margin of the 

observations, are commonly adopted in practice to enhance the power of existing tests.

Below we provide a sketch of the proof for Theorem 2 for interested readers and defer the 

technical details to the Supplementary Material.

Proof of Theorem 2. For two nonnegative integers a and b, let na,b denote 2a × 2b 

contingency table formed by a cross-product of a marginal partition on X at depth a 
and a marginal partition on Y at depth b. Specifically, it is the 2a × 2b contingency 

table corresponding to a partition Pk1 × ⋯ × PkD of Ω, where a = k1 + ⋯ + kDx and 

b = kDx + 1 + ⋯kD. Under the null hypothesis that X ⫫ Y, the sampling distribution of 

any such table na,b given all of its row totals and column totals is a multivariate central 

hypergeometric distribution.

By Theorem 3 of Ma & Mao (2019), a draw from the central multivariate hypergeometric 

distribution such as na,b can actually be generated inductively from coarse-to-fine resolutions 

using univariate central hypergeometric distributions. Specifically, suppose that we have 

already generated the tables na−1,b and na,b−1; then the conditional distribution of na,b given 

its row and column totals, as well as the two parent tables na−1,b and na,b−1, are simply 

a collection of independent univariate central hypergeometric distributions, one for each 

adjacent 2 × 2 subtable in na,b given its row totals and column totals, which correspond to 

cell counts in na−1,b and na,b−1.

Let A be a cuboid that arises from dividing the X margins a total of rx times and the Y 
margins a total of ry times. The above reasoning implies that one can show by construction 

that, for any 2 × 2 table on a cuboid A, there exists a Bayesian network in the form 
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presented in Fig. 4 such that the total number of observations in A, n(A), is an element in the 

contingency table nrx, ry (the node with the bold black boundary in Fig. 4), the counts for the 

four blocks of the 2 × 2 table, n Aij
00 , n Aij

01 , n Aij
10  and n Aij

11 , are in nrx + 1, ry + 1 (the node 

with the grey dashed boundary in Fig. 4), and the marginal totals of A are in nrx + 1, ry and 

nrx, ry + 1 (the two nodes with dotted grey boundaries in Fig. 4). In addition, the counts of all 

of the 2 × 2 tables on ancestors of A are measurable with respect to the σ-algebra generated 

by the grey-shaded nodes in the Bayesian network, and thus are independent of the 2 × 2 

table on A given the marginal totals. Therefore, the selection of a table does not influence 

the null distribution once the marginal totals are conditioned upon because such conditioning 

blocks all the paths from these ancestral nodes to nrx + 1, ry + 1, the node with the grey dashed 

outline. □

Now that we have established the finite-sample exact validity of the MULTIFIT procedure, 

our last theoretical result shows that, when the sample size n grows, under certain 

conditions, the MULTIFIT procedure can consistently reject the null hypothesis of 

independence.

THEOREM 3 (LARGE-SAMPLE CONSISTENCY). Suppose that X and Y are not independent under 
their sampling distribution F. Let (X1, Y1), (X2, Y2), …, (Xn, Yn) be independent and 
identically distributed observations from F. As n → ∞, suppose that one of the following 
conditions holds:

i. R* is fixed, but large enough such that there exists at least one cuboid A of 
resolution r ⩽ R* with θij(A) ≠ 1 for some pairs of margin (i, j);

ii. R* → ∞ and it is o(log n).

Then the power for the MULTIFIT procedure to reject the null hypothesis that X ⫫ Y 
converges to 1.

In practice, conditions (i) and (ii) of Theorem 3 imply that the MULTIFIT procedure will 

perform best when the dependency structure reflects itself in a cuboid at relatively low 

resolutions. In contrast, the types of dependencies for which the procedure suffers the most 

substantial power loss are those whose local odds ratios deviate from 1 only in cuboids 

at high resolutions, while all cuboids at low resolutions have odds ratios equal or close to 

1. Such a dependency is highly local in nature and, as will be shown in our simulation 

analysis, in such cases existing approaches, whose asymptotic conditions generally involve 

more global properties of the underlying distributions, such as moment conditions, could and 

often do suffer even more substantial power loss at finite sample sizes in practice.

2.4. Practical considerations when applying the MULTIFIT procedure

We close this section by discussing some practical aspects in applying the MULTIFIT 

procedure. We set the default value for the p-value threshold p* in our software for 

resolutions higher than R* at {DxDy log2(n)}−1. This keeps the number of 2 × 2 tables tested 

constant, on average, under the null hypothesis irrespective of the number of dimensions, 

while also making the threshold more stringent with increasing sample size in such a way 
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that makes the total number of tables scale roughly linearly with the sample size, which we 

confirm numerically in the next section.

Under this strategy of setting p*, for certain alternatives, in particular those that are 

pervasive over the sample space and involve a large number of cuboids, the complexity of 

the MULTIFIT procedure may be higher than O(n log n). Such large-scale, global alternatives, 

however, can usually be detected in coarse resolutions, and thus in practice, when the 

algorithm is equipped with early stopping, it will in fact run faster with larger n under such 

alternatives.

If the practitioner wishes to ensure a strict O(n log n) bound on the computational 

complexity with or without incorporating early stopping, a simple approximate version of 

the multi-scale Fisher’s independence test algorithm can achieve this. Specifically, in Step 

1(b) of the MULTIFIT procedure, instead of including child cuboids of all cuboids with a 

p-value less than p*, one can include the child cuboids of up to a prespecified maximum 

number of cuboids per resolution with the most significant p-values less than p*. This 

alternative constraint ensures that the computational cost of the MULTIFIT procedure is 

strictly bounded at O(n log n).

While under this approximation the conditions for ensuring the finite-sample guarantees are 

no longer satisfied, we found in practice that its statistical power, as demonstrated in Figs. 

7(a) and 7(b) in § 3.2, and level, as demonstrated in the Supplementary Material, hardly 

differ from those of the exact MULTIFIT procedure in essentially all of the numerical settings 

we have encountered.

3. Numerical examples

3.1. Computational scalability

Because computational scalability is a key motivation for our approach, we start by 

evaluating the computational scalability of the MULTIFIT procedure with those of three other 

state-of-the-art methods with well-documented software, namely, the Heller–Heller–Gorfine 

multivariate test of association from Heller et al. (2013), the distance covariance method of 

Székely & Rizzo (2009) and the kernel-based Brownian distance covariance of Pfister et al. 

(2018).

We apply these methods to datasets simulated under six scenarios described in the 

Supplementary Material along with a null scenario where there is no dependence. Here 

we report the results for two scenarios as they represent the best- and worst-case 

computational scenarios for the MULTIFIT procedure and defer the rest of the scenarios to 

the Supplementary Material. The first scenario we report involves data generated under the 

null hypothesis, with all margins drawn independently from a standard normal distribution. 

Under the second scenario, one dimension of Y is strongly correlated with a dimension 

of X under the linear scenario from Table S1 in the Supplementary Material with l = 3. 

While in practice nonlinear alternatives are the main motivation for the nonparametric tests 

being considered here, the linear scenario is essentially the worst-case scenario for the 

multi-scale Fisher’s independence test, without early stopping, in terms of computational 

GORSKY and MA Page 11

Biometrika. Author manuscript; available in PMC 2022 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



time. The reason is that the stronger the dependency at coarser levels, the more tests will 

be performed under the multi-scale Fisher’s independence test, because more tests will 

pass the p-value threshold at coarser levels. As such, these two scenarios represent the two 

ends of the spectrum in the amount of computation incurred under the multi-scale Fisher’s 

independence test.

Figure 5 plots the computational time versus the sample size on a log-log scale at different 

dimensionalities, 2 and 10. All methods were run on the same desktop computer with a 

single Intel® Core™ i7-3770 CPU core at 3.40 GHz, and the three competitors to MultiFIT 

were evaluated up to the maximum sample size allowed by the available 16G RAM. We 

present the average duration of 10 executions of each method under different dimensions, d 
= 2 and d = 10. The results for the competitors are for only a single permutation, while at 

least hundreds of resampling repetitions are required in order to perform inference.

Overall, the computational advantage of the multi-scale Fisher’s independence test is 

substantial, as it scales approximately O(n log n) in sample size, while the Heller–Heller–

Gorfine test, distance covariance and Brownian distance covariance without the gamma 

approximation scale approximately O(n2). The gamma approximation method of Brownian 

distance covariance makes the method faster in the presence of a strong signal, but it still 

cannot handle the larger sample sizes due to its memory requirement.

The multi-scale Fisher’s independence test with early stopping achieved the best 

computational efficiency at moderate to large sample sizes uniformly across nonnull 

scenarios. As expected, early stopping does not reduce computation under the null. The 

approximate multi-scale Fisher’s independence test with a maximum number of cuboids per 

resolution on the other hand bounds the complexity by O(n log n).

We do acknowledge that the three competitors scale linearly in dimensionality while the 

multi-scale Fisher’s independence test scales quadratically with the number of dimensions. 

As such, the multi-scale Fisher’s independence test is not suited for very high-dimensional 

problems. It is most suitable for problems up to tens of dimensions with large sample size.

3.2. Power comparison

We next examine the statistical power of the competing methods under several representative 

dependency scenarios. We consider two sets of simulation settings. In one set, the 

dependency exists only in a small number of margins, and thus is amenable to the multi-

scale Fisher’s independence test’s search over pairs of axes-aligned boundaries. In the other 

set, the dependency is spread over a large number of dimensions and thus is particularly 

adversarial to the multi-scale Fisher’s independence test.

In the first set of simulations, we let X1 and Y1 be independently normally distributed, 

whereas X2 and Y2 are dependent according to several different scenarios, which are 

illustrated in Fig. 6 by black points in the upper row of plots. The multi-scale Fisher’s 

independence test has a natural advantage to detect such marginal dependencies as it focuses 

on the testing of pairs of margins.
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In the second set of dependency scenarios, the true signal embodies dependencies of the Y 
margins on multiple X margins in terms of linear combinations or mixtures. This dissipates 

the strength of the dependency over many pairs of margins, and is thus highly unfavourable 

to the multi-scale Fisher’s independence test. This set of scenarios is illustrated in Fig. 6 by 

grey points in the two rows of plots and detailed in the Supplementary Material.

For all scenarios except the local scenarios, we set the level of resolutions up to which 

exhaustive testing is done, R* = 2, and for the local scenarios, where a signal is embedded 

in a small portion of the sample space, we set R* = 4 to ensure exhaustive coverage up to 

resolution 4. In the Supplementary Material we present a detailed sensitivity analysis on the 

effects of the tuning parameters p* and R* on the power of the test under the simulation 

settings.

We performed 500 simulations for each scenario at 20 different noise levels, and applied the 

four methods at the 5% level. We first applied a rank transform to each of the D margins for 

the simulated data, as this is the default under the MULTIFIT procedure, and the competitors, 

the Heller–Heller–Gorfine test, distance covariance and Brownian distance covariance, also 

performed much better with the marginal rank transform.

Figure 7(a) reports the result for the first set of simulations. The MULTIFIT procedure 

outperforms the Heller–Heller–Gorfine test, distance covariance and Brownian distance 

covariance for the sine, circle, checkerboard and local scenarios, the cases that are richer 

with local structures. For the more global dependency structures, namely linear and 

parabolic, the Heller–Heller–Gorfine test and Brownian distance covariance outperform the 

MULTIFIT procedure, while distance covariance does so in the linear case. This is explained 

by the fact that the signal is observable almost entirely in the coarsest level, and as we go 

into higher resolutions we merely add insignificant tests that reduce the overall power. In 

the second set of simulations shown in Fig. 7(b), as expected, the MULTIFIT procedure loses 

some power relative to the competitors. Nevertheless, its overall performance is still robust 

and it still outperforms all other methods in the sine and local spread scenarios.

The results are largely consistent with our intuition. Because of its divide-and-conquer 

nature, the multi-scale Fisher’s independence test is particularly good in identifying 

dependency structures that concentrate within a small number of cuboids, i.e., local features, 

while its power is weaker when the dependency structure is spread over a large number of 

cuboids, i.e., global structures.

Finally, we acknowledge that the performance of some of the competitors, such as the 

Brownian distance covariance, could be further improved with more expert selection of 

the tuning parameters. For example, the incorporation of a multi-scale bandwidth into the 

Brownian distance covariance, as suggested by Li &Yuan (2019), could further improve its 

performance.

3.3. Learning the nature of the dependency

So far, we have focused on applying the multi-scale Fisher’s independence test for testing 

the null hypothesis of independence. In practice, especially in multivariate settings, the 
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practitioner is often interested in not just testing the existence of dependence, but in having 

an understanding of its nature. A by-product of the divide-and-conquer approach is the 

ability to shed light on the underlying dependency structure. In this section we provide two 

examples that illustrate the ability of the multi-scale Fisher’s independence test to learn 

the nature of the dependency. In the first example, we consider a dependency structure 

resulting from higher-order interactions. In the second example, the dependency consists 

of two sine waves in the (X1, Y1) margin with different frequencies, while a third margin, 

X2, determines the frequency. In both examples it is difficult to visualize the dependency in 

low-dimensional marginal visualizations. We show that after identifying the 2 × 2 tables that 

contained statistically significant evidence for dependency after multiple testing correction, 

by plotting the data points in those significant tables, one can learn and visualize the 

underlying dependency. In both examples, we use the holistic approach to multiple testing 

and adopt Holm’s correction on the p-values.

Example 1 (Rotated three-dimensional circle).—Let X and Y each be of three 

dimensions, and simulate a sample with 800 observations. We first generate a circle scenario 

so that X1, Y1, X2 and Y2 are all independent and identically distributed standard normals, 

whereas X3 = cos(θ) + ϵ, Y3 = sin(θ) + ϵ′ where ϵ and ϵ′ are independent and identically 

distributed N{0, (1/10)2} and θ ~ Un(−π, π). We then rotate the circle by π/4 degrees in the 

X2-X3-Y3 space by applying

cos(π/4) −sin(π/4) 0
sin(π/4) cos(π/4) 0

0 0 1

∣ ∣ ∣
X2 X3 Y3

∣ ∣ ∣
.

The rotated circle is no longer visible by examining the two-dimensional margins. See Fig. 8 

for the marginal views of the sample before and after the rotation. Figure 8(c) plots the data 

points that lie in the 2 × 2 tables identified as statistically significant at the 0.001 level after 

multiple testing adjustment with the modified Holm’s procedure under the rotated setting. 

The underlying dependency pattern is clearly visible after selecting these tables. We found 

that in visualizing the identified tables, it is often useful to plot the data points that lie in 

the same slice of that table, but with the full ranges of the plotted margins, as the identified 

table often captures a portion of the interesting dependency. Figure 8(c) demonstrates this 

technique by plotting those additional observations in dark grey. For this reason, we have 

incorporated this plotting feature in our software.

Example 2 (Mixed sine signals).—Here we examine the ability of the multi-scale 

Fisher’s independence test to detect a dependency structure consisting of two sine waves 

in different frequencies. Let X = (X1, X2)⊤ be a two-dimensional random vector with 

independent margins X1 ~ U(0, 1) and X2 ~ Be(0.3, 0.3), and let

Y =
sin 10X1 + ϵ  if X2 > 0.5,
sin 40X1 + ϵ  if X2 ⩽ 0.5.

GORSKY and MA Page 14

Biometrika. Author manuscript; available in PMC 2022 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9(a) shows a simulated dataset of size 800. In the (X1, Y1) margin in the left panel we 

can see the superimposed sine waves. Figure 9(b) shows three significant tables identified by 

the MULTIFIT procedure using the same colour coding technique from the previous example 

in which we can clearly discern between the different frequency waves.

4. Application to a flow cytometry dataset

Flow cytometry is the standard biological assay used to measure single cell features known 

as markers, and is commonly used to quantify the relative frequencies of cell subsets 

in blood or disaggregated tissue. These features may be general physical, chemical or 

biological properties of a cell. Such data involve complex distributional features and are 

of massive sizes with typical sample sizes in the range of hundreds of thousands, which 

presents computational challenges to nonparametric data analytical tools.

For the evaluation, we used flow cytometry samples generated by an antibody panel 

designed to identify activated T cell subsets. We show the results of the dependency analysis 

on a single illustrative sample with 353 586 cells. For the analysis, we separated the markers 

into a vector of four basic markers, CD3, CD4, dump and CD8, and a vector of four 

functional markers, IFN, TNF, IL-2 and CD107. The basic markers are used in practice to 

first identify viable T cells by exclusion using the dump and CD3 markers, and then to 

further partition T cells into CD4-positive helper and CD8-positive cytotoxic subsets. The 

functional markers are used to identify the activation status of these T cell subsets and 

their functional effector capabilities. Here, IL-2 is a T cell growth factor, IFN and TNF are 

inflammatory cytokines, and CD107 is a component of the mechanism used by T cells to 

directly kill infected and cancer cells.

We applied the MULTIFIT procedure with Holm’s multiple testing adjustment to the data 

to identify dependency between the basic and functional markers. Our aim here is to 

demonstrate the ability of the multi-scale Fisher’s independence test to handle such large 

data and to shed light on the underlying dependency, and so we ran the test exhaustively 

up to the maximal resolution of 4, testing 102 416 2 × 2 tables. The execution time of the 

algorithm in this setting is approximately five minutes on a laptop computer utilizing four 

3.00 GHz Intel® Xeon® E3-1505M v6 CPU cores.

As the sample size is very large and the data clearly have strong marginal dependencies, the 

MULTIFIT procedure identified hundreds of significant tests after multiple testing adjustment. 

Interested readers can run our code for this example in the Supplementary Material to 

visualize the identified dependence structures. The Heller–Heller–Gorfine test, distance 

covariance and Brownian distance covariance were not able to handle this amount of data 

and all ended in overflow errors. Figure 10 presents the visualization of the observations in 

the 20 2 × 2 table with the most significant p-values using the strategy described in § 3.3.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
(a) A cuboid of resolution 3 in a three-dimensional sample space under the canonical nested 

dyadic partition. (b) The division of the cuboid A in (a) into four blocks along dimension 1 

for X and dimension 1 for Y.
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Fig. 2. 
Illustration of the two 2 × 2 contingency tables on a cuboid A arising from an independent 

and identically distributed sample in which dependency exists in (X1, Y1).
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Fig. 3. 
The selection of tables for testing based on the statistical evidence on their parent. The two 

right children correspond to dividing A along the ith margin of X, and the two left children 

correspond to dividing A along the jth margin of Y. Those four children are tested in 

resolution r+1 if their parent A in resolution r produces a p-value, pij(A), below the threshold 

p*.
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Fig. 4. 
A Bayesian network representation for the multivariate central hypergeometric model on 

contingency tables formed by cross-products of sequential marginal partitions on ΩX and 

those on ΩY.
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Fig. 5. 
Computational scalability: a comparison of the Heller–Heller–Gorfine test (thin grey solid), 

distance covariance (thin grey dash–dot), Brownian distance covariance (thin grey dashed), 

Brownian distance covariance with the gamma approximation (thin grey dotted) and the 

multi-scale Fisher’s independence test. Three variants of the MULTIFIT procedure were 

tested on two scenarios: the null scenario was tested with the full method (thick grey solid), 

the approximate method that keeps up to 100 most significant p-values at each resolution 

(thick grey dotted) and the full algorithm with early stopping (thick black dashed); a linear 

scenario was tested with the full method (thick grey dashed), the approximate method that 

keeps up to 100 most significant p-values at each resolution (thick black solid) and the full 

algorithm with early stopping (thick black dotted). In all cases Dx = Dy = d. The MULTIFIT 

procedure was run with R* = 1 and p* = {DxDy log2(n)}−1. The multi-scale Fisher’s 

independence test and the Brownian distance covariance method with gamma approximation 

do not require permutations. The other methods require permutations for level control and 

the reported time is for a single permutation.
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Fig. 6. 
Visualization of the dependent margins of six scenarios with noise level 2. The marginal 

scenario (black dots) is only plotted in the top row as its X1-Y1 margins do not involve 

an interesting dependency, whereas the spread scenario (grey dots) is plotted in both. The 

dependency in the marginal scenario is more noticeable in the X2-Y2 margins than the 

spread scenario.
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Fig. 7. 
Power versus noise level for different methods. (a) Estimated power at 20 noise levels for 

the different methods under the six scenarios from Table S1 in the Supplementary Material. 

(b) Estimated power at 20 noise levels for the different methods under the six scenarios 

from Tables S2 and S3 in the Supplementary Material. In both panels we show three 

variants of the multi-scale Fisher’s independence test: the full method (thick black solid), the 

approximate method that keeps up to 100 most significant p-values at each resolution (thick 

black dotted) and the full algorithm with early stopping (thick grey dash-dot); four variants 

of the Heller–Heller–Gorfine test: the sum chi squared (thin black dashed), sum likelihood 
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(thin black dotted), mean chi squared (thin black dash-dot) and mean likelihood (thin black 

long-dash); the distance covariance (thin grey solid line); the Brownian distance covariance 

(thin grey dotted) and the Brownian distance covariance with the gamma approximation 

(thin grey dashed).
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Fig. 8. 
(a), (b) Marginal views of the data sample in § 3.3 (a) before and (b) after rotation. 

The dependency is easily visible in the marginal plots before rotation. Once rotated, the 

signal is spread among the margins and no longer visually obvious. (c) Scatter plots for 

the observations in the three 2 × 2 tables identified as most significant by the MULTIFIT 

procedure for the rotated circle scenario. Significant tables are those with Holm’s adjusted 

p-values below 0.001. The dependency structure is again visible in the marginal views: 

black points are observations that are within the cuboid that is tested, dark-grey points 

are observations that are in a cuboid formed by expanding the tested cuboid so that the 

plotted margins are not subsetted and light grey crosses are all other data points. Note how 

the left plot captures the dependency in the X3-Y3 plane while the right plot captures the 

dependency in the X2-Y3 plane.
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Fig. 9. 
(a) The two pairs of margins of the sine mixture (black points). In the X1-Y1 plane we 

see the superimposed sine signals and in the X2-Y1 plane the margins that determine the 

mixture. (b) Scatter plots for the observations in the three 2 × 2 tables identified as most 

significant by the MULTIFIT procedure for the sine mixture scenario. The black points are 

observations that are within the cuboid that is tested, dark grey points are observations that 

are in a cuboid formed by expanding the tested cuboid so that the plotted margins are not 

subsetted and light grey crosses are all other data points.
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Fig. 10. 
Scatter plots of the observations identified by the 20 2 × 2 tables with the most significant 

p-values for the flow cytometry dataset. Black indicates observations in the tested cuboid. 

Dark grey indicates observations in the same slice of the sample space, determined by 

the four markers other than the two margins plotted. Light grey indicates the rest of the 

observations.
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