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A controlled and self-limiting inflammatory reaction generally results in removal of the 
injurious agent and repair of the damaged tissue. However, in chronic inflammation, 
immune responses become dysregulated and prolonged, leading to tissue destruction. 
The role of metabolic reprogramming in orchestrating appropriate immune responses 
has gained increasing attention in recent years. Proliferation and differentiation of the 
T cell subsets that are needed to address homeostatic imbalance is accompanied by 
a series of metabolic adaptations, as T cells traveling from nutrient-rich secondary lym-
phoid tissues to sites of inflammation experience a dramatic shift in microenvironment 
conditions. How T  cells integrate information about the local environment, such as 
nutrient availability or oxygen levels, and transfer these signals to functional pathways 
remains to be fully understood. In this review, we discuss how distinct subsets of CD4+ 
T cells metabolically adapt to the conditions of inflammation and whether these insights 
may pave the way to new treatments for human inflammatory diseases.
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THe iNFLAMMATORY MiCROeNviRONMeNT

It has long been appreciated that leukocytes need to adapt their metabolism to survive and proli
ferate in the hostile inflammatory environment. However, in recent years, there has been a growing 
understanding of the complex relationship between the T  cell metabolic machinery and their 
immune function. Metabolic adaptations of T cells go beyond facilitating survival—they are also 
critical for T cell differentiation and immune effector function (1–4). The complicated interplay 
between local environment, T cell metabolism, and immune functions remains incompletely under
stood. In this review, we discuss how CD4+ T cells adapt to conditions of inflammation. We first 
consider how metabolic conditions in inflammatory microenvironments differ from those present 
in healthy tissues and lymphoid organs. We then summarize the metabolic pathways involved in 
Tcell activation, followed by discussion of recent studies examining the role of nutrients, oxygen, 
and temperature on CD4+ T  cell differentiation and function during inflammation. We further 
explore how dysregulation of catabolic processes, such as autophagy, can alter the availability of 
nutrients and lead to aberrant immune responses. Finally, we look at how understanding the meta
bolic adaptations of CD4+ T cells in response to environmental factors may pave the way to new 
treatments for human inflammatory diseases.

A controlled and selflimiting acute inflammatory reaction is largely beneficial; however, in 
chronic inflammation, the response becomes dysregulated and prolonged, leading to excessive tissue 
destruction (5). Chronic inflammation can also develop as an independent response with entirely 
different pathogenesis, timecourse, and clinical manifestations (6). This persistent type of inflam
mation is associated with many diseases, including rheumatoid arthritis (RA), asthma, celiac disease, 
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FiguRe 1 | T cells require metabolic flexibility to adapt to the chronic inflammatory environment. As T cells mature during an immune response, they migrate from 
nutrient-rich secondary lymphoid tissues to sites of inflammation where nutrients, oxygen, and other growth promoting factors become limited. Moreover, other 
innate inflammatory cells are recruited to the inflamed tissue and compete for nutrients. Thus, T cells have to metabolically adapt to these harsh conditions in order 
survive, proliferate, and perform their effector functions.
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or inflammatory bowel disease (IBD). Moreover, several chronic 
conditions, including obesity, diabetes, cardiovascular disease, or 
cancer, are known to have inflammatory components (7).

Sites of inflammation are characterized by extensive recruit
ment of innate inflammatory cells and high proliferation rates 
of lymphocytes (8). The inflammatory responses often promote 
edema, which increases the distance between the parenchymal 
cells and blood vessels, creating a local microenvironment that is 
depleted of nutrients and oxygen (8). Thus, T cells traveling from 
nutrientrich secondary lymphoid tissues to sites of inflamma
tion have to adapt their metabolism to support anabolic growth 
and maintain their function at the low oxygen and nutrient levels 
characteristic of inflammatory lesions (Figure 1) (9). Although 
the characteristics of the chronic inflammatory site differ 
according to the tissue in which the disease unfolds, some shared 
features of inflammatory microenvironments include: low nutri
ent levels (glucose and glutamine); increased lactate production; 
decreased pH; and hypoxia and high concentration of reactive 
oxygen species (ROS) (10).

Inflammatory sites have long been described to harbor reduced 
glucose concentrations, which may be partly caused by prolif
eration of recruited leukocytes and invading pathogens (11–13).  
Activated T cells upregulate glucose metabolism to fuel macromo
lecular synthesis pathways and promote proliferation (3, 14, 15).  
Indeed, glycolysis is essential for T cell division, as T cells have 
decreased proliferation rates in glucosedeficient media, even 
in the presence of high levels of alternative energy sources like 
glutamine (16). Proliferating leukocytes are also ravenous glu
tamine consumers (17) and, although few studies have examined 
glutamine concentrations at inflamed sites, it seems likely that 
glutamine would decrease in the same manner as glucose. For 
example, in septic patients, plasma and skeletal muscle glutamine 
levels are decreased compared with healthy controls, and low 
glutamine concentrations are associated with poor prognosis 
(18–20). In addition, in a small study of patients receiving artificial 
nutrition, those with elevated markers of inflammatory stress had 
significantly lower concentrations of glutamine in plasma and gut 
mucosa (21). Similarly, patients with Crohn’s disease have lower 
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levels of glutamine in inflamed mucosal tissues compared with 
noninflamed mucosal tissues (22). Therefore, metabolic flexibil
ity may be necessary to sustain T cell proliferation and effector 
function in chronic inflammatory environments.

Physiological lactate concentration in healthy tissues or blood 
is normally kept at 1.5–3 mM, but this can increase to as much 
as 10  mM in inflammatory environments such as atheroscle 
rotic plaques or rheumatic synovial fluid (23). Lactic acid is a by
product of glucose metabolism and lactate accumulation can also 
be used as an indirect reporter of another inflammatory hallmark, 
decreased extracellular pH (24). Extracellular lactate and acidic 
conditions (low pH) have been shown to reduce the prolifera
tion and function of human and mouse cytotoxic T cells due to 
decreased activation and inhibition of glycolysis (25–28), while 
restoration of pH to physiological levels rescues T cell function 
(25, 29). However, a recent study reported that CD4+ T cells sense 
lactate via the SLC5A12 transporter, and this interaction inhibits 
T cell motility, which might lead to T cells becoming entrapped 
at inflammatory sites, where they perpetuate the chronic inflam
matory process (23).

Reactive oxygen species are key signaling molecules that play  
diverse roles in cellular function including cell signaling, differ
entiation, proliferation, and apoptosis. However, at high concen
trations, they can act as mediators of inflammation due to their 
capacity to oxidize cellular constituents and damage DNA (30). 
Most ROS are generated as byproducts of cellular metabolism 
via the electron transport chain (ETC), through partial reduc
tion of the oxygen molecule during oxidative phosphorylation 
(OXPHOS) in mitochondria. Superoxide anion O2

•−( ), the 
hydroxyl radical (∙OH), and hydrogen peroxide (H2O2) can all 
be generated in this way (31). ROS are abundant at inflamma
tory sites (32) and affect T cell functions (33, 34). For example, 
the presence of high levels of ROS in the environment has been 
reported to favor CD4+ T cell differentiation toward a Th2 phe
notype, but the mechanisms involved remain unclear (35, 36).

Tissue hypoxia is characteristic of various chronic inflam
matory diseases such as atherosclerosis, RA, and IBD, with  
oxygen levels considerably lower (<2%, equivalent to 2.026 kPa) 
than in healthy tissues (<5%, equivalent to 5.056  kPa) (37). 
However, even in healthy tissues, T  cells can be exposed to 
varying oxygen concentrations ranging between 3 and 19% 
(3.039–19.247 kPa) as they migrate between blood and different  
tissues (38). The upper airways have the highest oxygen concen
tration (39), while lymphoid tissues have markedly lower oxygen 
concentrations; e.g., 6.5% (equivalent to 6.585  kPa) in bone 
marrow (40) and 3–4% (3.039–4.052 kPa) in the spleen (41, 42). 
Several studies have shown that CD4+ T cells have a reduced rate 
of proliferation and survival under hypoxic conditions (37, 43). 
When exposed to hypoxic environments, T cells upregulate the 
oxygensensitive transcription factor, hypoxiainducible factor 
(HIF)1α. HIF1α modulates T  cell differentiation and meta 
bolism by promoting anaerobic glycolysis through increased 
expression of the glucose transporter Glut1, as well as induction 
of several glycolytic enzymes (4, 44, 45). Of note, in activated 
T cells HIF1α can also be upregulated under normoxia to sus
tain the expression of glycolytic enzymes during Th cell differen 
tiation (4, 46, 47).

Increasing sodium conditions in vitro by approximately 40 mM  
boosts T cell proliferation (48). In addition, secondary lymphoid 
tissues have higher osmolality than serum, suggesting that a high
salt environment in vivo favors T cell proliferation (49). There is 
some evidence to suggest that inflamed tissues could harbor high 
levels of salt. For example, excessive salt intake has been associ
ated with enhanced induction of experimental autoimmune 
encephalomyelitis in mice (50, 51), worsening of disease activity 
in multiple sclerosis patients (52) and exacerbation of tissue dam
age in cardiovascular disease (53). Recent evidence suggests that 
highsalt environments favor T cell skewing toward a Th17 pro
inflammatory phenotype and impairs the suppressive functions 
of regulatory T (Treg) cells (50, 51, 54). Moreover, dietary sup
plementation with NaCl in a mouse model of graftversushost 
disease (GVHD) inhibited Treg function and aggravated clinical 
outcomes (54). Although these studies suggest that reducing salt 
concentrations could be beneficial for limiting pathological T cell 
responses in inflamed tissues, there are circumstances where 
reducing tissue salt concentrations may have deleterious effects. 
For example, a recent study found that regional hypersalinity 
in the renal medulla drives the recruitment and antibacterial 
functions of mononuclear phagocytes that prevent urinary tract 
infections spreading to the kidney (55). Moreover, further studies 
are required to determine the impact of highsalt environments 
on T cell metabolic processes.

The temperature gradients across the body are affected by 
inflammation in different ways. While internal organs such as the 
spleen and gut are subject to fluctuations of core body tempera
ture during episodes of fever (37–39°C), the skin and muscles are 
subjected to a wider range of temperature gradients (29–37°C) 
(56). In addition, the normal core temperature of 37°C of both 
humans and mice oscillates throughout the day by approximately 
1.7°C (57). Thus, lymphocytes circulating between these changing 
thermal compartments are required to function at various tem
peratures. The effects of hyperthermia on T cell function has been 
the subject of a few studies, and febrile temperatures are known 
to enhance T cell proliferation in response to mitogens (58, 59). 
More recently, febrile temperature was shown to induce changes 
in membrane fluidity in CD4+ T cells leading to macromolecular 
clusters that reduced the requirement for CD28 costimulation 
(60). Presently, little is known about whether the local increase 
in temperature during inflammation alters T cell metabolism. Of 
note, mice are generally housed at a temperature comfortable for 
clothed humans, 19–22°C, but the thermoneutral zone for mice 
is around 30–32°C (61). Some studies argue that mice housed 
under laboratory conditions are chronically coldstressed and 
have a different metabolic and thermal phenotype than mice 
raised at thermoneutrality (62, 63). Thus, housing temperature 
of mice may be a variable that requires more consideration in 
immunometabolism studies.

Next to daily oscillations of core body temperature, other daily  
rhythms can influence immune cell function. Circadian rhythms, 
the body’s autonomous internal clock based on intricate tran
scriptional and translational feedback loops, anticipate and allow 
organisms to adapt to environmental changes by controlling 
a wide array of physiological and metabolic processes (64). 
Lifestyles that disrupt the inherent biological clock, such as 
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shift work, have been associated with increased systemic levels 
of inflammatory markers (65, 66) as well as increased incidence 
of cardiovascular disease (67), metabolic disorders (68, 69), and 
cancer (70, 71). Interestingly, trafficking and migration of immune 
cells, including T cells, is also regulated by circadian rhythms (72) 
although the exact impact of these fluctuations on T cell function 
remains to be fully elucidated (73, 74). The circadian clock can 
also influence feeding schedules and therefore could indirectly 
affect the availability of nutrients (69, 75). For example, the levels 
of several intracellular micronutrients, including magnesium, 
have been shown to fluctuate rhythmically in two eukaryotic cell 
lines (76). As ATP needs to be bound to magnesium to elicit its 
biological function, fluctuations in intracellular magnesium lev
els could affect all cell processes that require ATP for energy (77).  
Moreover, manipulation of magnesium levels also leads to 
changes of the circadian period suggesting that magnesium acts 
as a “metaregulator” of the cellular clock (76). Indeed, it has been 
proposed that the mechanistic target of rapamycin (mTOR) path
way, which controls protein synthesis associated with proliferative 
signals, is highly sensitive to MgATP fluctuations (76, 78, 79).  
Nevertheless, whether daily fluctuations in availability of magne
sium influence T cell function remains to be established.

MeTABOLiC RePROgRAMMiNg iN CD4+ 
T CeLL ACTivATiON

To drive the proliferation and differentiation of the appropriate 
leukocyte subsets needed to combat pathogenic infection, the 
immune system engages a series of coordinated growth and proli  
ferative signals, including signals that modulate cellular meta
bolic processes (9) (Figure 2). Naïve, quiescent CD4+ T cells are 
characterized by a metabolic program that favors energy pro
duction over biosynthesis and generally rely on mitochondrial 
oxidative pathways, fueled by fatty acid or amino acid oxidation 
(80). Activation of CD4+ T cells triggers a dynamic network of 
transcriptional and translational changes which go hand in hand 
with metabolic adaptations to match the bioenergetic demands of 
the proliferating cells (80). During the initial phase after activa
tion, oxidative metabolism is downregulated, while biosynthetic 
pathways are increased (81).

CD28 is one of the best characterized costimulatory receptors 
on naïve T cells, it promotes cell proliferation by activating dif
ferent signaling pathways that sustain the bioenergetic demands 
associated with T cell activation (82). For example, CD28 costi 
mulation has been described to upregulate glucose utilization 
allowing T  cells to meet the biosynthetic demands associated 
with activation (83, 84). Furthermore, metabolic alterations 
driven by CD28 costimulation were recently shown to be impor
tant for recall of CD8+ T cell memory (Tm) responses (85). The 
authors found that T cells primed in vitro with CD28 had tighter 
mitochondrial cristae (inner mitochondrial folds) and used the 
mitochondrial fatty acid oxidation (FAO) pathway significantly 
more than T cells primed without CD28 (85). Using an adoptive 
transfer model, they showed that T cells primed without CD28 
were unable to prevent tumor outgrowth, suggesting that CD8+ 
Tm cell responses were impaired (85).

One critical signaling pathway for the transduction of the 
TCR/CD28 signal in activated T cells is the PI3K–Akt pathway, 
which promotes entry into the cell cycle and resistance to apop
tosis; however, its role in the metabolic reprogramming of T cells 
is debated, since the requirement for Akt activation in promoting 
glycolytic metabolism in activated T cells is unclear (86). T cell 
activation also leads to the induction of the mechanistic target 
of rapamycin (mTOR) pathway, either through the PI3K–Akt 
pathway or independently. mTOR is a conserved serine/threo
nine kinase that integrates signals from various stimuli, includ
ing growth factors, glucose, amino acids, and oxygen levels, to 
regulate growth, survival, and proliferation (87) (Figure 2). In 
mammals, mTOR forms two functionally distinct complexes, 
mTORC1 and mTORC2, each with specific downstream targets 
and functions (87). mTORC1 is characterized by the presence of 
the scaffolding protein Raptor (regulatoryassociated protein of 
mTOR), while mTORC2 is characterized by the presence of the 
Rictor (Rapamycininsensitive companion of mTOR) protein 
(87). mTOR plays a pivotal role in regulating cellular metabolic 
pathways such as glycolysis, lipid synthesis, and amino acid meta 
bolism.

During T cell activation, the glycolytic program is activated by 
transcription factors, such as cMyc and HIF1α, which orches
trate the expression of glycolytic enzymes and glucose transport
ers that facilitate increased uptake and catabolism of glucose (87). 
Once in the cytoplasm, glucose can be metabolized to yield two 
units of pyruvate, which are further processed according to the 
availability of oxygen. In aerobic conditions, pyruvate is further 
degraded to the acetyl group of acetylCoA and fed into the citric 
acid cycle, also known as the tricarboxylic acid (TCA) or Krebs 
cycle, which occurs in the inner layer of the mitochondria (88). 
The NADH and FADH2 produced at each turn of the cycle donate 
electrons to the ETC, a series of membranebound carriers, called 
complexes I–IV, located in the inner mitochondrial membrane 
(Figure 2). The large amount of energy released during the course 
of the electron transfer fuels the production of over 30 molecules 
of ATP through OXPHOS (88, 89).

By contrast, under low oxygen conditions, pyruvate is reduced 
to lactate via glycolysis, generating only two molecules of ATP per 
one unit of glucose (90). However, some cells, including activated 
T cells, convert glucose to lactate even when oxygen is not limit
ing. This aerobic glycolysis was first described by the German 
biochemist Otto Warburg for tumor cells, and it is thus known as 
the “Warburg effect” (91). Quiescent T cells generate most of their 
energy through OXPHOS, but T cell activation induces metabolic 
remodeling toward a program of anabolic growth and enhanced 
protein synthesis, necessitating greater uptake of nutrients. T cell  
activation is not merely a switch from OXPHOS to aerobic 
glycolysis, indeed both pathways are upregulated and cooperate 
to meet energetic demands, but glycolysis undergoes a marked 
increase and becomes the dominant metabolic pathway (90). 
Since ATP production via aerobic glycolysis is much less efficient 
than via OXPHOS, it seems counterintuitive that this pathway 
would dominate in proliferating T  cells. However, increased 
glycolytic flux leads to increased production of NADH, which 
is used as a cofactor by numerous metabolic enzymes, as well as 
increased levels of glycolysis intermediates that are directed into 
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FiguRe 2 | Basic metabolic pathways in T cells. In the cytosol, glucose is converted into pyruvate via glycolysis. Pyruvate can either be further metabolized into 
lactate and secreted or enter the tricarboxylic acid (TCA) cycle to generate NADH and FADH2 which get fed into the electron transport chain (ETC) to generate ATP 
via the process of oxidative phosphorylation. Glucose breakdown intermediates produced during glycolysis can be metabolized via the pentose phosphate pathway 
donating important building blocks for nucleotide and amino acid synthesis. TCR stimulation induces the expression of several genes involved in glucose transport 
and metabolism by recruiting the transcription factors c-Myc and hypoxia inducible factor (HIF-1) α via activation of the mechanistic target of rapamycin (mTOR) 
machinery. In addition to glucose, T cells can also use fatty acids as a source of energy by degrading fatty acids through fatty acid oxidation.
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anabolic pathways for the production of nucleotides, fatty acids, 
and amino acid precursors (92).

The amino acid glutamine is another critical substrate used 
by T cells during activation (17). Following stimulation, gluta
minolytic enzymes and the glutamine antiporter CD98 are 
induced in a Mycdependent fashion (93), and elimination of 
glutamine from the culture media decreases lymphocyte prolif
eration (94, 95). Glutamine is metabolized by glutaminolysis, and 
the intermediates produced in this process can enter the TCA 
cycle (17). Glutamine also acts as a nitrogen donor for the synthe
sis of purine and pyrimidines and is therefore able to facilitate the 
synthesis of nucleotides during cell proliferation (96).

Under harsh environmental conditions, cell survival is also 
determined by the capacity to recycle cellular nutrients as well as 
sense extracellular stimuli. The mTOR and adenosine monophos
phateactivated protein kinase (AMPK) pathways play important 
roles in tailoring the metabolic adaptations of CD4+ T cell subsets 
during conditions where nutrients and oxygen are scarce. AMPK 
is a serine/threonine kinase that modulates cellular energy status 
in response to nutrient variations or physiological stress (97). 
Increases in cytoplasmic AMPtoATP concentrations activate the 
AMPK sensor. When activated, AMPK initiates metabolic repro
gramming by switching on ATPproducing pathways (oxidation 

of glucose and fatty acids) and switching off ATPconsuming ana
bolic pathways (fatty acid or protein synthesis) (98). AMPK can 
also activate autophagy, directly or indirectly, to initiate metabolic 
reprogramming toward catabolic reactions (99). Autophagy is a 
cellular process in which the cell breaks down large cytoplasmic 
components such as organelles (also known as macroautophagy) 
to ensure sufficient metabolites when nutrients are low (100). 
AMPK can directly phosphorylate the autophagy proteins Ulk1/2 
at multiple sites (99) and can also activate autophagy indirectly 
through suppression of mTORC1 signaling (99).

HOw NuTRieNT AvAiLABiLiTY SHAPeS 
CD4+ T CeLL MeTABOLiSM AND iMMuNe 
ReSPONSeS

The balance between protective immunity and chronic inflam
mation requires that T cells appropriately differentiate into the 
effector or regulatory lineages. In addition to multiple cues from 
the microenvironment, such as the presence of key cytokines, 
distinct metabolic programs also support the differentiation 
of CD4+ T  cells into their separate functional subsets (2). For 
example, it is largely accepted that Th1, Th17, and Th2 effector 
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cells utilize higher rates of glycolysis, while Tregs preferentially 
use FAO (3). In addition, as immune responses are terminated, 
most effector CD4+ T cells undergo apoptosis, but some become 
memory T  cells and revert back to OXPHOS and FAO. These 
memory T cells provide longterm protective immunity and do 
not rapidly proliferate in the absence of antigen rechallenge, and 
thus do not require high rates of glycolytic metabolism (2).

effector T Cell Responses Are Dynamic 
Processes
Th1 Cell Function Is Highly Dependent on 
Environmental Levels of Nutrients
Th1  cells are considered highly glycolytic and glutaminolytic  
cells and rely on these pathways to support their growth and 
proliferation (3). Depriving naïve CD4+ T cells of glutamine dur
ing TCR stimulation results in generation of Foxp3+ Treg cells,  
even in the presence of Th1polarizing conditions (101). The 
breakdown product of glutaminolysis, αketoglutarate, may act 
as a metabolic regulator for Th1 differentiation and prolifera 
tion by promoting the expression of Tbet and enhancing 
mTORC1 signaling (101). Therefore, although environmental 
depletion of glutamine might promote resolution of inflammation 
by favoring Treg cells, under other circumstances impaired Th1 
responses could enhance pathogen spread, leading to aggravated 
tissue damage.

T cell activation and differentiation also depend on the avail
ability of other amino acids. For example, LAT1, an Ltype amino 
acid transporter responsible for the uptake of phenylalanine, 
tyrosine, leucine, arginine, and tryptophan, is required for prolif
eration and differentiation into Th1 and Th17 cells in vitro (102). 
Furthermore, a recent study linked the complement system to 
regulation of amino acid and glucose uptake in human Th1 cells 
(103). Signaling through CD46, a key costimulatory molecule 
and complement regulator expressed on human CD4+ T  cells, 
was important for effective Th1 cell differentiation by potentiat
ing TCRdriven Glut1 expression. Mechanistically, TCR/CD28 
signaling induced the production of complement C3b that 
activated CD46 in an autocrine manner, resulting in the nuclear 
translocation of its cytoplasmic tail isoform CYT1 (103). Nuclear 
CYT1 induced transcription of LAMTOR5, which mediated 
upregulation of Glut1 and LAT1 and also activated mTORC1. 
These events were crucial for human Th1 cell differentiation as 
siRNA knockdown of CD46 or LAMTOR5 resulted in selective 
suppression of Th1 cells (103).

Glucose uptake and aerobic glycolysis is essential for IFNγ 
production in Th1 cells (104–106). Two mechanisms have been 
put forward to explain this observation. Chang et al. reported that 
the cytokine production is limited by the binding of the glycolytic 
enzyme GAPDH to the 3′ UTR of ifng mRNA, but this inhibition 
is diminished when GAPDH is engaged in its enzymatic function 
during glycolysis (104). More recently, Peng et al. proposed an 
epigenetic mechanism through which glycolysis promotes IFNγ 
production in Th1 cells (106). They found that expression of lactate 
dehydrogenase A (LDHA) in activated T  cells was required to 
sustain aerobic glycolysis and support Th1 differentiation and 
that this was not dependent on the ifng 3′ UTR (106). Instead, 

LDHAdeficient T cells had severely reduced histone H3K9 acety 
lation (a marker associated with active transcription) at the ifng 
locus (106). Mechanistically, deletion of LDHA abrogated lactate 
production, thus shunting pyruvate into the mitochondria, 
which enhanced OXPHOS, but reduced citrate export out of the 
mitochondria leading to decreased cytosolic acetylCoA levels— 
the critical substrate needed for histone acetylation of gene loci 
through histone acetyltransferase (106). The importance of this 
pathway for Th1 responses in vivo was shown by their observa
tions that conditional deletion of LDHA in T  cells protected 
susceptible mice from Th1mediated lethal autoinflammatory 
disease (106). These studies suggest that when Th1 cells migrate 
to a glucosedeprived inflammatory environment, the reduced 
glucose availability will lead to a drop in glycolysis and decreased 
IFNγ production, possibly representing intrinsic negative feed
back mechanisms to inhibit excessive Th1mediated immune 
pathology.

Cellular Lipid Metabolism Supports Th17 
Differentiation and Function
Th17 cells are largely confined to barrier sites such as the intes
tine, lungs, or skin, where they play a key role in defense from 
opportunistic pathogens and maintenance of epithelial barrier 
function (107, 108). However, it is also evident that their aberrant 
production of inflammatory cytokines is important in driving a 
number of autoimmune diseases (109, 110). Recent evidence 
suggests that lipid metabolic pathways play a role in regulating 
the dichotomous function of Th17 cells under normal and patho
genic conditions (111–113).

Lipogenic pathways are a crucial part of T cell metabolic repro 
gramming, as proliferating T cells require fatty acids for mem
brane synthesis and also for a plethora of other cellular processes, 
such as signaling and energy production. Activated T cells rapidly 
augment fatty acid synthesis (FAS) while concomitantly decreas
ing FAO (93). Of note, free fatty acids have been found to be 
highly enriched in the inflamed tissues of conditions associated 
with excess fat deposits, such as obesity and atheroscle rosis (10).  
FAS takes place in the cytosol and commences with ATP con
sumption through the carboxylation of acetylCoA to malonyl
CoA, a reaction catalyzed by acetylCoA carboxylase 1 (ACC1) 
(114). By contrast, FAO occurs mainly in the mitochondria and 
involves generation of acetylCoA, which can be directly shuttled 
into the TCA cycle and further oxidized to generate ATP via 
OXPHOS. The enzyme acetylCoA carboxylase 2 is located in 
the inner mitochondrial membrane and promotes mitochondrial 
FAO (111).

These fatty acid metabolic pathways have emerged as impor
tant regulators of Th17 function. ACC1 can regulate the balance 
between Th17 and Treg cells, as pharmacological or genetic block 
ade of ACC1 impaired differentiation of human and mouse 
Th17 cells but favored the induction of Foxp3+ Treg cells (111). 
The authors proposed that Th17 cells use ACC1driven FAS to 
produce phospholipids for cellular membranes, while Treg cells 
actively take up exogenous fatty acids to sustain their prolif
eration (111). Consistent with these results, in a GVHD model, 
mice adoptively transferred with ACC1deficient T cells showed 
reduced mortality and also higher frequencies of Treg cells in 
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the colon in comparison with mice that received WT T  cells 
(115). In addition, the intracellular levels of different fatty acid 
species may affect the pathogenicity of Th17 cells by modulating 
their cytokine responses. Singlecell RNAsequencing of Th17 cells 
generated under pathogenic or nonpathogenic polarizing condi
tions implicated expression of Cd5l, encoding CD5 antigenlike 
(CD5L) protein (also known as AIM), as a regulator of Th17 cell 
pathogenicity (112). CD5L is a member of the scavenger recep
tor cysteinerich superfamily involved in lipid metabolism, 
specifically in inhibition of fatty acid synthase (116). Although 
the mechanism remains incompletely understood, CD5L seemed 
to alter the intracellular balance between polyunsaturated and 
saturated fatty acids, thus affecting the function of two metabolic 
genes—cyp51 and sc4mol—that synthesize ligands for RORγt, a 
Th17 master transcription factor (112, 113). This in turn might 
lead to increased RORγt binding at the antiinflammatory genes 
(IL-10) and reduced binding at the IL-17 and IL-23r loci (pro
inflammatory genes) in Th17 cells (113).

Another cellintrinsic metabolic pathway that has been asso
ciated with a pathogenic Th17 phenotype is mTORC1. Sasaki 
et al. reported that deletion of p70S6KI (which encodes a serine/
threonine kinase that is downstream from mTORC1) resulted in 
decreased expression of Th17associated genes, including il17a, 
il17f, and il23r (117). By contrast, differentiation into Treg, Th1, 
or Th2 cells was not altered in the absence of p70S6KI, suggesting 
that it plays a selective role in the differentiation of Th17  cells 
(117). Consistent with these findings, p70S6KIknockout mice 
exhibited delayed development of EAE (117).

Given the low oxygen availability at inflammatory sites, it is 
perhaps unsurprising that HIF1α also plays a crucial role in 
adapting the T cell metabolic program to the hypoxic conditions 
and skewing the balance between Th17 inflammatory cells and 
Treg immunosuppressive cells. HIF1α promotes glycolysis and 
increases the expression of RORγt while targeting Foxp3 for 
proteasomal degradation (4, 46). Indeed, deletion of HIF1α in 
CD4+ T cells abrogated Th17 development and promoted Treg 
cell differentiation, even under Th17 culture conditions (4, 46). 
Further evidence that the hypoxic environment influences Th17 
function comes from a study in which human Th17 cells differ
entiated in vitro under hypoxic conditions (1% O2) had increased 
secretion of the antiinflammatory cytokine IL10 (118).

Furthermore, another recent study reported that in vitro dif
ferentiated Th17 cells use both OXPHOS and glycolysis, whereas 
Th17 cells isolated from steady state and inflamed tissues rely on 
OXPHOS to generate the energy required for cytokine produc
tion (119). Consistent with these findings, administration of  
the OXPHOS inhibitor oligomycin reduced inflammatory Th17 
cytokine production in vivo and decreased pathology in a mouse 
model of colitis (119). Higher expression of pyruvate dehydroge
nase kinase 1 (PDK1) by in vitrogenerated Th17 cells correlated 
with their enhanced glycolytic metabolism (119), consistent with 
a previous report that PDK1 was essential for Th17 differentiation 
in vitro (120). In vitro differentiation of Thelper cell subsets is 
widely used to generate large numbers of effector cells for analy
ses. However, these findings regarding Th17  cells indicate that 
the in  vitro differentiation conditions may affect the metabolic 
phenotype of the cells, which in turn could endow them with 

slightly different functional characteristics than their in  vivo 
counterparts.

Th2 and Th9 Cells Depend on mTOR Function and 
Glycolytic Metabolism
Several inflammatory pathologies are associated with a Th2 cell 
component, including diseases associated with IgE and type 2 
cytokine secretion (IL4, IL5, and IL13), such as allergy, chronic 
asthma, and atopic dermatitis (121).

Physiological type 2 immune responses seem associated with 
an oxidative metabolism, as Th2 cytokines (IL4 and IL13) acti
vated an STAT6dependent program of oxidative metabolism 
involving peroxisome proliferator activated receptors γ and δ 
(PPARγ and PPARδ) in macrophages (122). Interestingly, several 
recent studies have also implicated PPARγ in effector Th2 function 
(123–125). For example, activation of the TCR/CD28mTORC1 
pathway facilitated complete activation and proliferation of Th1 
and Th2 cells by promoting fatty acid uptake through increased 
expression of PPARγ (123). In addition, PPARγ was critical for 
Th2 cell responses to house dust mite and Heligmosomoides 
polygyrus antigens, as mice lacking PPARγ failed to generate 
IL5 and IL13producing Th2 cells (124, 125). Mechanistically, 
PPARγ was necessary for the upregulation of the IL33 receptor 
on differentiating Th2 cells in the lung, thereby promoting full 
Th2 effector responses. This may suggest that oxidative metabo
lism may have a role in the effector function of Th2 cells and 
promotion of pathogenic responses. However, it is important to 
point out that in vitropolarized murine Th2 cells exhibited high 
glycolytic rates, similar to Th1 and Th17 cells (3, 4).

Although mTORC1 signaling is needed for Th2 lineage com
mitment (126), multiple studies support a role for mTORC2 as 
a preferential signaling pathway in the differentiation, function, 
and metabolism of Th2 cells (127, 128). For example, Rheb
deficient mice have impaired mTORC1 function and fail to 
generate Th1 and Th17 cells but are able to differentiate Th2 cells 
(128). Conversely, T cells from Rictordeficient mice, in which 
mTORC2 activation is impaired, fail to differentiate into Th2 cells 
but are able to generate Th1 and Th17 cells (128). In addition, 
SGK1, another downstream target of mTORC2, was shown to 
promote commitment to the Th2 cell lineage while simultane
ously blocking differentiation into the Th1 lineage (129). SGK1 
prevents degradation of JunB (129), which was previously described 
as a Th2 cellspecific transcription factor that regulates the Th2 
cytokine program (130). Moreover, genetic deletion of the GTPase 
RhoA, a downstream target of mTORC2, decreased glycolysis 
and impaired IL4 production in murine Th2 cells, and protected 
mice against airway inflammation in an OVAinduced model of 
allergic asthma (131). Consistent with these observations, a recent 
genomewide transcriptional profiling study of human Th2 cells 
isolated from allergic asthma patients found a positive correla
tion between cMyc expression and disease status (132), again 
pointing toward glycolysis as a marker of Th2 cell pathogenicity. 
Although it seems difficult to reconcile these reports with the 
studies above that implicated FAO in Th2 function, it may be 
that metabolic flexibility is important for optimal differentiation 
and function of Th2 cells. Thus, while mTORC2driven glycolysis 
might be primarily required for differentiation and proliferation 
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of Th2 cells, a mixed metabolic profile, incorporating both FAO 
and glycolytic activity, may be important to sustain effector Th2 
cells in peripheral tissues.

Th9, characterized by the production of IL9, are closely linked 
to Th2 cells (133). Th9 effector cells develop from naïve CD4+ 
T cells in the presence transforming growth factorβ (TGFβ) and 
IL4, secrete IL9 in large amounts, are also known to produce 
IL10 and IL21, and have been implicated in some inflamma
tory allergic processes, such as asthma (134). A recent study 
shed some light on the metabolic properties of Th9 cells. Wang 
et al. reported that in vitro differentiated Th9 cells were highly 
glycolytic in comparison with Th1, Th2, Th17, or Treg cells (47) 
and identified SIRT1 (sirtuin1) as a negative regulator of Th9 
cells. SIRT1 is an NAD+dependent enzyme that can deacetylate 
histone residues on chromatin, but it has also been proposed to 
act as an NAD+dependent metabolic sensor (135). SIRT1 was 
shown to inhibit Th9 cell differentiation in vitro and mice har
boring a T cellspecific deletion of SIRT1 exhibited exacerbated 
airway inflammation in an OVAinduced allergy model (47). 
Further investigations linked TAK1 (TGFβ activated kinase), an 
important mediator of TGFβ signaling, with active suppression 
of SIRT1 in Th9 cells. The study proposed that TAK1 suppression 
of SIRT1, coupled with an increased mTORC1driven glycolytic 
metabolism, was crucial for Th9 cell differentiation (47).

T Follicular Helper (Tfh) Cells Are Metabolically 
Adapted to the Germinal-Center (GC) Environment
T follicular helper cells are characterized by the expression of the 
chemokine receptor CXCR5, the inducible T  cell costimulator 
ICOS, the transcription factor Bcl6, and the production of IL21 
(136). They have a critical role in the formation and maintenance 
of GCs that promote the generation of affinity matured B cells 
(136). Several studies have linked dysregulated Tfh cell responses 
with autoimmune disease (137), and inflammatory sites often 
develop lymphoid aggregates, termed ectopic lymphoid struc
tures (ELS), which act like functional GCs and comprise B cells 
and Tfhlike cells (138). The conditions within the ELS present 
at the inflammatory sites remain unknown; however, one could 
speculate that they would resemble those present in GCs.

German centers are restricted microenvironments where 
antigenactivated B cells undergo clonal expansion and introduce 
point mutations into the hypervariable regions of the BCR genes 
to allow for affinity maturation (139). GCs are organized into 
two distinct zones (termed light and dark) and B cells repeatedly 
cycle through the zones as they mature (139). The dark zone is 
associated with rapid B cell proliferation, while the light zone is 
traditionally associated with B cell affinity maturation and class 
switching, requiring help from Tfh cells (136). Cho et al. showed 
that mouse GC light zones are hypoxic environments with increa
sed levels of HIFs which limit the proliferation and survival of 
GC B cells (140). Although this hypoxic environment may seem 
detrimental for B cell development, it may act as a threshold for 
B  cell selection, reducing the risk of abnormal B lymphocyte 
development (140). An independent study confirmed the hypoxic 
nature of the GC microenvironment and showed that reversing 
hypoxia by placing mice in chambers containing 60% O2 resulted 
in a decreased frequency of Tfh cells, reduced GC formation and 

impaired class switching following immunization (141). Thus, 
the hypoxic environment sustains the GC reaction and positively 
impacts on Tfh function.

Moreover, given that GCs are sites of constant proliferation 
it is likely that the availability of glucose and of other nutrients 
might be limited. Precisely how Tfh cells adapt to the metabolic 
demands of the GC microenvironment is not completely under
stood, but some studies have postulated that a restriction in 
mTORC1 activation may be involved. It was reported that hypoxia 
inhibits mTORC1 activation in GC B lymphoblasts through 
an HIF1dependent mechanism that limits the expression of 
amino acid transporters (140). Whether the same mechanism 
operates in Tfh cells is unclear, but decreased mTORC1 activity 
was reported to favor Tfh cell differentiation at the expense of 
Th1 and Tbet expression (142). Using an acute viral infection 
model, Ray et al. showed that shRNA silencing of mTOR or Raptor  
promoted Tfh cell differentiation, while silencing of Rictor had 
minimal effects on Tfh cells and instead promoted Th1 devel
opment (142). In addition, they found that Tfh cells were less 
glycolytic than Th1 cells and instead relied mainly on mitochon
drial respiration (142). The authors suggested that this might 
be driven by Bcl6, as overexpression of Bcl6 in naïve CD4+ 
T cells recapitulated the metabolic characteristics observed in  
Tfh cells (142). This suggestion is consistent with previous 
reports in which Bcl6 was described to downregulated genes 
associated with glycolysis (143, 144). Overall, these findings 
suggested that inhibition of mTORC1 signaling and glycolytic 
metabolism play an important role in the Tfh cell adaptation to 
the GC environment. However, recent studies using a CD4Cre 
approach to drive T  cellspecific deletion of Raptor or Rictor 
highlighted a requirement for both mTORC1 and mTORC2 in 
Tfh differentiation (145, 146). Thus, deletion of Raptor (mTORC1)  
or Rictor (mTORC2) in T cells led to decreased GC formation 
and Tfh differentiation upon antigen immunization or viral 
challenge (145, 146). Furthermore, Zeng et  al. observed that 
in  vitro differentiated Tfhlike cells expressed elevated levels 
of Glut1 in comparison with activated nonTfh cells. Similarly, 
Glut1 expression was higher on Tfh cells than nonTfh cells 
isolated from Peyer’s patches (PP), both at steady state and upon 
foreign antigen challenge (146). Given that mTORC1 is required 
for T cell quiescence exit, Zeng et al. also explored the effects of 
conditional deletion of Raptor or Rictor in mature peripheral 
CD4+ T cells using an OX40Cre driver. They found that condi
tional deletion of Raptor or Rictor in activated CD4+ T cells led 
to severely reduced GC formation and Tfh cell responses in PP, 
both at steady state and upon viral infection (146). Thus, these 
studies argue for positive and nonredundant roles for mTORC1  
and mTORC2 in Tfh cell differentiation.

The contradicting results reporting positive or negative effects 
of mTORC1 and mTORC2 activation in Tfh responses are dif
ficult to reconcile, but some of the differences might be due to the 
approaches used to delete or silence components of the mTOR
signaling pathway, as well as the potential differences between 
in vitro or in vivo generated Tfh cells. It may be that while both 
mTORC1 and mTORC2 are required for Tfh generation, temper
ing the levels of mTORC1 activation may facilitate optimal Tfh 
responses in GC.
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Foxp3+ Treg Cells Are endowed with 
Metabolic Flexibility
CD4+Foxp3+ Treg cells produce immunosuppressive cytokines 
such as IL10 and TGFβ and are critical for maintaining immune 
tolerance and preventing deleterious inflammatory responses 
(147). Treg cells have distinct metabolic requirements and have 
been described to preferentially rely on OXPHOS driven by lipid 
oxidation, rather than glucose, for ATP production (3). However, 
recently it has been suggested that metabolic adaptations of  
Treg cells are context dependent and are influenced by factors such 
as Treg cell origin or anatomical distribution (148), although, it 
still remains largely undetermined how distinct subpopulations 
of Tregs, i.e., thymic derived (tTregs), peripherally induced 
(pTregs), and in vitro generated iTregs, differ metabolically.

The transcription factor Foxp3, which is indispensable for Treg 
development, function, and maintenance, was recently demon
strated to also play a major role in regulating their metabolism. It 
was found that Foxp3 expression was sufficient for the increased 
OXPHOS activity observed in mouse Foxp3+ iTreg cells gener
ated in vitro and that Foxp3 increased expression of ETC protein 
complexes that may influence Treg suppressive abilities (149, 150). 
In addition, Foxp3 may decrease glycolysis by inhibiting cMyc 
expression through binding to the TATA box of the Myc gene 
(149). In some circumstances, aberrant increases in glycolytic 
activity in Foxp3+ Treg cells have been associated with their dys
function and consequent inflammation (151, 152). Murine iTregs 
express low levels of the glucose transporter Glut1 in comparison 
with effector T cells, but comparable levels to naïve T cells (3) and 
in human Treg cells, Glut1 expression is thought to be limited 
by Foxp3 through inhibition of Akt (153). Consistent with these 
findings, murine Treg cells overexpressing a transgenic Glut1 
receptor had reduced CD25 and Foxp3 expression and could not 
suppress colitis in an adoptive transfer model (154).

However, it appears that increased mTORC1 activity and gly
colytic metabolism might be necessary to ensure adequate Treg 
cell proliferation under inflammatory conditions. Evidence sug
gests that inflammatory stimuli and Foxp3 have opposing effects  
on Treg proliferation and function by differentially regulating 
mTORC1 and glucose metabolism. Thus, treatment of activated 
Treg cells with a TLR1/TLR2 agonist enhanced activation of 
mTORC1 and increased their proliferation but impaired their 
suppressive function (154). By contrast, Foxp3 expression in 
Treg inhibits mTORC1 signaling and glycolysis but promotes 
oxidative metabolism and slows their proliferation (154). These 
findings are consistent with previous studies showing that exces
sive mTORC1 activity impairs Treg function (1, 155) and with 
the recent discovery that Treg cells engage the serine–threonine 
phosphatase PP2A to suppress mTORC1 activity (156). However, 
other work reported that the induction and suppressive function 
of human iTreg cells, generated by suboptimal TCR stimulation, 
was tightly dependent on glycolysis (157). Mechanistically, the 
authors proposed that glycolysis controls the expression of the 
fulllength FOXP3 containing exon 2 splice variant (Foxp3E2), 
responsible for the suppressive activity of Treg cells, through the 
glycolytic function of enolase1 enzyme (157). Of note, human 
Tregs are highly proliferative in vivo but are hyporesponsive to 
TCR stimulation in vitro (158). Thus, it is likely that they engage 

glycolysis in certain contexts. Indeed, comparative proteomic 
analyses of human Treg and Tconv cells found that freshly isolated 
human Treg cells were highly glycolytic and proliferative, while 
in  vitro proliferating human Tregs engaged glycolysis, but also 
FAO (158). In comparison, Tconv cells switched from OXPHOS 
to aerobic glycolysis upon in  vitro activation (158). This again 
underscores that the metabolic phenotype of T  cells is heavily 
influenced by their environmental differentiation conditions.

Overall, one could speculate that at the beginning of inflam
matory process, when glucose is still available for proliferating 
T  cells, Treg cells use glycolytic metabolism to increase their 
numbers, while during chronic inflammation when glucose is 
scarce their reliance on OXPHOS and FAO might enable them 
to perform suppressor functions in the effort to resolve the 
inflammatory process. In addition, it is also conceivable that the 
utilization of glucose by proliferating Treg cells could be another 
mechanism of immunosuppression, by depriving effector T cells 
of this nutrient.

Nutrient-Depleted Environments Support 
Immunosuppressive Responses
As detailed in Section “The Inflammatory Microenvironment,” 
the inflammatory site is characterized by high concentrations 
of lactate and lowglucose levels. Previous reports have shown 
that llactate strongly suppresses effector T  cells (26, 29, 159) 
(Scharping) and that T cells do not proliferate in glucosedeficient 
media (16). However, a recent study suggested that high concentra
tions of llactate do not affect Treg proliferation or their suppres
sive function under conditions of reduced glucose supply (149). 
The authors proposed that the metabolic advantage of Tregs in 
high lactate environments could be based on resistance to NAD+ 
depletion. Teff cells rely on aerobic glycolysis to proliferate and 
reduce NAD+ to NADH during the breakdown of glucose to pyru 
vate. Lactate dehydrogenase (LDH) further catalyzes the reduc
tion of pyruvate into lactate (149). However, in a high lactate 
environment, LDH favors the reverse reaction, converting lactate 
to pyruvate while using NAD+ as a cofactor. Thus, Teff cells face a 
redox imbalance when insufficient NAD+ is present and glycoly
sis cannot proceed (149). By contrast, in Treg cells, Foxp3 inhibits 
glycolysis and promotes OXPHOS, which allows the cells to 
generate NAD+ by oxidation in the TCA cycle (149). In addition, 
another recent report showed that Tregs may have developed 
a preference for FAO metabolism to avoid fatty acidinduced 
cell death (150). Longchain fatty acids, such as palmitate, are 
known to have proapoptotic effects through various mechanisms, 
including depolarization of the mitochondrial action potential 
and generation of ROS (160). This study showed that Foxp3 
endows Treg cells with an increased ability to utilize fatty acids 
as fuel for OXPHOS by upregulating the enzymes involved in 
FAO, thus increasing resistance to longchain fatty acidinduced 
apoptosis (150).

Regulatory T cells also seem to have enhanced resistance to 
amino acids deprivation. For example, depriving CD4+ T cells of 
glutamine during activation results in generation of Foxp3+ Treg 
cells, even in the presence of Th1polarizing conditions (101). 
Similarly, deficiencies in the amino acid transporters Slc7a5 and  
Slc1a5 (ASCT2) impaired glutamine uptake and decreased 
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Teff cell differentiation without affecting the generation of Treg 
cells (102, 161). Moreover, Treg cells can stimulate dendritic 
cells to express enzymes that catabolize essential amino acids, 
thus reducing their availability in the local microenvironment. 
Consequently, this limits Teff cell differentiation and further 
promotes the expression of Foxp3 cells by CD4+ T cells (162).

Thus, Tregs show a high degree of flexibility in fuel choice, and 
the ability to increase their OXPHOS capacity might represent a 
survival advantage in conditions of low nutrients. In addition, 
their adaptations to nutrientdeplete environments might give 
them a survival advantage at the inflammatory site and thus the 
ability to outlive the Teff cells and trigger the resolution of the 
inflammatory process.

Treg Cells Adapt to the Tissue Environment by 
Promoting Autophagy and Nutrient Recycling
It is also worth considering that inhibition of catabolic processes, 
such as autophagy, can alter the availability of nutrients thus 
leading to dysregulations in cell metabolism. Two recent stud
ies described a crucial role for autophagy in regulating cellular 
metabolism of peripheral Treg cells. Kabat et al. generated mice 
in which the essential autophagy gene Atg16l1 was selectively 
deleted in Foxp3+ Treg cells and found that these animals devel
oped severe spontaneous multiorgan inflammation by 5 months 
of age (151). This was characterized by an accumulation of Th 
effector subsets and a drastic depletion of Foxp3+ Treg (151). 
Further analyses revealed that Atg16l1deficient Treg cells had 
higher expression of glycolytic genes than Treg cells from con
trol mice, whereas genes involved in FAS/FAO were markedly 
decreased (151). These metabolic differences were much more 
pronounced in Treg cells originating from the colonic lamina 
propria than from the spleen (151). Consistent with these find
ings, a parallel study reported that mice with selective deletion of 
the essential autophagy genes Atg7 or Atg5 in FoxP3+ Treg cells 
developed severe multiorgan inflammation by 5 months of age 
(152). Atg7deficient Treg cells from these animals had aberrant 
mTORC1 activity, associated with increased cMyc expression 
and heightened glycolytic metabolism (152). Although precisely 
how autophagy deficiency in Treg cell impairs their survival 
remains to be elucidated, these studies suggest that autophagy is 
important for Treg metabolic flexibility, particularly required for 
adaptations in peripheral tissues (151).

THeRAPeuTiC PeRSPeCTiveS

As we have described so far, different CD4+ Th subsets are asso 
ciated with overlapping but distinct metabolic profiles. This leads  
to the attractive hypothesis that targeting metabolic pathways 
could underpin new therapeutic strategies for immune and inflam
matory diseases. Several studies have attempted to manipulate the 
effector function of lineagecommitted T cells through interven
tions directed at metabolic pathways. For example, targeting PDK1 
with dichloroacetate selectively inhibited the survival, function, 
and proliferation of Th17 cells and diminished inflammation in 
models of colitis and EAE (120). Similarly, blocking the ACC 
enzymes involved in de novo FAS with Soraphen A was shown to 
bias T cell differentiation away from Th17 cell development and 

toward a Treg fate (111). Therapeutic strategies like these could be 
exploited in autoimmune diseases with a strong Th17 component, 
such as multiple sclerosis. Also, depending on the setting, T cells 
may use distinct metabolic phenotypes to adapt to their environ
ment, in nutrient scarce inflammatory environments, CD4+ 
T cells have to compete for nutrients with other leukocytes, as well 
as parenchymal and stromal cells. Therefore, another potential 
way to interfere with T cell metabolism is by blocking nutrient 
transporters on the cell surface. The solutecarrier (SLC) recep
tor superfamily are membranebound transporters that carry 
various molecules, including glucose and amino acids, across 
the cell membrane (163). Transporter families often have mul
tiple isoforms with distinct substrate specificities and different 
expression levels between different cell populations, suggesting 
that developing a selective therapy that targets only a particular 
Th cell subset might be possible. For example, Ltype amino 
acid transporter 1 (LAT1 or SLC7A5) is the main large neutral 
amino acid transport in activated T cells and genetic deletion of 
this transporter prevented the proliferation of CD4+ T cells, but 
their ability to differentiate into Treg cells was preserved (102). 
Moreover, pharmacological inhibitors of SLC7A5 were shown to 
constrain the inflammatory function of cytotoxic T cells (102).

Given the multitude of roles that the mTOR signaling path
ways play in CD4+ T cell differentiation and function it is not 
surprising that mTOR inhibition has been sought as a potential 
therapy for chronic inflammatory conditions. The first known 
pharmacological inhibitor of mTOR, rapamycin, was originally 
developed as an immunosuppressive agent for organ trans
plant rejection, and mTOR was subsequently identified as its 
molecular target (164). The observations that the mTOR pathway 
differentially modulates Treg cells compared with effector Th1/
Th17  cells provided additional rationale for pharmaceutical 
targeting of mTOR in human disease (1). In addition, overactiva
tion of mTOR signaling through deletion of TSC1, an upstream 
negative regulator of mTOR, leads to reduced Treg suppressive 
activity in a mouse model of colitis (165). Another study showed 
that pharmacological inhibition of mTORC1 ameliorated DSS
induced colitis through reduced differentiation of both Th1 and 
Th17  cells (166). Consistent with these differential effects on 
Teff cells and Treg cells, mTORC1 inhibitors have been used as 
adjuncts during ex vivo expansion of human iTregs, to stabilize 
Foxp3 expression and function, while preventing outgrowth of 
Teff cells (167). These human iTregs maintained their suppres
sive activity after transfer into immunodeficient mice, suggesting 
that therapeutic Treg regimes may be enhanced by inhibiting 
mTORC1 (167).

It is clear that modulating metabolism via mTOR has potent 
effects on CD4+ T  cells. However, mTOR plays a role in many 
different cells, and nonselective manipulation of this pathway 
has a high potential for deleterious side effects. Indeed, a wide 
range of adverse effects are associated with rapamycin treatment, 
including metabolic abnormalities (hyperlipidemia), skin reac
tions, and increased opportunistic infections (164).

Therapies aimed at other molecular targets within metabolic 
pathways are under development. Considering the capacity of 
AMPK to halt anabolic metabolism it is possible that targeting 
AMPK activation could lead to regulation of inflammatory T cell 
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function. A few studies have already examined the effects of 
pharmacological activators of AMPK in T cells. Metformin is a 
widely used drug in the management of type 2 diabetes due to its 
benefits in relation to glucose metabolism (168). However, several 
studies have suggested additional beneficial roles for metformin 
in cardiovascular protection, cancer targeting, or aging (169). 
Although the mechanism of action of metformin is incompletely 
understood, it is thought that metformin suppresses glucose 
production in the liver. At the cellular level, it is largely accepted 
that metformin inhibits mitochondrial respiration, but how 
this is transduced to the health promoting effects of metformin 
remains unclear, and metformin has been described to act via 
both AMPKdependent and AMPKindependent mechanisms 
(168). By blocking mitochondrial respiration, metformin prevents  
ATP production and thus leads to an increased cytoplasmic ratios 
of ADP:ATP and AMP:ATP, leading to activation of AMPK (170). 
Activated AMPK inhibits FAS and instead promotes FAO, reduc
ing hepatic lipid stores and enhancing insulin sensitivity. It was 
recently shown that metformin’s mechanism of action relies on 
the nuclear pore complex (NPC) and the enzyme acylCoA dehy
drogenase family member10 (ACAD10) (171). By suppressing 
mitochondrial respiratory capacity, metformin reduces cellular 
ATP, restricting transit of the GTPase RagA/RagC heterodimer 
through the NPC, thus preventing activation of mTORC1. This 
subsequently enhances the transcriptional induction of ACAD10 
and both the NPC and ACAD10 are required for the functional 
effects of metformin (171).

Treating mice with metformin has shown positive effects in 
several inflammatory disease models, including experimental 
autoimmune encephalomyelitis (172), IBD (173, 174), and GVHD 
(174). These studies associated metformin treatment in vivo with  
a reduction in Th17 cells and a rise in Treg cells (172–174). However, 
Gualdoni et al. recently compared the impact of metformin and 
AICAR (5aminoimidazole4carboxamide ribonucleoside—a 
direct pharmacological activator of AMPK) and showed that 
only AICAR could boost Treg cell differentiation and inhibit 
Th17 differentiation in vitro (175). Combination treatments with 
metformin have also been trailed in preclinical models of inflam
matory disease. For example, Yin et al. reported that CD4+ T cells 
isolated from systemic lupus erythematosus (SLE) patients dis
played increased glycolysis and OXPHOS. Simultaneous blockade 
of these two pathways with 2deoxyglucose (2DG) and metformin 
normalized Tcell metabolism and reversed disease biomarkers in 
a mouse model of SLE (176). In addition, wildtype mice treated 
with 2DG and metformin did not show signs of toxicity and 
maintained normal immune function (176).

As previously mentioned, low plasma and tissue glutamine 
concentrations have been associated with inflammatory condi
tions, including sepsis and Crohn’s disease. In addition, glutamine 
has been shown to have beneficial effects on intestinal barrier 
integrity by enhancing enterocyte proliferation and protecting 
against enterocyte apoptosis (177). These observations led to the 
hypothesis that glutamine supplementation may be beneficial  
for inflammatory conditions, particularly in those disease relating  
to impaired gut function. However, the clinical benefit of gluta 
mine supplementation remains controversial, and a metaanalysis 
of clinical trials in critically ill patients failed to identify a significant 

positive effect of glutamine supplementation (178). Moreover, a 
glutamineenriched diet in pediatric patients with Crohn’s disease 
even leads to increased disease activity in some of the subjects (179). 
Given that the glutamine metabolite αketoglutarate was shown 
to promote Th1 differentiation (101), the potential benefits of  
glutamine on promoting mucosal barrier health may be negated 
by the immuneenhancing effects of glutamine on Teff cells.

The therapeutic strategies mentioned earlier illustrate the 
immunomodulatory potential of targeting metabolic pathways. 
However, it remains to be explored how targeting T cell metabolism 
will affect the function of other immune subsets, such as B cells 
and innate immune cells, which also play a key role in driving 
chronic inflammatory diseases.

CONCLuDiNg ReMARKS

In chronic inflammatory diseases, T cells infiltrate and are retai
ned at the affected site where they drive the destruction of the 
surrounding tissues. The inflammatory environment is a site of 
active leukocyte proliferation; however, here, the cells are exposed 
to numerous restrictive factors: hypoxic conditions, high lactate, 
low pH, decreased glucose and amino acids concentrations as 
well as increased levels of ROS. Nutrient deprivation might actu
ally be a mechanism through which the environment regulates 
T cell function. The evidence presented in this review promotes 
the concept that Treg cells seem better equipped than Teff cells to 
handle nutrient starvation. The active recruitment and prolifera
tion of leukocytes at the inflamed tissue may also contribute to 
the limited availability of nutrients, allowing the balance to be 
tilted toward Treg activity that could temper the inflammatory 
response.

Although we do not have much data on how nutrient avail
ability is altered in inflamed human tissues, we can obtain some 
useful information by metabolic profiling of biologic samples, 
such as serum or urine. A recent study performed a large 
scale profiling of the urine metabolome from patients with six 
different common inflammatory diseases: RA, psoriatic arthri
tis, psoriasis, SLE, Crohn’s disease, and ulcerative colitis (180). 
They found that decreased concentrations of urine citrate, an 
intermediate in the TCA cycle, correlated with high disease 
activity in patients compared with controls (180). Several studies 
looking at sera samples from RA patients highlighted distinct 
metabolic features, including decreased levels of amino acids and 
glucose, along with increased levels of fatty acids and cholesterol 
(181–183). Moreover, metabolomic studies of the serum of  
MS patients revealed an excess of ROS and reactive nitrogen  
species (184, 185), and recent studies reported that increased 
glucose metabolites in the cerebrospinal fluid and serum of MS 
patients were positively correlated with disease progression and 
activity (186, 187).

A key question that arises from the studies presented in this 
review is how closely do in  vitro culture models recapitulate 
the in vivo microenvironment conditions present at inflamma
tory sites? The vast majority of in vitro assays are performed at 
nutrient and oxygen levels that are higher than those observed 
in tissue. Thus, the metabolic influence that the inflammatory 
environment exerts on T cell function in vivo may account for 
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experimental inconsistencies observed between T cell responses 
in vitro and in animal models. In addition, studies often assess 
the impact of single factors on T cell function, for example, either 
hypoxia or glucose depletion. However, these factors should also 
be analyzed in combination to establish a better understanding of 
the dynamic and synergistic effects, the inflammatory landscape 
plays on T cells. As discussed earlier, many metabolic activities 
are regulated to some extent by circadian rhythms, and several 
experimental studies have shown that immune parameters, 
including T  cell responses, can vary based on the time of day 
procedures are performed (73, 188, 189). These observations 
suggest that such metabolic fluctuations could impact on the 
reproducibility of immunological data across experiments, and 
this should be considered during experimental design, particu
larly for in vivo experiments in rodents.

It remains to be fully determined how the complex T cell meta
bolic machinery handles the microenvironment at the inflamed 

site and how this shapes T cell intracellular signaling pathways  
and gene transcription (Figure 3). Understanding how the meta
bolic pathways that fuel T cell function and proliferation differ 
within the inflammatory environment may lead to targeted thera
peutic strategies for chronic inflammatory diseases, with a few 
of these therapies already shown promising preliminary results.
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FiguRe 3 | The metabolic pathways utilized by T cells in nutrient replete versus metabolically challenging environments. Under homeostatic conditions, glucose 
enters the cytosol of activated T cells and is converted into pyruvate via glycolysis (89). Pyruvate can either be further metabolized into lactate and secreted or 
entered into the tricarboxylic acid (TCA) cycle to generate ATP via the electron transport chain (ETC) in the process of oxidative phosphorylation (OXPHOS) (120). 
Moreover, the glucose breakdown intermediates produced during glycolysis can be metabolized via the pentose phosphate pathway donating important building 
blocks for nucleotide and amino acid synthesis (89). Activated Teff cells rapidly augment fatty acid synthesis while concomitantly decreasing fatty acid oxidation 
(FAO). In comparison, regulatory T (Treg) cells actively take up exogenous fatty acids to sustain their proliferation through FAO (111). In addition, Teff cells rely on 
glycolysis and glutaminolysis to proliferate and obtain the necessary cofactors for survival while Tregs differentiation is enhanced in glutamine-deprived environments 
(3, 101). Foxp3 plays a major role in regulating the metabolic pathways necessary for Treg cells function by upregulating OXPHOS activity (149, 150), blocking 
mechanistic target of rapamycin (mTOR) signaling (156), and glycolysis (149). In the inflamed tissue, in low oxygen conditions, Teff cells upregulate survival 
mechanisms including the oxygen-sensitive transcription factor, hypoxia-inducible factor (HIF)-1α. HIF-1α promotes anaerobic metabolism through increased 
expression of glucose transporters, as well as induction of glycolytic enzymes (4, 45). However, glucose supply is limited in the inflamed tissue while lactate is 
abundant; therefore, T cells favor the conversation of lactate to pyruvate. Tregs are able to sustain the use of lactate-derived pyruvate as a source of energy  
through the generation of NAD+ during OXPHOS (149).
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