
pharmaceutics

Article

Multiscale Metal Oxide Particles to Enhance Photocatalytic
Antimicrobial Activity against Escherichia coli and M13
Bacteriophage under Dual Ultraviolet Irradiation

Su-Eon Jin 1,* and Hyo-Eon Jin 2,*

����������
�������

Citation: Jin, S.-E.; Jin, H.-E.

Multiscale Metal Oxide Particles to

Enhance Photocatalytic Antimicrobial

Activity against Escherichia coli and

M13 Bacteriophage under Dual

Ultraviolet Irradiation. Pharmaceutics

2021, 13, 222. https://doi.org/

10.3390/pharmaceutics13020222

Academic Editor: Clive Prestidge

Received: 29 November 2020

Accepted: 1 February 2021

Published: 6 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Research Institute for Medical Sciences, College of Medicine, Inha University, Incheon 22212, Korea
2 College of Pharmacy, Ajou University, Suwon 16499, Korea
* Correspondence: jins@inha.ac.kr (S.-E.J.); hjin@ajou.ac.kr (H.-E.J.)

Abstract: Antimicrobial activity of multiscale metal oxide (MO) particles against Escherichia coli
(E. coli) and M13 bacteriophage (phage) was investigated under dual ultraviolet (UV) irradiation.
Zinc oxide (ZnO), magnesium oxide (MgO), cuprous oxide (Cu2O), and cupric oxide (CuO) were
selected as photocatalytic antimicrobials in MO particles. Physicochemical properties including mor-
phology, particle size/particle size distribution, atomic composition, crystallinity, and porosity were
evaluated. Under UV-A and UV-C irradiation with differential UV-C intensities, the antimicrobial
activity of MO particles was monitored in E. coli and phage. MO particles had nano-, micro- and
nano- to microscale sizes with irregular shapes, composed of atoms as ratios of chemical formulae
and presented crystallinity as pure materials. They had wide-range specific surface area levels of
0.40–46.34 m2/g. MO particles themselves showed antibacterial activity against E. coli, which was
the highest among the ZnO particles. However, no viral inactivation by MO particles occurred in
phage. Under dual UV irradiation, multiscale ZnO and CuO particles had superior antimicrobial
activities against E. coli and phage, as mixtures of nano- and microparticles for enhanced photocat-
alytic antimicrobials. The results showed that the dual UV-multiscale MO particle hybrids exhibit
enhanced antibiotic potentials. It can also be applied as a next-generation antibiotic tool in industrial
and clinical fields.

Keywords: multiscale metal oxide particles; dual UV; photocatalytic antimicrobials; E. coli;
M13 bacteriophage

1. Introduction

Metal oxide (MO) particles have been highlighted as nano-antibiotics against
pathogenic microorganisms for enhanced disinfection [1,2]. They exhibit wide-spectrum an-
timicrobial activities against bacteria as well as viruses, and even against antibiotic-resistant
microorganisms [3,4]. The antimicrobial functions of MO particles are displayed by their
adsorption potentials to biomembranes of microorganisms, owing to their surface prop-
erties [5,6]. Under ultraviolet (UV) irradiation, reactive oxygen species (ROS) produced
by MO particles induce germicidal toxicity of nucleic acid breaks in microorganisms. In
MO particles, biological and toxicological responses against microorganisms are primarily
mediated by physicochemical characteristics under non-UV or UV irradiation. Specifi-
cally, their physicochemical characteristics including morphology, particle size, atomic
composition, crystallinity, and porosity are the major factors to affect the responses of
microorganisms inducing antimicrobial actions [7]. Among the properties of MO particles,
their photocatalytic antimicrobial activity of MO particles can be mainly affected by particle
size variation [8,9]. Therefore, the antimicrobial activity of multiscale MO particles ranging
from nano- to microsized levels should be screened.

Particle size variety has been studied in photocatalytic antimicrobial activity of MO
particles for enhanced disinfection [7,10]. In the case of MO nanoparticles (NPs, <100 nm)
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including zinc oxide (ZnO), zinc titanate (ZnTiO3), magnesium oxide (MgO), and cupric
oxide (CuO) used as photocatalysts, they showed enhanced antimicrobial activity and
blocked bacterial regrowth as compared to UV irradiation alone [11,12]. On the contrary,
low antimicrobial activities were detected in MO microparticles (MPs, >100 nm) against
Escherichia coli and Staphylococcus aureus, which ranged from 0.1 to 0.8 µm in diameter
with specific surface area of 0.85–26.0 m2/g [9]. However, the photocatalytic disinfection
potential of MO MPs can be improved in ROS generation under UV irradiation based on
the porosity via multiple scattering phenomena for enhanced mass transfer and exchange
rate [13,14]. In addition to MO NPs or MPs alone, photocatalytic antimicrobial activity of
multiscale MO particles can be monitored as mixtures of MO NPs and MPs.

The hybridization of MO particles to dual UV, UV-A (315–400 nm) and UV-C
(100–280 nm), is one of the most ecofriendly disinfection techniques, which facilitates
wide-spectrum antimicrobial activity based on combined wavelengths [15,16]. Although
UV-A is used for the removal of harmful insects and worms after a long exposure [17],
UV-C is a powerful germicidal wavelength range, specifically 253 nm, for pathogenic
microorganism disinfection [18]. Enhanced antibiotic potential of dual UV is described
by a combination of MO NPs as photocatalysts, compared to single UV or antibacterial
agent alone [19,20]. A dual UV and photocatalyst hybrid system can prevent regrowth or
reactivation of bacteria and viruses after single UV irradiation, killing antibiotic-resistant
microorganisms.

In the present study, we investigated whether multiscale MO particles, a mixture
of MO NPs and MPs could have an enhanced antimicrobial activity coupled with non-
UV or UV irradiations. ZnO, MgO, Cu2O, and CuO particles were selected to screen
antimicrobial activity. Physicochemical characteristics of multiscale MO particles were
evaluated in terms of morphology, particle size/particle size distribution, atomic composi-
tion, crystallinity, and porosity. Antimicrobial activity test was performed in E. coli and
M13 bacteriophage (phage), which were used as model microorganisms. The mechanisms
underlying antimicrobial action were further discussed.

2. Materials and Methods
2.1. Chemical Reagents

MO particles consisting of ZnO [ZnO-(1) (powder, <5 µm, 99.9%) and ZnO-(2)
(nanopowder, <100 nm)], MgO [MgO-(1) (calcined, ≥97.0%) and MgO-(2) (fused, 150–325
mesh, ≥95%)], Cu2O (powder, ≤7 µm, 97%), and CuO (powder, <10 µm, 98%) were pur-
chased from Sigma-Aldrich (St. Louis, MO, USA). Absolute ethanol (99.9%) and isopropyl
alcohol were obtained from Sigma-Aldrich (USA). Luria-Bertani (LB) medium and agar
were obtained from BD Biosciences (Franklin Lakes, NJ, USA). All chemicals were of
reagent grade and used without further purification. Deionized water was obtained using
a water purification system (Milli-Q, Millipore, Billerica, MA, USA).

2.2. Field Emission-Scanning Electron Microscopy (FE-SEM) with Energy-Dispersive X-ray
Spectroscopy (EDS)

Morphologies of MO particles were monitored using a FE-SEM (JSM-7100F, Jeol Ltd.,
Tokyo, Japan). It was operated at an acceleration voltage of 15.0 kV. Magnifications were
set at 5000–50,000. Samples were investigated after platinum coating. EDS analysis was
also performed at three points on the surface of MO particles to quantitatively determine
the compositions of elements.

2.3. Powder X-ray Diffractometry (PXRD)

The crystallinities of MO particles were analyzed using a PXRD. The PXRD patterns
of the particles were recorded from 20 to 80 2θ (degree, ◦) using a high resolution X-ray
diffractometer (HR XRD, SmartLab, Rigaku, Tokyo, Japan) with CuKα radiation. The data
were collected and analyzed in SmartLab Studio (Rigaku).
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2.4. Brunauer–Emmett–Teller (BET) Analysis

Mesopores of MO particles were analyzed from nitrogen adsorption-desorption
isotherms using a Qudrasorb SI (Quantachrome Instruments, Boynton Beach, FL, USA).
Each sample was weighed at 1.0–3.0 g. Experimental results of specific surface area, to-
tal pore volume, and average pore diameter were calculated using ASiQwin software
(Quantachrome Instruments) based on the BET theory.

2.5. Dual UV Irradiation in Collimated Beam Device (CBD)

CBD was prepared using a dual UV lamp of UV-A and UV-C (ECOSET Co., Ltd.,
Ansan, Korea), controlling UV-C intensity by lamp surface coating [11]. The electronic
controller for 40 W/m2 was connected to CBD. Fans were attached at both ends to minimize
the heat generation of the UV lamp. UV dose (J/m2) was calculated from the intensity
(W/m2) of the UV lamp and exposure time (s) after obtaining UV intensity using a spec-
trometer (Jaz System, Ocean Optics, Inc., Orlando, FL, USA) with software (Spectra Suite,
Ocean Optics, Inc.).

2.6. Antimicrobial Activity Test in E. coli and Phage

Antimicrobial activities of the MO particles and dual UV-MO particle hybrids were
investigated in E. coli and phage as the model microorganisms of bacteria and viruses,
respectively. MO particles or dual UV alone were used as controls. Dispersed MO particles
in water (1 mg/mL) were added to E. coli (104 colony forming unit, CFU). After incubation
in the dark for 30 min, the samples (1 mL) were collected, added to LB/agar medium,
and poured into plates. The resultant plate samples were incubated in the dark at 37 ◦C
overnight. In the case of phage, MO particles in water (1 mg/mL) were mixed with phage
(104 plaque forming units, PFU) and incubated for 30 min. Then, 100 µL of the samples
were collected and incubated with overnight cultured bacteria at room temperature for
60 min. After mixing the top agars with those, they were poured onto LB/isopropyl
β-d-1-thiogalactopyranoside (IPTG)/5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside
(X-gal) plates and incubated at 37 ◦C overnight. For photocatalytic antimicrobial activity,
MO particles were irradiated under dual UV for 10 or 30 s while they were incubated with
E. coli or phage for 30 min. After incubation, each sample for E. coli or phage was collected
and processed as mentioned above. The colonies and phage plaques were counted using
Image J (NIH) after their images were obtained.

2.7. Statistical Analysis

The results are expressed as the means ± standard deviation. The statistical differ-
ences among the groups were tested using Student’s t-test. A p-value less than 0.05 was
considered to be statistically significant.

3. Results
3.1. Morphology and Particle Size Distribution

MO particles of ZnO, MgO, Cu2O, and CuO formed various irregular shapes such as
needles, rods, and spheres to develop additive particle clusters with interparticular pores
(Figure 1). ZnO-(1) (Figure 1A) and ZnO-(2) (Figure 1B) particles had shapes similar to
needles or rods. MgO-(1) particles (Figure 1C) had nanoscale-sized shapes of spheres or
cubes, which generated submicron-sized spherical clusters. However, MgO-(2) particles
(Figure 1D) showed cuboidal crystalline shape. Cu2O (Figure 1E) and CuO (Figure 1F)
particles were mixtures of irregular shaped NPs and had curved or angular particles of
submicron size.
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which were smaller than MgO-(2) particles (>100 μm). In a hydrodynamic environment, 
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Figure 1. FE-SEM images of metal oxide (MO) particles: (A) ZnO-(1), (B) ZnO-(2), (C) MgO-(1), (D) MgO-(2), (E) Cu2O, and
(F) CuO.

In particle size distribution, MO particles had nano- to microscale sizes of
84.6 nm–0.706 µm for ZnO-(1) and 76.9–153.8 nm for ZnO-(2) particles [ZnO-(1) > ZnO-(2)];
50–76.9 nm for MgO-(1) and 8.0–138 µm for MgO-(2) particles [MgO-(1) < MgO-(2)];
1.2–6.0 µm for Cu2O and 50.0 nm–0.577 µm for CuO particles (Cu2O ≥ CuO). Specifically,
ZnO-(1) and CuO particles were multiscale mixtures of NPs and MPs. ZnO-(2) and MgO-(1)
particles were NPs, and MgO-(2) and Cu2O particles were MPs. However, in MgO parti-
cles, MgO-(1) particles generated particle clusters ranged from 28 to 54 µm, which were
smaller than MgO-(2) particles (>100 µm). In a hydrodynamic environment, MO particles
generated large aggregates (<100 nm, >100 µm) in a number-weighted distribution mode
(Figure S1). In ZnO and MgO particles, each particle size of aggregate was conversely
displayed, compared to individual particle size, due to the differential particle aggregate
formation capacity [ZnO-(1) < ZnO-(2); MgO-(1) > MgO-(2)] (Table S1). In the case of Cu2O
and CuO particles, their aggregate sizes were similar to each other (Cu2O ≈ CuO).

3.2. Atomic Compositions

In EDS spectra (Figure S2), atomic compositions of MO particles were matched for
pure chemical formula (Table 1). ZnO particles included 78.5–81.9% of Zn and 18.1–21.4%
of O. MgO particles contained 61.1–63.5% of Mg and 36.5–38.9% of O. Cu2O and CuO
particles had 88.7% of Cu and 11.3% of O for Cu2O, and 75.9% of Cu and 24.1% of O for CuO.
Atomic compositions were similar in all the MO particles, irrespective of morphology and
particle size. Although ZnO-(1) particles contained an Al contaminant of less than 0.05% in
EDS, no Al contaminants were detected in XPS. Binding energy of ZnO-(1) particles were
detected at 1022 and 1045 eV for Zn2p and 531 eV for O1s (Figure S3).

Table 1. Atomic compositions of metal oxide (MO) particles.

MO Particles Zn Al Mg Cu O

ZnO-(1) 78.5 ± 1.6 0.01 ± 0.02 - - 21.4 ± 1.6
ZnO-(2) 81.9 ± 0.6 - - - 18.1 ± 0.6
MgO-(1) - - 61.1 ± 1.4 - 38.9 ± 1.4
MgO-(2) - - 63.5 ± 2.1 - 36.5 ± 2.1

Cu2O - - - 88.7 ± 1.2 11.3 ± 1.2
CuO - - - 75.9 ± 0.3 24.1 ± 0.3

3.3. Crystallinity

PXRD patterns described the high crystallinity of MO particles suggesting that they
were pure materials with negligible impurities (Figure 2). MO particles showed hexagonal



Pharmaceutics 2021, 13, 222 5 of 15

wurtzite structures for ZnO-(1) and ZnO-(2) particles (ICDD 01-080-0075, Figure 2A,B),
cubic lattices for MgO-(1) (ICDD 01-071-3631, Figure 2C) and MgO-(2) (ICDD 00-045-0946,
Figure 2D) particles, cubic polycrystalline for Cu2O particles (ICDD 01-071-3645, Figure 2E),
and monoclinic phase for CuO particles (ICDD 01-089-5898, Figure 2F).
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Figure 2. PXRD patterns of metal oxide (MO) particles: (A) ZnO-(1), (B) ZnO-(2), (C) MgO-(1),
(D) MgO-(2), (E) Cu2O, and (F) CuO.

3.4. Porosity

Surface area, pore volume, and pore size of MO particles are listed in Table 2. Surface
area levels were the highest in ZnO-(1) particles (46.34 m2/g), and the lowest in MgO-(2)
particles (0.3997 m2/g) in order of ZnO-(1), MgO-(1), ZnO-(2), CuO, Cu2O, and MgO-(2)
particles. In pore volume levels, MgO-(1) particles showed the highest (0.2883 cc/g) and
MgO-(2) particles had the lowest (0.003593 cc/g) in order of MgO-(1), ZnO-(1), ZnO-(2),
CuO, Cu2O, and MgO-(2) particles. Mesopore size levels of MO particles ranged from
9.540 to 45.76 nm in order of MgO-(1) (45.76 nm), MgO-(2) (35.96 nm), ZnO-(2) (29.86 nm),
Cu2O (25.80 nm), CuO (21.02 nm), and ZnO-(1) (9.540 nm) particles.

Table 2. Surface characteristics of metal oxide (MO) particles.

MO Particles Surface Area
(m2/g)

Pore Volume
(cc/g)

Pore Size
(nm)

ZnO-(1) 46.34 0.1105 9.540
ZnO-(2) 11.58 0.08644 29.86

MgO-(1) 25.20 0.2883 45.76

MgO-(2) 0.3997
0.1090 1

0.003593
-

35.96
-

Cu2O 0.6036 0.003893 25.80
CuO 3.392 0.01783 21.02

1 Krypton

3.5. Antimicrobial Activity of MO Particles
3.5.1. Antibacterial Activity against E. coli

Antimicrobial effect of MO particles against E. coli was investigated without UV
irradiation (Figure 3). In ZnO particles, both ZnO-(1) and ZnO-(2) particles showed a dose-
dependent antibacterial activity against E. coli at 0.1–1.0 mg/mL (Figure 3A). Figure 3B
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displays the representative plate images after antibacterial activity test of ZnO-(2) particles
against E. coli. Although MgO (Figure 3C,D), Cu2O and CuO (Figure 3E,F) particles
also had significant antibacterial activity, they had lower growth inhibition levels against
E. coli than those of ZnO-(2) particles. Antibacterial activity against E. coli was affected by
physicochemical characteristics of MO particles. In ZnO particles, ZnO-(2) particles had
enhanced antibacterial activity compared with ZnO-(1) particles depending on particle
size [ZnO-(1) > ZnO-(2)]. In addition to particle size effect, antibacterial activity of MO
particles was shown in order of ZnO > MgO > Cu2O = CuO particles based on the variety
of all particles.
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3.5.2. Inactivation Activity against Phage

Viral inactivation activity of MO particles was determined against phage in the
dark (Figure 4). All particles of ZnO (Figure 4A,B), MgO (Figure 4C,D), Cu2O and CuO
(Figure 4E,F) at 0.1–1.0 mg/mL showed no inactivation activity against phage after 30-min
incubation. While virus plaques were inspected on plates as blue dots, no viral inactivation
was confirmed in the representative plate images of ZnO-(2) particles (Figure 4B) along
with all the other particles (Figure 4D,F) despite the enhanced antibacterial activity.
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3.6. Dual UV-MO Particle Hybrid-Based Antimicrobial Activity
3.6.1. Antibacterial Activity against E. coli under Dual UV Irradiation

Combination of dual UV and MO particles showed enhanced antibacterial efficacy
against E. coli compared to MO particles alone (Figure 5). MO particles were used at 0.1 and
1.0 mg/mL. In dual UV irradiation for 10 and 30 s, coated or uncoated areas of UV lamp
were applied as controllable factors for high or low UV-C intensity. Enhanced antibacterial
inhibition against E. coli were displayed at higher concentration of MO particles (except
ZnO-(2) and CuO), higher UV-C intensity, and longer UV exposure time. In MO particles,
antibacterial activity under dual UV irradiation was the highest in ZnO-(1) particles and
the lowest in MgO-(2) particles (ZnO-(1) > MgO-(1) > ZnO-(2) > CuO > Cu2O > MgO-(2)).
Although ZnO-(1) particles were larger than ZnO-(2) particles, ZnO-(1) particles had supe-
rior antibacterial activity against E. coli than ZnO-(2) particles under dual UV irradiation.
These results are contrary to those of antibacterial test without UV irradiation. It suggested
that multiscale MO particles can enhance antibacterial activity as photocatalysts for ROS
generation under dual UV irradiation.
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ZnO-(2), (C) MgO-(1), (D) MgO-(2), (E) Cu2O, and (F) CuO; (G) representative plate images of colonies. -, not detected.

3.6.2. Inactivation Activity against Phage under Dual UV Irradiation

Antimicrobial effect of dual UV-MO particle hybrids on phage was also investigated
(Figure 6). Under dual UV irradiation, MO particles showed viral inactivation activity
against phage. ZnO-(1), ZnO-(2), MgO-(2), Cu2O and CuO particles had viral inactivation
activity even at lower concentration (0.1 mg/mL) for 30-s dual UV irradiation using
lamp at uncoated side, except for MgO-(1) particles. Specifically, antimicrobial activity
of CuO and ZnO-(1) particles in multiscale MO particles was enhanced under dual UV
irradiation from uncoated area of UV lamp due to the high UV-C intensity based on
combination effect (Figure 6G). MO particles at low concentration (0.1 mg/mL) were more
efficient than those at high concentration (1.0 mg/mL) except MgO-(1) particles. Viral
inactivation potential was the highest in CuO particles and the lowest in MgO-(1) particles
among MO particles [CuO > Cu2O > ZnO-(1) = MgO-(2) > ZnO-(2) > MgO-(1)] under
dual UV irradiation. Although MO particles themselves had antibacterial activity in a
dose-dependent manner, UV irradiation platforms along with MO particles were necessary
to inactivate viruses effectively.
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4. Discussion

Antibiotic properties of MO particles have been mainly affected by physicochemi-
cal characteristics including morphology and particle size [1,21]. MO NPs are generally
described as nano-antibiotics to combat multidrug resistance in pathogenic microorgan-
isms [22], where antimicrobial activity is superior than that of MO MPs in most reports of
antimicrobial activity tests. However, in some cases, MO MPs also showed strong antimi-
crobial activity based on their structural properties or combinations with other materials
such as polymers and metallic compounds [23,24]. In the present study, antimicrobial
activity of multiscale MO particles against E. coli and phage was investigated with or
without dual UV irradiation to clarify the interactions between physicochemical character-
istics, specifically particle size distribution, and biological responses in microorganisms for
enhanced performance. Particle size distribution of MO particles in a multiscale mixture of
NPs and MPs at nano-to-microscale size range (ZnO-(1) and CuO particles) was explored
as a critical factor for their antimicrobial actions under dual UV irradiation.

First of all, morphology of MO particles affected antimicrobial activity via the interac-
tions of the particles with microorganisms under dual UV irradiation [24]. MO particles
showed needles or rods (Figure 1A,B), spheres or cubes (Figure 1C,D), and curved or
angular shapes (Figure 1E,F). Compared to spherical NPs, MO NPs with high aspect ratios
can be predicted as highly toxic materials with exposure risks for enhanced antimicrobial
activity against bacteria and viruses [25,26]. However, irregular-shaped NPs of high aspect
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ratios (disc, rod, and needle) at 18.59–22.20 nm showed more cytotoxicity in MG-63 cells at
0.5 mg/mL than the spherical NPs after 24 h of incubation under the same conditions as
those for antimicrobial activity enhancement [27].

Predicting antimicrobial effect of MO NPs against pathogenic microorganisms, MO
NPs with smaller size (<100 nm) significantly offer higher antibiotic potentials, despite the
association with morphology [28]. However, regarding aggregate generation of MO NPs
in the hydrodynamic environment (Figure S1), multiscale MO particles can mimic nano-
or microstructured aggregate generation containing nano-to-microscale particles (Table
S1) and possibly induce multiple scattering for enhanced mass transfer and exchange rate
under UV and visible light irradiation [29,30]. In photocatalysis for enhanced ROS genera-
tion, to induce oxidative stress against microorganisms, multiple scattering phenomena
of multiscale MO particles increase photon utilization efficiency to improve an expected
photo-redox performance.

Chemical composition and purity of MO particles also provide fundamental infor-
mation on their antibiotic potential against pathogenic microorganisms [31]. They have a
high priority even at macroscale particles in the physicochemical characteristics affected
to biological responses, recommended by Organization for Economic Co-operation and
Development (OECD) [21]. MO particles had atomic compositions as pure chemical formu-
lae (Table 1), which were determined using EDS spectra (Figure S2). Specifically, binding
energy levels of ZnO-(1) particles for investigating chemical states of surface defects were
confirmed in XPS spectrum based on elemental surface composition suggesting the envi-
ronmental interaction of particles influenced by air and carbon taping (Figure S3).

Crystallinity is one of key physicochemical characteristics to influence photocatalytic
performance under UV and visible light irradiation based on band gap energy [32]. Biolog-
ical interactions of MO particles as photocatalysts can be predicted by band gap energy
that ranged from −4.12 to −4.84 eV of cellular redox potential, suggesting electron transfer
between particle surfaces and cellular redox couples for oxidative stress [33]. MO parti-
cles of ZnO, MgO, Cu2O, and CuO had highly crystalline structures as pure materials of
hexagonal wurtzite crystals, cubic lattices, cubic polycrystalline, and monoclinic phased
crystals, respectively (Figure 2). Connecting to biological responses, crystal structures of
MO particles can also provide antimicrobial potentials against pathogenic microorganisms.

In surface characteristics, porosity is essential to investigate the adsorption potential
of MO particles in antimicrobial actions [34]. Large mesopores (10–50 nm) in MO particles
induce fast biochemical adsorption on the particle surfaces, which has contributed to
enhanced reaction rate, compared to small mesopores (2–10 nm). Depending on MO
particle types, pore size strongly affected antimicrobial activity against microorganisms
(Table 2).

For antimicrobial activity test, E. coli and phage have been extensively used as model
microorganisms of bacteria and viruses [35,36]. E. coli is one of the most rapidly growing
bacteria to easily quantify the colonies via UV-visible scanning for turbidity measurement
and colony counting on agar plates [37,38]. It is a representative screening system for
antibiotic materials in terms of metabolic process interruption leading to cell death or
cell stasis. Expressing pck, acs, and atpAGD in ATP-consuming cycles of E. coli, cells are
genetically sensitized to exogenous oxidative stress for bactericidal action. In addition,
translation inhibition in E. coli induces bacteriostatic condition of decreasing cell respiration,
which is similar to genetic cytochrome oxidase disruption in metabolic processes. Next,
phage is a strong filamentous bacterial virus for antimicrobial activity test, which can
induce multidrug resistance as a genetic reservoir [39]. However, they were recently
studied to develop antimicrobial agents based on bioengineered phage-based bacterial
infection combating multidrug resistance in bacteria [40]. Phage is also useful to quantify
the plaque as an experimental system after bacterial infection. Therefore, E. coli and phage
can be appropriate models for antibiotic screening and mechanistic study on how MO
particles inhibit the bacterial and viral growth.
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MO particles themselves have showed antimicrobial activity against microorgan-
isms [22,35]. In the present study, spherical or cuboidal MgO particles presented lower
antimicrobial activity against E. coli than ZnO, Cu2O, and CuO particles (Figure 3). Com-
paring with previous reports of MO NPs, ZnO NPs had 0.1–57.9% survival rates against
E. coli (106), conversely at 0.01–1 mg/mL [41]. MgO NPs at 100 mg/mL were bactericidal
against E. coli after 1-h incubation despite no antibacterial performance against S. aureus
within 3-h incubation [42]. In addition, CuO NPs at 25 and 50 µg/mL showed 87% and 92%
growth inhibition rates against E. coli after 16-h incubation although the growth inhibition
rates were not significantly reduced at approximately 2.11% for both concentrations after
1-h incubation [43].

All MO particles themselves had no inactivation activity against phage (Figure 4)
because the phage is resistant to environmental stresses such as heat and pH [44]. However,
an immunoprotective function of ZnO NPs as virostatic agents has been reported against
genital Herpes viruses preventing the viral entry to cells and subsequent infection via
generating complexes by charge–charge interaction [45,46]. Cu2O NPs also have an in vitro
antiviral activity against Hepatitis C inhibiting the viral entry and further infection to cells,
with hindrance to viral replication [45,47].

At this point, the hybridization of MO particles with dual UV was tested to investigate
the effects of particle size distribution of MO particles and combination with dual UV for
enhanced photocatalytic antimicrobial performance against bacteria as well as viruses. The
antimicrobial activity of MO particles at multiscale size levels and dual UV of UV-A and
UV-C irradiating differential UV-C intensity depending on irradiation time, were analyzed
against E. coli and phage. In MO particles, ZnO-(1) and CuO particles had multiscale
particle size distributions although ZnO-(2) and MgO-(1) particles showed nanoscale size
levels, and MgO-(2) and Cu2O particles displayed microscale size levels. Multiscale ZnO
and CuO particles showed superior antimicrobial activity against E. coli (Figure 5) and
phage (Figure 6) compared with other scale particles, due to large surface area and multiple
scattering under dual UV irradiation [5,6,30]. The large surface area of multiscale ZnO
(ZnO-(1) > ZnO-(2) by 4.0-fold) and CuO (CuO > Cu2O by 5.6-fold) particles induced
charge–charge interaction to cause membrane damage of pathogenic microorganisms for
enhanced antimicrobial performance [48,49]. The microstructured particle aggregates with
polydispersity also showed multiple scattering phenomena improving particular inter-
actions via mass transfer and exchange in multilevel porosity, including the biomodality
of macropores and mesopores for enhanced photocatalysis promoting antimicrobial ac-
tion [50,51]. Enhanced photocatalytic antimicrobial actions of multiscale MO particles
could be explained by multiple scattering of nano- or microstructured MO particle clusters
in a hydrodynamic environment connecting to dual UV irradiation. These results were
also superior to previously reported data for MO NPs and dual UV hybrids [11].

The antimicrobial mechanisms of multiscale MO particles can be explained by the
release of metal ions, particle shape dependency, particle adsorption to the biomembrane
of microorganisms, and ROS generation under dual UV irradiation [2,4]. High metal ion
release, high aspect ratio in morphology, large surface area, and enhanced photocatalytic
activities are critical characteristics of multiscale MO particles for enhanced antimicrobial
performance. Specifically, biomembrane adsorption and ROS generation are primarily
considered as expected antimicrobial mechanisms that cause biomembrane damage and
DNA breaks against microorganisms (Figure 7). The adsorption potential was induced by
the physicochemical characteristics of the MO particles, including hydrophobicity, porosity,
and dispersibility in an aqueous environment. In ROS generation, multiscale MO parti-
cles generate particle aggregates mimicking nano-to-microscale architecture for enhanced
photocatalytic performance even at lower concentrations via multiple scattering [52]. In
addition, emulating surface defects of multiscale MO particles could improve the antimi-
crobial activity in a hydrodynamic environment due to their enhanced ROS production
from oxygen vacancies [53–55]. In particular, the structures of MO NPs or MPs affected the
surface oxygen vacancies, resulting in enhanced ROS generation for antimicrobial perfor-
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mance based on electron-hole pair generation [55–57]. However, in the case of CuO and
Cu2O particles, CuO particles reduce the superoxide radicals to produce Cu+, and Cu2O
particles do not generate any superoxide radicals for sustained oxidative stress during
redox cycling [58]. In these phenomena, although CuO-Cu2O particles generated no super-
oxide species, superoxide anion radical (O2·−) or hydroxyl radical (OH·) was produced
through the Fenton reaction. Chelation complex formation or metabolic enzyme damage
was caused in microorganisms by ROS from Cu2O and CuO particles, respectively. There-
fore, multiscale MO particles can be used as alternatives to antibiotic agents for enhanced
performance based on differential antimicrobial pathways to overcome drug resistance.
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metal oxide (MO) particle system for enhanced antimicrobial action. In water, multiscale MO particles
were adsorptive to E. coli and phage resulting in biomembrane rupture and cell death. They generated
reactive oxygen species (ROS) under dual UV irradiation promoting an electron from valence band
to conduction band by a band gap energy.

5. Conclusions

Multiscale MO particles had nano- to microscale sizes as mixtures of NPs and MPs,
which were identified as pure materials, confirmed by atomic compositions and crystallinity,
and further evaluated by surface characteristics. In ZnO, MgO, Cu2O, and CuO particles,
multiscale ZnO and CuO particles showed enhanced antimicrobial activity against E. coli
as well as phage under dual UV irradiation, based on their physicochemical characteristics.
In particular, surface adsorption to biomembrane and ROS generation under dual UV
irradiation can be the main mechanisms of antimicrobial action due to large surface area
with enhanced mass transfer via multiple scattering. From the results, multiscale MO
particles will be promising antibiotic agents to apply in environment, industry, and clinics
for near future. It can also be extended to customized multiple combination mixtures
of multiscale MO particles as photocatalysts in dual UV hybrid systems for enhanced
performance overcoming antibiotic resistance.

Supplementary Materials: The following are available online at https://www.mdpi.com/1999-4
923/13/2/222/s1, Figure S1: Size distributions of MO particles in the hydrodynamic environment,
Figure S2: EDS spectra of MO particles, Figure S3: XPS spectrum of multiscale ZnO-(1) particles,
Table S1: Particle size distributions of MO particles in the hydrodynamic environment.
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