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Induction of synapse formation by de novo
neurotransmitter synthesis
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Orion Benner1, Michael Ghebrial 3, Thomas P. Cast 1, Matthew A. Xu-Friedman 2✉,

Thomas C. Südhof 4✉ & Soham Chanda 1,4,5✉

A vital question in neuroscience is how neurons align their postsynaptic structures with

presynaptic release sites. Although synaptic adhesion proteins are known to contribute in this

process, the role of neurotransmitters remains unclear. Here we inquire whether de novo

biosynthesis and vesicular release of a noncanonical transmitter can facilitate the assembly of

its corresponding postsynapses. We demonstrate that, in both stem cell-derived human

neurons as well as in vivo mouse neurons of purely glutamatergic identity, ectopic expression

of GABA-synthesis enzymes and vesicular transporters is sufficient to both produce GABA

from ambient glutamate and transmit it from presynaptic terminals. This enables efficient

accumulation and consistent activation of postsynaptic GABAA receptors, and generates fully

functional GABAergic synapses that operate in parallel but independently of their glutama-

tergic counterparts. These findings suggest that presynaptic release of a neurotransmitter

itself can signal the organization of relevant postsynaptic apparatus, which could be directly

modified to reprogram the synapse identity of neurons.
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Neurons communicate with each other via specialized
structures called synapses. How synapses establish and
maintain their identity remains largely unclear. According

to one theory, synaptic cell adhesion molecules (SAMs) trigger
synapse formation by promoting trans-synaptic interactions
between pre- and postsynaptic components1–3. In support of
this hypothesis, ectopic expression of SAMs can respectively
enhance or induce synaptogenesis in both neurons and
non-neuronal cells4–7. Moreover, individual genetic deletions of
some SAMs were also reported to decrease synapse numbers by
variable degrees, although they did not completely eliminate
synapse assembly8–10.

Interestingly, despite these few instances, constitutive or con-
ditional knock-out (KO) models for the vast majority of SAMs do
not exhibit any large-scale impairments in synapse formation and
only affect their functional maturation, which occasionally might
lead to a subsequent loss of synapses over time11–15. Furthermore,
SAM-dependent mechanisms are yet to explain the productions
of different types of synapses, because several postsynaptic SAMs
specifically localized at either glutamatergic or γ-aminobutyric
acid (GABA) -ergic principal synapses can often interact with
common presynaptic binding partners that are similarly dis-
tributed at both synapse types16–18. Hence, alternative cellular
signals other than SAMs could be either primarily or simulta-
neously required for synaptogenesis and reliable alignment of
complementary synaptic apparatus.

A second model of synaptogenesis implies that neuro-
transmitter release can directly modulate this process. In response
to various transmitters produced in the presynaptic terminals,
their postsynaptic compartments recruit distinct classes of
receptors that confer functional properties to synapses. This
theory is further strengthened by studies showing that deletion of
GABAA receptors (GABAARs) can impair both the morphology
and target specificity of a subset of GABAergic synapses19,20.
Additional evidence for transmitter-dependent postsynaptic
arrangements was obtained from recent observations that dif-
ferent co-transmitters synthesized within a single neuron can
often become segregated at independent presynaptic terminals
that contact distinct postsynaptic cell populations21–23. Further-
more, some neurons can even switch between transmitter types in
an activity-dependent manner, which in turn alters their corre-
sponding receptor levels and compositions at postsynapses24,25.

Perhaps the most convincing case for transmitter-induced
synaptogenesis appears from two seminal studies demonstrating
that rapid photolysis of ‘caged’ glutamate and GABA near den-
dritic branches can cause local accumulation of postsynaptic
receptors and scaffold proteins, resulting in immature synapse
formation that can eventually integrate into existing neural
circuits26,27. This phenomenon was also successfully reproduced
in different neural subtypes located at various brain regions of a
broad age-range of animals28–30. However, it remains unknown
(i) whether such mechanisms can operate during physiologically
relevant presynaptic neurotransmitter release, (ii) if these
transmitter-induced nascent synapses undergo further morpho-
logical and/or functional maturation, (iii) whether the transmitter
identity of a neuron itself could be deliberately manipulated using
exogenous factors, (iv) if changing the neurotransmitter released
might directly lead to the production of different synapse types,
and (v) whether these transmitter-induced synapses could also
develop in vivo, especially in live animals. Addressing these
questions might allow one to understand the fundamental prin-
ciples of how synapses form and acquire their identities.

In this current study, we set out to determine whether ectopic
expression of exogenous presynaptic enzymes and vesicular
transporters can drive both the biosynthesis as well as synaptic
release of an alternative transmitter in lineage-committed

neurons, and initiate the formation of functional postsynapses of
a different kind. We found that a combinatorial overexpression of
three proteins, i.e. vGAT, GAD65, and GAD67, can adequately
synthesize and transmit GABA even from exclusively glutama-
tergic neurons, which trigger an efficient production of mor-
phologically and functionally mature GABAergic output
synapses, both in vitro and in vivo.

Results
GABAergic factors absent in glutamatergic neurons. We first
aimed to understand how glutamatergic neurons protect their
transmitter identity at synaptic outputs and prevent other spe-
cifications, e.g. GABAergic programs. To this end, we employed a
previously established model system that rapidly generates pure
glutamatergic neurons from human embryonic stem (ES, e.g. H1-
line) cells by forced expression of a single transcription factor
Neurogenin-2 (i.e. Ngn2; Fig. 1a)31. Voltage-clamp recordings
(holding potential, Vhold=−70 mV) at post-induction day ≈
56–60 detected robust spontaneous postsynaptic currents (sPSCs)
with recurring network activities (Supplementary Fig. S2a). These
synaptic events were predominantly comprised of excitatory
sPSCs (i.e. sEPSCs) since they could be readily abolished by acute
application of an AMPA-receptor (AMPAR) antagonist Cyan-
quixaline (CNQX) but not by GABAAR antagonist Picrotoxin
(PTX), thus implying that Ngn2-neurons lack either postsynaptic
GABAARs, presynaptic GABA release, or both (Supplementary
Fig. S1a). However, puff-perfusions of exogenous agonists under
the same experimental conditions revealed the existence of fully
functional and PTX-sensitive GABAARs in addition to AMPARs,
indicating that these neurons only transmit glutamate but likely
not GABA from their presynaptic terminals (Supplementary
Fig. S1b).

In order to identify pre- or postsynaptic machineries that are
essential for GABAergic neurotransmission but possibly missing
in Ngn2-only cells, we next inspected RNA-sequencing results
previously obtained by us32. We noticed the presence of various
GABAAR subunits, as well as major inhibitory postsynaptic
scaffolding molecules (e.g. Gephyrin and Collybistin), but only
minimal expression of the Glutamate Decarboxylases (i.e. GAD65
and GAD67) or vesicular GABA Transporter (vGAT) (Supple-
mentary Fig. S1c). These cells, however, had substantial
expression of enzymes associated with both glutamate biosynth-
esis and vesicular loading (i.e. Glutaminase and vGLUT1/2),
again confirming their glutamatergic identity (Supplementary
Fig. S1c). Thus, although postsynaptic cell population might
contain necessary components for functional GABAAR assembly,
Ngn2-neurons are largely deficient of presynaptic enzymes for
GABA synthesis and vesicular transmission.

Induction of GABAergic currents by presynaptic enzymes. We
next asked if forced expression of GAD65, GAD67, and/or vGAT
in glutamatergic Ngn2-cells can synthesize GABA from ambient
glutamate, and package it into synaptic vesicles for subsequent
release. We cloned human cDNAs encoding GAD65, GAD67,
and vGAT under human Synapsin-1 promoter, made lentivirus
particles from the constructs, and co-infected Ngn2-neurons with
them (Fig. 1a). At post-induction days 56–60, immunostainings
for dendritic MAP2 and synaptic marker Synapsin revealed
substantial synapse formation (Fig. 1b). Interestingly, electro-
physiological recordings from neurons co-expressing either
GAD65+ vGAT or GAD67+ vGAT, but neither factors alone,
significantly decreased the frequency of sPSCs with fast τ-decay
without affecting their amplitude, and simultaneously increased
both the frequency and amplitude of sPSCs with slower τ-decay
that were mostly absent in Ngn2-only neurons (Fig. 1c–f).
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Therefore, co-expression of GABA-synthesis enzymes along with
GABA vesicular transporter produced sPSC events likely of a
different identity than typical EPSCs. The greatest effects
observed were for vGAT + GAD65+GAD67 combination
(termed V57 hereafter, Supplementary Fig. S2b).

To determine the identities of sPSC events with fast vs. slow τ-
decays, we next applied receptor blockers in Ngn2-cells co-
expressing V57 factors. Acute treatments of CNQX vs. PTX

selectively and respectively prevented the fast vs. slow sPSCs with
smaller vs. larger half-widths, suggesting that they correspond-
ingly represent excitatory vs. inhibitory synaptic currents (i.e.,
EPSCs vs. IPSCs; Fig. 1g–i). The spontaneous IPSCs exhibited
considerably different average amplitudes, could be inhibited
independently from the EPSCs, and only the application of both
PTX+CNQX but neither drug alone was able to eliminate all
sPSC events (Fig. 1j, k). These results indicate that V57 factors
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Fig. 1 Enzymatic synthesis and synaptic release of GABA by defined factors. a Neurogenesis was induced in H1-ES cells by lentiviral Ngn2 expression, co-
infected with additional viruses encoding vGAT, GAD65, and/or GAD67; neurons were co-cultured with mouse glia and analyzed at day 56–60. b An
example image of Ngn2-induced human neurons (cyan arrowheads) co-transduced with V57 factors, immunolabeled for MAP2, Synapsin, and stained for
nuclear DAPI (white arrowheads). The MAP2-negative and DAPI-stained population indicate co-cultured mouse glial cells. Inset, dotted box magnified on
right. c, d Sample traces of sPSCs recorded from indicated conditions c, and normalized cumulative frequency of τ-decays d for fast vs. slow (blue vs. red
arrowheads) events. Insets in d, example waveforms of 10 scaled and overlaid sPSCs (light shade) with corresponding averages (dark shade) for control
(top) vs. V57 (bottom). e, f Average frequency (left) and amplitude (right) of sPSC events with fast (e, τ-decay < 10ms) vs. slow (f, τ-decay > 10ms)
decay kinetics, as recorded from human neurons expressing indicated factor combinations. g, h Representative traces g and cumulative histogram of τ-
decay h of sPSCs recorded from Ngn2-neurons co-expressing V57 factors, before (Ctrl) and after acute treatments with PTX and/or CNQX (as annotated).
i–k. Cumulative probabilities (left) and average values (right) of sPSC half-width (i), amplitude (j), and event frequency (k), measured in the absence (Ctrl)
or presence of inhibitors, PTX, CNQX, or both PTX+ CNQX. All data are presented as means ± SEM, with number of cells patched / independent batches.
Individual data-points are provided as color-matched open circles. For panels e, f, statistical significance was evaluated by Kruskal-Wallis test paired with
post-hoc nonparametric Mann-Whitney U-test using Bonferroni correction (see Source Data). For i, j, k, Skewness and Kurtosis values (-2 >≈ and≈ < 2)
suggested normal distribution, as statistical significance was weighed by two-tailed, unpaired, Student’s t-test, with ***P < 0.005; **P < 0.01; *P < 0.05;
ns= not significant, P > 0.05. Multiple groups in panel k were also compared by an analysis of variance (one-way ANOVA) paired with post-hoc Tukey-
Kramer test, and corresponding P-values were reported.
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can successfully prompt the formation of functional GABAergic
outputs in glutamatergic human neurons.

Action potential-dependent and -independent GABA release.
Since sPSCs could be a mixture of both action potential (AP)
-independent miniature postsynaptic currents (mPSCs) and AP-
dependent network activities, we sought to further characterize
their relative contributions in V57-induced GABA release. In
current-clamp mode, the Ngn2-neurons co-expressing V57
(termed NV57) displayed repetitive baseline APs, that were
readily abolished by tetrodotoxin (TTX) revealing subthreshold
depolarizations indicative of AP-independent authentic miniature
postsynaptic potentials (i.e., mPSPs; Fig. 2a, b). Accordingly, in
voltage-clamp recordings, acute TTX application effectively
reduced the amplitude and frequency of both fast and slow sPSCs,
but did not completely eliminate all events (Fig. 2c–e). A suc-
cessive CNQX treatment abolished AMPAR-mediated fast
excitatory mEPSCs, and illustrated the co-existence of TTX-
insensitive GABAAR-driven inhibitory mIPSCs with slower
τ-decays and wider half-widths, that could be consequently
silenced by PTX treatment (Fig. 2f–h). Thus, V57-induced pre-
synaptic terminals exhibited spontaneous GABA release in both
AP-dependent as well as AP-independent manners, successfully
activating the postsynaptic GABAARs.

To examine whether GABA can be released by large-scale
presynaptic activities, we stimulated the neurons with a field-
electrode and measured evoked PSCs. Once again, acute CNQX
application detected the presence of prominent evoked IPSC
components, with a coefficient-of-variation (CV) equivalent to
that of evoked EPSCs, which could be subsequently abolished by
PTX treatment (Fig. 2i). In addition, when activated by a train of
high-frequency stimulations or repetitive pairs-of-pulses, these
evoked IPSCs featured classic short-term plasticity with strong
synaptic depression, as was also observed for the evoked EPSCs
(Fig. 2j). Therefore, V57-induced noncanonical GABAergic
presynapses gained release properties that were comparable to
glutamatergic presynapses normally produced by the Ngn2-
neurons, presumably due to sharing of common release
machineries.

Effects on synapse morphology. We inquired if V57 factors
enabled the formation of new synaptic structures in Ngn2-cells or
remodeled potential glutamatergic synapses into a GABAergic
fate. To test that, we immunostained the cells with specific pre-
synaptic antibodies (Supplementary Fig. S3a, b). We did not
detect any defects in cell density or overall neurite outgrowth
(Supplementary Fig. S4a–c). V57 transduction did not alter the
count or morphology of total synapses labeled by Synapsin
antibody, and caused only a minor increment in the vGLUT-
positive excitatory presynapse size without changing their density
(Fig. 3a, b). However, overexpressed vGAT and GAD65/67 fac-
tors primarily organized in a clustered pattern, substantially
enhancing the size and numbers of GABAergic presynapses as
evidenced by their elaborate distribution along dendrites, which
was virtually absent in Ngn2-only neurons (Fig. 3c, d).

Especially in V57 cells, co-labeling with vGLUT and vGAT
antibodies demonstrated an intricate co-existence of both puncta,
which occasionally appeared to overlap in thick z-projected images
(Fig. 3e). To explore if synapses of different identities can form
within the same presynaptic regions, we utilized super-resolution
microscopy. We found that most co-positive puncta
included vGLUT vs. vGAT signals that mainly originated from
different focal planes, and could be further resolved in x/z or y/z
dimensions (Supplementary Fig. S5a). Further analysis of thinner
single optical sections suggested that the majority of synaptic puncta

in V57 condition comprised either vGLUT or vGAT signals, and
not both (Fig. 3f). Therefore, glutamatergic vs. GABAergic
presynapses mostly produced spatially segregated release sites.

To further evaluate any effects on postsynaptic organization,
we monitored the distributions of glutamatergic and GABAergic
postsynapse markers, e.g. Homer and Gephyrin (Supplementary
Fig. S3a, b). We noticed that V57 co-transduction respectively
decreased vs. increased the numbers of Homer vs. Gephyrin
-positive puncta without affecting their sizes, both in the dendritic
segments as well as the perisomatic regions of Ngn2-cells (Fig. 3g, h,
and Supplementary Fig. S6a). NV57 neurons also displayed
substantial appositions between postsynaptic Gephyrin and cell-
surface GABAAR clusters with presynaptic vGAT and GAD65/67
puncta (Supplementary Fig. S6b–d). Despite these rearrangements
in synaptic specifications with significant elevation of GABAergic
features (Fig. 3i), the V57 condition continued to show limited co-
localization between Homer and Gephyrin clusters, that featured
distinct shapes and occupied different physical positions (Fig. 3j,
and Supplementary Fig. S5b). These results implied that V57-
induced GABA release from presynaptic terminals can likely
enhance the postsynaptic accumulation of Gephyrin and GABAAR,
that were already expressed in Ngn2-only neurons. Nevertheless,
these GABAergic synapses assemble separately, i.e. physically
isolated, from their glutamatergic counterparts.

Developmental time-course of synapse maturation. To assess
how early these induced synapses acquire morphological identity
and develop functional properties, we analyzed NV57-neurons at
different developmental time-points (Fig. 4a). During post-
induction day 15–60, the cells matured gradually with a steady
rise in membrane capacitance (Cm), reduction in input resistance
(Rm), and increase in overall synapse formation as visualized by
Synapsin immunolabeling (Fig. 4b, c). Next, to monitor the
relative maturation kinetics of glutamatergic vs. GABAergic
synapses, we made patch-clamp recordings. We noticed that the
frequencies and amplitudes of both AMPAR-mediated sEPSCs
and GABAAR-mediated sIPSCs increased periodically during this
timeframe (Fig. 4d, e). Similar maturation kinetics were also
observed for both evoked EPSC and IPSC, in terms of their
strength and success rates (Fig. 4f, g). In agreement, immunos-
taining with vGLUT and vGAT antibodies also revealed that both
glutamatergic and GABAergic synapses start forming as early as
day 15 and continue to increase at day 30, as their density and
size tend to saturate around day 45–60 (Fig. 4h, i). Moreover, at
day 60, both vGLUT vs. vGAT clusters as well as Homer vs.
Gephyrin clusters individually occupied only a fraction of total
Synapsin signals, again supporting the notion that synapses of
different identities are mostly segregated (Fig. 4j, k). Taken
together, these findings suggest that V57-induced GABAergic
synapses mature concurrently with glutamatergic synapses, but
stabilize independently from each other.

Activity dependence of GABAergic synapses. Since the pro-
duction of GABAergic synapses progressed in parallel with their
functional maturation, we asked if GABA-dependent activation of
either GABAAR or GABABR could promote the formation and/or
long-term stability of these induced synapses. To probe that, we
carried out chronic treatments with either GABAAR antagonist
PTX or GABABR antagonist CGP55845, half-exchanged the
media with drugs every other day starting from day 4 to 5, and
analyzed the cells on day 56–60 (Fig. 5a). We found that PTX but
not CGP application considerably reduced the numbers of both
vGAT and Gephyrin puncta without affecting their sizes (Fig. 5b,
c). Chronic PTX-treatment did not impair neuronal survival or
their dendritic arborization, but diminished the apposition
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Fig. 2 V57-induced synapses exhibit both miniature and AP-evoked GABA release. a Current-clamp recordings of spontaneous APs, in the absence (Ctrl,
left) or presence of TTX (right). Insets, magnified areas of the boxed regions with AP (black asterisk) or subthreshold depolarization (purple asterisk).
b Average frequency of spontaneous AP (left) or total depolarization (right), without (Ctrl) or with TTX. c. Representative traces of sPSCs (boxed areas
magnified below) recorded in voltage-clamp mode from Ctrl condition vs. acute treatments of TTX, arrowheads pointing at events with fast (blue) vs. slow
(red) τ-decay. d, e Probability plots and averages of event amplitude (left) and frequency (right) for sEPSC d or sIPSC e. f Representative traces of mPSCs
recorded in the presence of TTX only (Ctrl), or after co-application of either CNQX, or PTX, or both (CNQX+ PTX). Arrowheads indicate fast EPSC (blue)
vs. slow IPSC (red) events. g, h Normalized frequency of τ-decay for miniature PSC events g; Inset= 10 superimposed sample traces (light shades) and
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consecutive paired-pulses, light shades) with average traces (dark shades). All PSC amplitudes normalized to corresponding 1st pulse (right). Both EPSCs
and IPSCs manifested significant synaptic depression, but of a different magnitude possibly due to different extents of desensitization and/or saturation of
postsynaptic AMPARs vs. GABAARs, and therefore, could not be directly compared as a proxy for presynaptic release probabilities. All numerical data are
means ± SEM, with total number of neurons recorded/experimental batches, and data-points plotted as open circles. Statistical significances were
evaluated either by two-tailed, unpaired, Student’s t-test (Skewness and Kurtosis values −2 > ≈ and≈ < 2), or two-sided, nonparametric Mann-Whitney
U-test, for ***P < 0.005; *P < 0.05; ns= not significant, P > 0.05. Multiple groups were compared by one-way ANOVA (i, with P-value).
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between vGAT and Gephyrin signals (Supplementary Fig. S7a–c),
indicating specific defects in GABAergic synapse morphology.

To further evaluate any effects on the functional properties of
GABAergic synapses, we examined the surface and synaptic
localization of GABAARs. We washed out PTX and executed
voltage-clamp recordings in drug-free media. Consistent with the
reduction in GABAergic synapse numbers, PTX-treated neurons
illustrated significant deficit in mIPSC frequency without

changing their amplitude, event kinetics, or intrinsic cell-
membrane properties (Fig. 5d, and Supplementary Fig. S7d, e).
To assess if this phenotype was caused due to lower surface
trafficking of GABAARs, we puff-applied exogenous GABA
by pressure-perfusion, but failed to notice any substantial
effects on GABAAR charge-transfer, implying similar level of
receptors at the cell surface (Fig. 5e). However, long-term PTX-
treatment decreased the density of dendritic GABAAR clusters
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without affecting their sizes (Fig. 5f). Thus, persistent activation
of GABAARs but not GABABRs regulates the developmen-
tal properties and/or maintenance of V57-induced GABAergic
synapses.

Reproducibility of GABA-induced synaptogenesis. We next
inquired whether V57-mediated GABAergic phenotypes could be
reproduced when human neurons are differentiated from stem
cells other than H1-ES cells. To test this idea, we took advantage
of an isogenic induced pluripotent stem (iPS) cell line that stably
expressed Ngn2-transgene upon doxycycline induction and gen-
erated human neurons with high efficacy, which were essentially
glutamatergic and also lacked endogenous vGAT and GAD65/67
expression33. Immediately after neural induction, we infected
them with V57 viruses, co-cultured with glia, and characterized
them at day 35–42 when they attained extensive morphology
(Fig. 6a, and Supplementary Fig. S8a). The population showed
considerable amounts of vGAT, GAD65, and GAD67 mRNA
transduction, and protein localization along their elaborate den-
dritic arbors (Fig. 6b, c, and Supplementary Fig. S8b–d). These
vGAT-enriched synaptic structures also recruited major
GABAergic postsynaptic SAM, e.g. Neuroligin-2 (Supplementary
Fig. S8e)12,34,35.

Similar to the H1-ES cell derived neurons, co-immunostainings
for vGLUT vs. vGAT or Homer vs. Gephyrin in these iPS cell-
derived neurons also revealed very little co-localizations between
two different synapse types, again suggesting that glutamatergic vs.
GABAergic specifications occupy mutually exclusive pre- and
postsynaptic zones (Fig. 6d, and Supplementary Fig. S8f, g).
Exogenous GABA-puffs demonstrated sizable inward IPSCs at
Vhold ≈−70mV that reversed around ≈ 0mV, again confirming the
presence of surface GABAARs also in iPS cell-derived neurons
without or with V57 co-expression (Fig. 6e). In continuous
recordings from same neurons in the control condition, treatments
with CNQX along with NMDA receptor (NMDAR) blocker 3-
carboxypiperazin-propyl phosphonic acid (CPP) silenced the major-
ity of synaptic currents regardless of the Vhold, corroborating their
pure glutamatergic identity (Fig. 6f, g). In V57 cells, successive
application of PTX and CNQX+CPP respectively inhibited sIPSCs
and sEPSCs, attesting for the co-existence of both glutamatergic and
GABAergic synapses (Fig. 6f, g). Moreover, holding the V57
neurons at −70mV, but not at +10mV (i.e. near estimated Cl-

reversal-potential, ECl ≈+14mV, in whole-cell configuration with-
out accounting for junction-potential), depicted authentic mIPSCs
even in presence of TTX, as well as triggered reliable evoked IPSCs
with robust delayed release and pronounced short-term plasticity
(Fig. 6h, i). Hence, our approach was highly reproducible in
generating fully operational human GABAergic synapses in vitro,
irrespective of reprogrammed stem cell lines.

Formation of GABAergic synapse in vivo. We next aimed to
investigate if the V57 factors can produce functional GABAergic
synapses also in live animals. For this proof-of-principle experi-
ment, we intended to use a model glutamatergic synapse based on
two selection criteria: (i) the viral-injection site (i.e., cell bodies of
presynaptic neurons) is physically distant from the recording site
(i.e., cell bodies of postsynaptic neurons), and (ii) the postsynaptic
neuron receives negligible GABAergic inputs from other sources.
These constraints were necessary to ensure that viral transduction
of V57 factors mainly targets the desired glutamatergic pre-
synaptic neuron, without indirectly potentiating any local
GABAergic inputs to the postsynaptic cell.

To this end, we injected virus particles into the mouse spiral
ganglion, which gives rise to auditory nerve (AN) fibers that
project purely glutamatergic outputs (also known as the ‘endbulb
of Held’) primarily onto the cell bodies of bushy cells (BCs),
located distantly in the cochlear nucleus (Fig. 7a)36,37. We
performed lentiviral injections of V57 factors on postnatal day
2–4 (P2–4), prepared brain-slices and analyzed them on P18–32,
i.e. when a control virus encoding RFP showed substantial
transduction at the injection site (Supplementary Fig. S9a, b). The
BCs lack any well-defined GABAergic input, and mainly receive
either Calretinin-positive glutamatergic endbulbs from around
4–5 AN fibers or vGAT-positive glycinergic terminals from local
interneurons, that form physically separate synapses from each
other (Fig. 7b)38–41. However, animals transduced with V57
factors demonstrated prominent increase in co-localization
between Calretinin and vGAT signals, indicating a successful
induction of transgenes within AN fiber terminals (Fig. 7b, c). Of
note, the in vivo transduction efficiency of lentivirus was relatively
sparse compared to our in vitro approach (see Fig. 3c, d), and did
not significantly alter the endbulb size (Fig. 7b, c).

To determine if ectopic expressions of V57 in otherwise
glutamatergic endbulbs can trigger the formation of functional
GABAergic synapses, we conducted voltage-clamp recordings from
postsynaptic BCs in the presence of Strychnine that preferentially
inhibits Glycine receptors (GlyRs) over GABAARs. In control
condition, the BCs exhibited mostly sEPSCs with fast τ-decays,
whereas V57 induction caused a profound rise in sIPSCs with
slower τ-decays (Fig. 7d, e). Lentivirus-mediated mosaic transduc-
tion of V57 factors did not change either the amplitude or
the frequency of sEPSCs, but substantially elevated sIPSC frequency
without affecting sIPSC amplitude (Fig. 7f, g).

Finally, we inspected the PSCs of BCs evoked by presynaptic
AN stimulation. In control animals, Strychnine-insensitive evoked
PSCs showed a rapid decay kinetics, and were largely blocked by
acute treatment of AMPAR antagonist NBQX (Fig. 7h, i).
However, animals transduced by V57 factors often displayed the
co-presence of a slower IPSC component that could only be
inhibited by GABAAR blocker Bicuculline (Fig. 7h, i). Several

Fig. 3 V57 factors alter synapse morphology and identity. a Sample images (left) of Ngn2-only vs. NV57 neurons immunostained with pan-synaptic
marker Synapsin. Average values (right) of Synapsin puncta density normalized by dendritic MAP2 area, and puncta size. b–d Similar immunostainings as
a, except for glutamatergic presynapse marker vGLUT b, and GABAergic presynapse markers GAD65/GAD67 c, or vGAT d. e Representative images of
EGFP-labeled dendritic branches from Ctrl (Ngn2-only, top row) vs. V57 neurons (bottom row) co-labeled for vGLUT and vGAT (yellow and cyan
arrowheads, respectively); maximum intensity z-projections highlight an intricate distribution of both synapse types, especially in V57 condition. f Super-
resolution image (left) of a single optical section from V57 condition depicts minimal co-localization between vGLUT and vGAT signals; grey arrowheads
point at partially overlapping signals (cyan crosshair) resolved in x/z or y/z axis; intensity profile shows peak separation between signals from a region-of-
interest (yellow dotted line). Mander’s coefficients (right) of co-localization between vGLUT and vGAT were plotted. g, h Same as a, but for glutamatergic
(Homer, g) or GABAergic (Gephyrin, h) postsynapse markers. i Same as e, except for co-existence of elaborate Homer and Gephyrin puncta, especially in
V57 condition. j Same as f, but for postsynaptic Homer and Gephyrin puncta that similarly illustrate minimal co-localization. Average values on bar-graphs
represent means ± SEM for number of field-of-views analyzed/independent batches. Individual data-points are provided as color-coded open circles.
Statistical significance was weighed by two-tailed, unpaired, Student’s t-test (for Skewness and Kurtosis values -2 >≈ and≈ < 2), or two-sided,
nonparametric Mann-Whitney U-test (Source Data), with ***P < 0.005; **P < 0.01; *P < 0.05; ns= not significant, P > 0.05.
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BCs in the V57 condition also manifested predominantly evoked
IPSCs without any detectable EPSCs, a phenomenon that was
never observed in the control condition (Fig. 7i). When averaged
from BCs only with any measurable response, V57-induction
significantly elevated the amplitude of evoked IPSCs without
altering EPSCs (Fig. 7j). Thus, V57 factors can successfully trigger
the formation of functional GABAergic synapses also in an in vivo
system.

Discussion
The mammalian central nervous system contains different types
of synapses that release and sense a variety of neurotransmitters.
The ability to synthesize and transmit these distinct chemicals
often requires mutually exclusive sets of enzymes as well as
vesicular transporters that are endogenously expressed in certain
neuronal lineages. After neuronal fates are established during
early development, the type of transmitter produced by a
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Fig. 4 Induced GABAergic synapses mature rapidly, in parallel with glutamatergic synapses. a Experimental protocol for b–k; Ngn2-induced human
neurons were additionally infected with viruses expressing V57 factors, and analyzed every 15 days starting from post-induction day 15 until day 60.
b Summary graphs of Cm (left) and Rm (right) values, at different time-points of neuronal maturation. c Example images (left) and average density or size
(right) of Synapsin puncta constituted on Tuj1-positive neurites, as measured from NV57 neurons at different stages of their in vitro development (see
annotated). d, e Sample traces (left) and average parameters (right, event frequency or amplitude) of AMPAR-mediated sEPSCs d and GABAAR sIPSCs
e recorded in the presence of PTX and CNQX, respectively, at day 15–60. f, g Stimulation-evoked EPSCs (f, with PTX) and IPSCs (g, with CNQX) recorded
at indicated time-points; example traces (left), average amplitudes (middle), and percentage of cells with detectable responses (right). h, i Same as
c, except for vGLUT (h) or vGAT (i) puncta formed on MAP2-positive dendritic branches. j. Representative images (left) and Mander’s coefficients (right)
of co-localization between Synapsin puncta and either vGLUT or vGAT signals. Neurites were visualized by co-expression of soluble EGFP. Both vGLUT and
vGAT signals individually occupy only a fraction of Synapsin-positive total synapses at day 60. k Same as j, except for co-localization between Synapsin
and either Homer or Gephyrin, at day 60. All data represent means ± SEM. Summary graphs also denote the total number of field-of-views analyzed (for
immunostaining) or neurons patched (for electrophysiology)/independent batches, and individual data-points (open circles). Statistical significance for
normally distributed data (Skewness and Kurtosis values between −2 and 2) in panels j and k was calculated by two-tailed, unpaired, Student’s t-test, with
***P < 0.005; **P < 0.01. For all group-wise comparisons (time-course, b–i), one-way ANOVA was performed, and P-values were stated.
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presynaptic neuron is considered to be stable and irreversible.
Since the transmitter identity is an inherent feature of specific
neural subtypes, all synaptic connections formed between a given
pair of neurons are generally homotypic, e.g., either glutamatergic
or GABAergic, that does not usually change over time42,43.

We here illustrated that ectopic expression of vGAT+
GAD65+GAD67 can assign robust GABAergic identity on
exclusively glutamatergic human and mouse neurons. This pre-
synaptic release of GABA was able to activate postsynaptic
GABAARs, and produced fully functional GABAergic synapses
that manifested bona fide miniature and AP-dependent IPSCs
with pronounced short-term plasticity (Figs. 1 and 2). These
GABAergic phenotypes were highly reproducible in multiple cell
lines, for both in vitro and in vivo systems (Figs. 6 and 7). Direct
reprogramming of transmitter type did not alter total synapse
number, but caused rearrangement in pre/post-synaptic struc-
tures (Fig. 3). The induced GABAergic synapses formed inde-
pendently of neighboring glutamatergic synapses, but exhibited
similar maturation kinetics, and were partially dependent on
GABAAR activity (Figs. 4 and 5). In sum, our approach instituted
a facile avenue to induce functional synapses by de novo trans-
mitter synthesis (Supplementary Fig. S10a).

Our findings are entirely consistent with a previous report
indicating that the ability to release glutamate vs. GABA by different
neuronal subtypes could be primarily dependent on
their differential expression of transmitter-specific enzymes
and vesicular transporters44. Once produced, the vesicles containing
different transmitters may not necessarily require any specialized
release machineries unique to different synapse types. In alignment
with this theory, earlier studies have also described co-transmission
of different chemicals from the same neurons, and sometimes

even from the same presynaptic terminals with spatially segregated
but morphologically similar release sites21,23,45–49.

Interestingly, although the V57-expressing neurons synthesized
both glutamate and GABA, they produced mutually exclusive
mEPSC and mIPSC events with distinct kinetics. These in turn
could be inhibited individually by selective receptor blockers
without attenuating the frequency of other event types (Figs. 1, 2,
6, and 7). These results imply that glutamate and GABA are co-
transmitted but likely not co-released simultaneously to co-
activate their corresponding receptors. In addition, both pre- and
postsynaptic markers labeling glutamatergic vs. GABAergic
synapses also manifested limited co-localization (Figs. 3 and 6,
and Supplementary Figs. S5, S8f, g), indicating they are physically
segregated (Supplementary Fig. S10b). Again, a similar phe-
nomenon was seen in vivo for different co-transmitters, that are
often found to be distributed into separate synaptic vesicles and
released independently45,47,50.

How does presynaptic GABA release facilitate the creation of
functional synapses? Recent findings suggest that activation of
GABAARs can play a critical role in this pathway, since genetic
deletion of GABAAR subunits or pharmacological inhibition with
specific antagonists has been shown to impair GABAergic
synapse formation20,27. Although in agreement with this notion,
long-term PTX exposure also reduced the density of V57-induced
GABA-ergic synapses, but it failed to eliminate them entirely
(Fig. 5). Furthermore, although V57 factors elevated the density
of GABAergic postsynapses, substantial level of both Gephyrin
and GABAAR clusters were already present even in Ngn2-only
neurons, which lack any presynaptic GABA release. Hence,
additional cellular mechanisms might also contribute to the
development of GABAergic synapses. For instance, GABAARs
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directly interact with presynaptic Neurexins, and can also
potentially assemble into molecular complexes with postsynaptic
Neuroligins, Gephyrin, and/or Collybistin to establish pre- and
postsynaptic alignment with or without GABA release34,51,52.
Alternatively, GABA molecules may bind to yet unknown trans-

synaptic elements to enable inhibitory synaptogenesis. Of note,
similar to GABAergic synapses, activation of Glycine receptors
(GlyRs) can also promote their synaptic clustering in spinal
neurons, which could be mediated via common cell-signaling
pathways downstream to receptor activation53.
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Previously, disruptions of presynaptic release machineries were
shown to have only minor to no effects on synaptogenesis, as well
as dendritic spine formation and their maintenance54–57. It is
worth recognizing that, although these elegant genetic approaches
eliminated the vast majority of synaptic activities, it remains
plausible that a minimal level of basal transmitter signal, e.g.
residual spontaneous release, is sufficient to institute synapse
identity. Even in the absence of a neuronal release, diffused

transmitter secretion from local astroglia cells may also trigger
synaptic receptor activation58. Alternatively, presynaptic proteins
associated with enzymatic production and/or vesicular packaging
of different neurotransmitters themselves might directly or
indirectly interact with other synaptic molecules and participate
in synaptogenic processes, even in the absence of active trans-
mitter release. The contributions of synaptic receptor activation
in glutamatergic synapse formation also remain controversial.
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Although persistent activation of ionotropic glutamate receptors
was shown to facilitate spine outgrowth59–61, removal of all
AMPAR and NMDAR subunits failed to affect presynaptic vesicle
distribution or postsynapse morphology62. Therefore, multiple
parallel pathways could modulate glutamatergic synapse devel-
opment, and these mechanisms might differ significantly from
GABAergic synaptogenesis. Future studies are needed to inves-
tigate these various possibilities.

Using glutamate and GABA uncaging, earlier studies have
reported that acute neurotransmitter release itself can facilitate
nascent synapse formation, in a spatially-delimited fashion26,27.
Here we demonstrated that, under the physiologically relevant
context of presynaptic vesicular release, such transmitter-induced
synapses can achieve much greater morphological and functional
maturation. Compared to photo-stimulation methods, the V57-
induced GABAergic synaptic structures attained substantial
growth in their density and size, and displayed reliable IPSCs with
high reproducibility, making it amenable for stable, efficient, and
extensive modification of synapse identity. Our protocol was also
successful in both in vitro model of human neuronal cultures and
mouse brain in vivo, and hence, could potentially be adopted to
manipulate circuits affected by addiction or mental disorders.

Using small molecule-mediated cellular differentiation and
transcription factor screening, we and others have previously
derived GABAergic neurons directly from ES cells63–67. These
differentiated or reprogrammed neurons express various markers
and exhibit AP properties that mimic GABAergic neuron sub-
types indigenous to the human brain. Although our current
approach does not generate specific neural lineages, GABAergic
synapses produced by V57 factors similarly manifest robust
miniature and evoked IPSCs with comparable amplitude and
frequency, that mature over time and can be utilized for in vitro
assays. Viral transduction of GABAergic enzymes also offers
certain advantages over transcription factor-induced GABAergic
neurons, especially for their in vivo applications. When trans-
planted into the brain, reprogrammed neurons sometime struggle
with long-term survival, lack of functional maturation, restricted
migration, and limited synaptic integration into pre-existing
neural circuits63–65. Viral delivery of V57 factors may bypass
some of these technical issues by forming new GABAergic
synapses in already available neuronal populations.

Methods
Institutional approvals. All cell culture methods as well as lentivirus production
procedures were approved by the Institutional Biosafety Committee (IRB protocol
# 19-059B) at Colorado State University. All experiments in mice (including male
and female, JAX strain CBA/CaJ) were approved by the Institutional Animal Care
and Use Committee (IACUC protocol # 201800101) of University at Buffalo, and
conducted according to the ethical guidelines.

Cell lines. Human ES cells (H1-line, catalog # WA01) were purchased from the
WiCell Research Institute under a material transfer agreement (MTA # 19-W0439).
The human iPS cell line (WTC-11) was generously gifted by Dr. Michael E. Ward,
National Institute of Neurological Disorders and Stroke (NINDS). The human
embryonic kidney (HEK) 293T cells for virus production were commercially
available from Takara Bio USA (catalog # 632180).

Viral constructs. The lentiviral constructs used for neuronal reprogramming of
human ES cells included Ngn2-t2A-PuromycinResistance (Tet-on promoter) and
rtTA (Ubiquitin promoter), with an optional virus encoding EGFP (Tet-on pro-
moter) for morphological analyses31. The cDNAs encoding human vGAT, GAD65,
and GAD67 (V57 factors) were cloned into lentiviral vector driven by human
Synapsin-1 promoter (see Supplementary Fig. S8b), followed by a Woodchuck
Regulatory Element (WRE), and flanked by 5’ and 3’ long terminal repeats (LTRs).

Lentivirus production. Three helper plasmids (i.e., pRSV-REV, pMDLg/pRRE,
and VSV-G; 7–8 µg each) and corresponding expression vectors (15–20 µg) were
co-transfected with polyethylenimine (PEI) into 70–80% confluent HEK 293T
(containing SV40 T-antigen to facilitate virus production) cells plated on 10 cm

dishes. At 8–10 h post-transfection, the culture medium was exchanged completely,
and the supernatant containing lentivirus particles was collected after 36 h and
60 h. The supernatant was then pooled and spun at ~800 × g for 6–8 min to remove
any HEK cell debris. The supernatant was then spun at ~120,000 × g for 2 h at 4 °C
(Beckman L8–70M ultracentrifuge equipped with SW41Ti rotor). The viral pellets
were resuspended in ~50-100 µl DMEM media, stored overnight at 4 °C, subse-
quently aliquoted and frozen at -80 °C prior to experimental use.

Generation of human neurons. Both the human H1-ES cells (see Figs. 1–5) and
an isogenic iPS cell line with doxycycline-inducible Ngn2 transgene (WTC-11; see
Fig. 6)33 were maintained in mTeSR™1 / mTeSR™ Plus media (StemCell Tech-
nologies) under feeder-free condition. Media was changed every day. When cell
density reached ~70%, they were dissociated with phosphate-buffered saline
(PBS)+ 0.5 mM EDTA and plated at 1:6 dilution onto Matrigel (BD Bioscience)
-coated wells. During the passage, cultures were additionally supplemented with
ROCK-inhibitor Y-27632 (2.5 μM, MedChem Express) overnight, but excluded for
later media changes.

For H1-ES cells, Ngn2-mediated direct neuronal conversion was achieved as
described before31,32. In brief, ES cells were co-infected with lentiviruses encoding
rtTA and Ngn2-t2A-PuromycinResistance, induced with doxycycline (2 μg/ml),
selected using puromycin (1 μg/ml), gently dissociated with PBS+ EDTA or
accutase (Innovative Cell Technologies) and replated with primary mouse glia
(passage 1–2, derived from CD-1 ® IGS mice) on Matrigel-coated coverslips (see
Fig. 1a). Similar strategy was adopted for iPS cell-derived neurons, that were
directly reprogrammed by doxycycline exposure (see Supplementary Fig. S8a)33.
The neurons were additionally infected with lentiviruses expressing the V57 factors
during or immediately after differentiation, as depicted in protocol timelines, and a
virus made from empty pFSW-67 vector was used as infection control.

From days 0 to 14, neurons were cultured in N3 media (DMEM/F12 [Thermo
Fisher] + N2 [Thermo Fisher] + B27 [Thermo Fisher]), supplemented with insulin
[20 μg/ml, Sigma], penicillin/streptomycin [Thermo Fisher]). During glia co-
culture, 2–2.5% fetal bovine serum (FBS, Atlas Biologicals) was included. The
media was half-exchanged every 3–4 days, and additionally supplemented with
5-fluorodeoxyuridine (FdU, 10 µM) to inhibit glial growth after reaching 70–80%
confluency. From day 15 onward, the N3 media was gradually replaced by
Neurobasal Plus media [Thermo Fisher] + B27+ penicillin/streptomycin, also
supplemented with FBS+ FdU.

In vitro electrophysiology. Whole-cell patch-clamp recordings of human neurons
were performed similarly to that described before67,68. In brief, neurons were
patched using internal solution containing (for voltage-clamp, in mM) 135 CsCl2, 1
EGTA, 1 NaGTP, 2 QX-314, and 10 HEPES-CsOH (pH 7.4, 310 mOsm); or (for
current-clamp, in mM) 130 KCl, 10 NaCl, 2 MgCl2, 0.5 EGTA, 0.16 CaCl2, 4
Na2ATP, 0.4 NaGTP, 14 Tris-creatine phosphate, and 10 HEPES-KOH (pH 7.3,
310 mOsm). The extracellular bath-solution contained (in mM) 140 NaCl, 5 KCl, 3
CaCl2, 1 MgCl2, 10 glucose, and 10 HEPES-NaOH (pH 7.4, 300 mOsm). All
recordings were conducted at room temperature, using an integrated patch-clamp
amplifier (IPA, Sutter Instruments) controlled by customized Igor Pro 8 (Wave-
Metrics) data acquisition system. For all cells, the patch quality was monitored
using series-resistance values (Rs < 15 MOhm), which did not alter significantly
between experimental groups. Voltage-clamp recordings for AMPAR EPSCs and
GABAAR IPSCs were conducted at a Vhold of −70 mV, unless mentioned otherwise
(Fig. 6). Evoked PSCs were triggered by field stimulations using a matrix electrode
(FHC, MX21AEW-RT2) connected to an A365RC isolated pulse stimulator (World
Precision Instruments). AMPAR- or GABAAR-mediated PSCs were isolated using
PTX (100 μM; GABAAR/GlycineR blocker, Tocris Bioscience) or CNQX (25 μM;
AMPAR blocker; Tocris Bioscience), respectively. Although all voltage-clamp
recordings at Vhold=−70 mV contained extracellular Mg2+ to block NMDARs,
some experiments at Vhold=+10 mV (see Fig. 6) also included CPP (50 μM;
NMDAR inhibitor; Tocris Bioscience). Tetrodotoxin (TTX; 2 μM; Ascent Scien-
tific) was added to the external solution during all miniature mEPSC and mIPSC
recordings, to avoid presynaptic release caused by spontaneous APs. Pressure
perfusion of 1 mM AMPA (RS-AMPA hydrobromide, Tocris Bioscience) or 1 mM
GABA (Tocris Bioscience) was performed for 100 ms, with 20 psi puffs using
Picospritzer III (Parker Instrumentation), and total charge-transfers were calcu-
lated within 30 s from puff application.

Long-term drug incubations. For Fig. 5b–f, cells were incubated with either
GABAAR antagonist PTX (100 μM), or GABABR antagonist CGP55845 (10 µM,
Tocris Bioscience), or DMSO (control) immediately after co-plating with glia, at
post-induction day 4–5. Media was half-exchanged every other day with equivalent
doses of drugs, and cells were analyzed at day 56–60 (Fig. 5a). For immunostaining,
cultures were washed 3–4 times with PBS, fixed by 4% paraformaldehyde (PFA) at
room temperature, and processed for antibody incubation (see below). For whole-
cell patching, neurons were washed thoroughly 3 ×2 min with bath-solution before
recording.

In vivo mouse injections. The method of in vivo lentiviral injection into mouse
round window was adopted from previous protocols using minor modifications69,70.
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In brief, small incisions were made ~1 cm caudal to the pinna of neonatal mice (P2-
P4), and the tympanic bulla was exposed to reveal the round window underneath (see
Supplementary Fig. S9a). The tympanic bulla was punctured with a 34-gauge needle,
and allowed to drain for at least 10min. Approximately 0.3 µl of lentivirus (a cocktail
of 0.1 µl GAD65, 0.1 µl GAD67, and 0.1 µl vGAT) or AAV-chrimson/RFP (control)
was slowly injected into the round window using a 5 µl Hamilton syringe with a 34-
gauge removable needle, 0.375” 12° bevel. Note that a higher injection volume could
result in liquid overspill, disruption of the cochlear aqueduct, and leakage into cer-
ebrospinal fluid. After retracting the needle, the surgical area was sutured, and the
pups were returned to their home cages. Adult animals were sacrificed after 2–4 weeks
of viral infection, and brain-slices were prepared for imaging or electrophysiology
experiments. Endbulb synapses develop rapidly after birth, attain morphological and
functional maturation by ~3 weeks71–74.

Brain-slice recordings. The mice were anesthetized using 200 mg/kg ketamine
plus 10 mg/kg xylazine, then sacrificed, brains were removed, and placed into ice-
cold sucrose solution (in mM: 76 NaCl, 75 sucrose, 25 NaHCO3, 25 glucose,
2.5 KCl, 1.25 NaH2PO4, 7 MgCl2, 0.5 CaCl2). Sagittal sections (142 μm) were cut
using a vibratome (Leica VT1200), and then incubated in standard recording
solution (in mM: 125 NaCl, 26 NaHCO3, 20 glucose, 2.5 KCl, 1.25 NaH2PO4,
1.5 MgCl2, 1.5 CaCl2, 4 Na L-lactate, 2 Na-pyruvate, 0.4 Na L-ascorbate, bubbled
with 95% O2 - 5% CO2) at 34 °C for 20 min. Afterwards, slices were kept at room
temperature until recordings. During recording, 1 µM Strychnine was added to
inhibit spontaneous glycinergic IPSCs, 10 µM NBQX and 5 µM CPP were added to
respectively block AMPAR and NMDAR -mediated EPSCs, and 20 µM Bicuculine
was added to block GABAergic IPSCs. Whole-cell voltage-clamp recordings were
made from BCs in AVCN slices using borosilicate patch pipettes of resistance
1.3–2.3 MΩ. Pipettes were filled with internal solution containing (in mM): 35 CsF,
100 CsCl, 10 EGTA, 10 HEPES, and 1 QX-314, pH 7.3, 300 mOsm. BCs were
patched under an Olympus BX51WI microscope with a Multiclamp 700B
(Molecular Devices) controlled by an ITC-18 interface (Instrutech), driven by
custom-written software (mafPC) running in Igor (WaveMetrics). The bath was
perfused at 3–4 ml/min using a pump (403U/VM2; Watson-Marlow), with saline
running through an inline heater to maintain the temperature at 34 °C (SH-27B
with TC-324B controller; Warner Instruments). BCs were held at -70 mV with
access resistance 5 to 15MΩ compensated to 70%. Single presynaptic endbulb
terminals were stimulated using a glass micro-electrode placed 30 to 50 µm away
from the BC soma with 4–20 µA currents through a stimulus isolator (WPI, A360).
Presynaptic stimulation was applied every 8 s. For V57 condition, all sEPSC and
sIPSC results were analyzed from neurons only with detectable evoked IPSCs.

Immunostaining. Human neuronal cultures with or without V57 factors were fixed
in 4% PFA for 30 min at room temperature. Cells were then blocked in 5–10%
cosmic calf serum (CCS) for 1 h at 37 °C, incubated with primary antibodies (see
Supplementary Fig. S3) for 1–2 h at 37 °C while rocking, washed 4 times with
blocking buffer, followed by 1 h incubation at 37 °C with Alexa Fluor (Invitrogen)
488/555/647-conjugated secondary antibodies [488 goat anti-mouse (A11029), 546
goat anti-mouse (A11030), 647 goat anti-mouse (A32728), 488 goat anti-rabbit
(A11034), 546 goat anti-rabbit (A11035), 647 donkey anti-rabbit (A31573), 488
goat anti-chicken (A11039), 546 goat anti-chicken (A11040), 647 goat anti-chicken
(A21449), 488 goat anti-guinea pig (A11073), 555 goat anti-guinea pig (A21435),
or 647 goat anti-guinea pig (A21450)] at 1:1000–2000 dilutions. Cultures were then
washed 4 times with blocking buffer and PBS, and the coverslips were mounted
upside down on glass slides using Fluoromount-G (Southern Biotech). The cell
nuclei were stained with DAPI (1:50000; Thermo Fisher, catalog # D1306) for
5–10 min, when applicable. Most immunostaining assays were performed in a
permeabilized environment where Triton X-100 (0.1%) was applied to blocking
buffer and for all subsequent steps, including washes or antibody dilutions.
However, to visualize cell-surface localization of GABAARs (see Fig. 5f, and Sup-
plementary Fig. S6d) and their distributions at dendritic branches, we used a
primary antibody against the extracellular epitope of GABAAR subunit α3 under
non-permeabilized conditions (without Triton X-100), subsequently permeabilized
using Triton X-100, and immunolabeled for dendritic MAP2.

For immunostainings of the cochlear nucleus, mice were transcardially perfused
with 0.9% saline followed by 4% PFA, brains were then post-fixed in 4% PFA for an
hour and placed in 20% sucrose overnight. Staining of the cochlea involved
additional steps, i.e. removing it from temporal bone, decalcification by incubating
with 120 mM EDTA for ~5 days, followed by embedding in 100 bloom gelatin, and
fixing overnight in PFA. Frozen embedded tissues were cut in 50 µm sections using
a microtome, washed 3 times in 0.2 M PBS (0.9% NaCl), blocked with 5% goat
serum in PBS+ Triton X-100 for 1 h at room temperature, and incubated
overnight at 4 °C with primary antibodies (Supplementary Fig. S3). Slices were
washed 3 times in PBS and incubated in a solution containing Alexa Fluor
(Invitrogen) 568 donkey anti-goat (A11057), 594 goat anti-rabbit (A11037), 488
goat anti-mouse (A11029), and/or 488 donkey anti-rabbit (A21206) secondary
antibodies (1:250). Slices were then washed 3 times with PBS and mounted in
ProLong diamond antifade mountant (Invitrogen, P36961).

Image acquisition and analysis. Confocal images of cultured human neurons were
acquired using an inverted STELLARIS 5 (Leica Microsystems) laser scanning
microscope and processed with a Leica Application Suite version X (LAS-X,
Core_3.7.4_23463) software. Series of optical z-projections were obtained with
~0.5–1 µm optical thickness using either a 20× dry objective or oil-immersion
objectives (40× or 60×). All super-resolution images (see Figs. 3f, j, 6d, and Sup-
plementary Fig. S5a, b) were collected (dimension in x/y/z axis: 0.04 × 0.04 × 0.18 μm)
using a Zeiss LSM 880 microscope (Zen 2.3 black edition, software v.14.0.9.201)
equipped with plan-apochromat 63× oil-immersion objective (1.4 na) and Airyscan
Gallium Arsenide Phosphide (GaAsP) detector, that reported to have spatial reso-
lution of 120 nm in x/y- and 350 nm in z-plane75. Images of mouse brain tissues, i.e.
cochlear nucleus and spiral ganglion neurons (see Fig. 7b and Supplementary
Fig. S9b), were captured using an Olympus FV1000 confocal microscope, with
~1.84 µm optical z-sections.

All confocal images were analyzed using FIJI-ImageJ (NIH) software. To
quantify various parameters of synaptic puncta along the neuronal processes,
images were generally superimposed as maximum-intensity z-projection (10–20
optical slices). Synaptic signals from regions-of-interest (ROIs) were normalized
with respect to corresponding neurites areas (MAP2 or EGFP -labeled). Co-
localization between two synaptic markers was assessed by first thresholding
individual channels appropriately to eliminate background signals for individual
experimental batches, and then measuring Mander’s coefficients for each optical
section within JACoP plugin. For super-resolution images, processing and analysis
modules within the ZEN 2.3 (blue edition) software (v.2.3.69.1000) were used to
extract maximum-intensity profiles, and measure fluorescence intensities.

Quantitative RT-PCR. iPS cell-derived human neurons from the control vs. V57
condition were washed with PBS and collected in 500 µl TRIzol reagent. Imme-
diately, 250 μl chloroform was added to the cell lysate, vortexed vigorously, cen-
trifuged at 12,000 × g for 15 min, aqueous phase collected, and RNA precipitated by
adding 250 µl of isopropanol and centrifuging at 12,000 × g for 10 min. The RNA
pellets were then washed with 70% ethanol, air dried, and dissolved in nanopure
water. cDNA was generated from 300 to 800 ng of total RNA using the Invitrogen
SuperScript III First-Strand Synthesis SuperMix (catalog # 11752–050, Thermo
Fisher Scientific) following manufacturer’s protocol. Quantitative PCR (qPCR) was
performed on a CFX-96 (Bio-Rad) machine using SYBR Green Master Mix (cat-
alog # RK21203, ABclonal). All primer sets were designed to span between two
adjacent exons, and human GAPDH was used as an internal control (see Sup-
plementary Fig. S8c, d).

RNA-sequencing dataset. RNA-sequencing results of Ngn2-induced human
neurons (Supplementary Fig. S1c) were previously deposited by us in the NIH
database (GEO repository, accession # GSE129241 [https://www-ncbi-nlm-nih-
gov.ezproxy.u-pec.fr/geo/query/acc.cgi?acc=GSE129241])32, and are publicly
available.

Immunoblotting. Day 56–60 NV57 neurons were collected by scraping, and lysed
in RIPA buffer (150 mM NaCl, 5 mM EDTA, 25 mM Tris pH 7.4, 1% Nonidet P-40
substitute, 0.5% Sodium Deoxycholate) supplemented with HaltTM protease inhi-
bitor cocktail (PIC, Thermo Scientific, catalog # 78429). Lysates were mixed at 3:1
with 4x sodium dodecyl sulphate (SDS) loading buffer, run on 7.5% poly-
acrylamide gel (PAGE), and then transferred to a nitrocellulose membrane.
Membranes were blocked with 3% bovine serum albumin (BSA) in Tris-buffered
saline (TBS+ 1% Tween-20) for 2–3 h at ambient temperature, and immunos-
tained overnight at 4 °C with primary antibodies. Membranes were subsequently
stained with fluorescent secondary antibodies (1:2000 in TBS+ Tween-20) for
2–3 h at 37 °C, imaged using LI-COR Odyssey CLx system, and analyzed with
Image Studio Lite software (version 5.2).

Statistics & reproducibility. For all experimental results, the average values were
presented as X/Y, where ‘X’ represents the total number of neurons recorded (for
electrophysiology) or field-of-views analyzed (for imaging) from ‘Y’ number of
independent batches (for human neurons) or animals (mouse brain-slices). All
average data indicate means ± SEMs (standard-deviation [SD] of a parameter
divided by square-root of number of samples). All samples were chosen randomly,
and no data were excluded from analysis. At least >= 3 biological replicates were
used, and sample sizes were selected so that SEM ≈ < 1/10th of their respective
means for most datasets. Except Figs. 3 and 5, investigators were not blinded to
allocation during experiments or outcome assessments, because many assays
required prior knowledge of drug identity during acute applications (Figs. 1, 2, 6,
and 7), transgene combinations (Figs. 1 and 7), or sample collections and pro-
cessing at specific time-intervals (Fig. 4).

The numerical values from all figure panels (both main and supplementary) are
provided as a Source Data file. For near-normally distributed datasets (i.e., with
Skewness and Kurtosis values −2 > ≈ and ≈ < 2), statistical evaluations between
conditions were conducted using unpaired (paired for batchwise comparisons),
two-tailed, Student’s t-test (***P < 0.005; **P < 0.01; *P < 0.05; ns= not
significant, P > 0.05); otherwise, two-sided, nonparametric Mann–Whitney U-test
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was performed as mentioned in the corresponding figure legends. For all groupwise
assessments, the P-values of single-factor ANOVA (for near-normal data
distribution) or Kruskal–Wallis test (for considerable deviations from normal
distribution) were reported.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source Data are provided with this paper (see excel file). These include all individual
datapoints and average values presented in both the main manuscript (Figs. 1–7) and
supplementary information (Figs. S1–S10). The raw data for imaging and
electrophysiology experiments are available from the corresponding authors, upon
reasonable requests. RNA-sequencing dataset of Ngn2 neurons can be obtained from the
publicly available GEO repository (accession # GSE129241), as deposited by our earlier
study32. Source data are provided with this paper.
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