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‘Big-data’ epidemic models are being increasingly used to influence govern-

ment policy to help with control and eradication of infectious diseases. In

the case of livestock, detailed movement records have been used to parame-

trize realistic transmission models. While livestock movement data are

readily available in the UK and other countries in the EU, in many countries

around the world, such detailed data are not available. By using a comprehen-

sive database of the UK cattle trade network, we implement various sampling

strategies to determine the quantity of network data required to give accurate

epidemiological predictions. It is found that by targeting nodes with the high-

est number of movements, accurate predictions on the size and spatial spread

of epidemics can be made. This work has implications for countries such as

the USA, where access to data is limited, and developing countries that

may lack the resources to collect a full dataset on livestock movements.
1. Introduction
Modelling of infectious diseases is a rapidly growing field in which mathe-

matical modellers can play a significant role in determining how applied

knowledge can be translated into an understanding of dynamics at the popu-

lation level [1–4]. During the foot-and-mouth disease (FMD) outbreak in the

UK in 2001, several research groups developed a range of models that were

able to predict the spatio-temporal pattern of disease spread and the impact

of control strategies [1,3,5]. The use of these models in 2001 highlighted the

role that models could play in shaping policy. Since then, the infection data

from the 2001 epidemic have enabled research to be carried out to predict opti-

mal culling and vaccination strategies both for the 2001 epidemic itself and for

any future FMD epidemic in the UK and elsewhere [6–9].

In the 2001 FMD outbreak, early dissemination of the disease, prior to the

first detected case, was mainly a result of long-distance movement of livestock

between farms and through markets [10]. In other countries where FMD is

endemic, livestock movements are believed to play a significant role in disease

persistence [11]. Movements of live animals are also thought to cause significant

transmission of diseases such as bovine tuberculosis (bTB) in the UK [12,13], as

well as vector-borne diseases such as trypanosomiasis in southeast Asia, Aus-

tralasia and Africa [14,15], and Rift Valley fever in Africa [16]. In cases such

as these, infected livestock may be moved prior to showing symptoms, and

therefore there is a risk of long-distance spread occurring. It is therefore crucial

to understand the risk of infection spread associated with livestock movements.

In the UK, an annual livestock census records the location and species com-

position of all livestock farms. Births, deaths and movements of animals are

recorded for individual cattle via the Cattle Tracing System (CTS), and for batches
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of other livestock via the Animal Movement Licence scheme.

Such data have driven the development of sophisticated

models to capture and predict the spread of livestock diseases

such as FMD [1,8,17,18], bovine tuberculosis [12,19] and

Escherichia coli [20]. However, many countries around the

world do not routinely collect farm-level data, or they are

not readily available for research owing to issues regarding

privacy. For example, in the USA, the National Agricultural

Statistics Service carries out an agricultural census every 5

years. In order to preserve anonymity for farmers, all data

are aggregated at the county level, and therefore precise

locations of livestock farms are unknown. Furthermore, move-

ment data are held at the individual state level, and there is no

requirement for livestock movements to be recorded unless

movements are out of state [21]. In the UK, the poultry indus-

try infers movements between holdings using targeted

sampling of premises based upon their function and size.

This method predominantly targets large farms, and therefore

does not accurately capture the demographic characteris-

tics of the underlying farm population [22]. Therefore, it is

important to understand the ability of models to predict the

potential for disease spread through livestock movements

when only a partial sample of the network is available.

Partial network data constitute a well-known problem, and

have been studied extensively in social sciences and other

fields, such as epidemiology in humans and livestock diseases.

While the amount of data available to modellers is increasing,

so too are privacy concerns. In order to predict the risk of disease

spread in humans across large spatial scales, detailed movement

networks must be established. These networks can be informed

using commuting and migration data available from population

censuses [23–25]. These data capture long-term trends, but may

not be appropriate at predicting movements over a shorter time

scale, and therefore can be complemented by the inclusion of

other information such as mobile phone data. Mobile phone

records track locations and times that individuals make and

receive calls, and therefore can act as a proxy for shorter-scale

movement patterns [23,26]. While full access to these datasets

is not readily available, previous work indicates that partial

samples may be sufficient to accurately predict the risk

associated with disease spread across these networks [24,27].

In situations where only partial network information is

available, it may be necessary to reconstruct the network.

Different approaches can be applied to construct contact net-

works. The most basic methods involve random sampling of

nodes (i.e. individuals or farms [28]) or random sampling of

edges (i.e. links between nodes). However, it may be possible

to capture the key properties of a network more efficiently

using an approach such as snowball sampling (SBS). SBS is

typically used in situations where the target population is

small and hard to find. A number of individuals from the

target population are asked to nominate an x number of

people from the target population [29]. This method has

been used previously to identify networks of sexual contacts

for HIV-positive individuals [30]. In the case of livestock,

when there may be knowledge regarding the size of farms

or number of aggregated movements from a farm (per

year), a targeted sampling approach could be used where

larger farms or farms with the highest number of movements

are sampled. When constructing networks, including

specific network characteristics (such as age structure)

improves the quality of the constructed network [31]. Pre-

vious studies have shown that subsets of networks are not
always representative of the whole network (e.g. scale-free

networks [28]). Therefore, caution is needed when networks

are constructed with partial data.

In previous work, Tildesley et al. [32] demonstrated that

even in the absence of precise locations of farms, accurate

predictions of the impact of interventions are possible. We

aim to develop an understanding of the predictive power of

mathematical models when only a subset of the network infor-

mation is available. We develop a model to simulate the spread

of a rapidly spreading disease such as FMD through the UK

cattle movement network. Mathematical models have pre-

viously played a key role in determining the risk of disease

spread through networks of livestock movements for diseases

such as FMD [17,18,21,33], bTB [12,13,19] and bluetongue virus

[34,35]. Our aim in this paper is to investigate the ability of such

models to provide policy advice in countries where only partial

information regarding livestock movements is available.

We compare four imperfect data types: random sampling

of movements (weighted edges), random sampling of farms

(nodes), SBS [30,36] of farms and targeted sampling of

farms. If appropriate, we then scale the sampled networks

up, so that the original number of movements is used for

the epidemic simulations. In the UK, selling and buying of

livestock often takes place through livestock markets. Pre-

vious work suggests that these markets played a substantial

role during the 2001 FMD outbreak [10]. As animals from

different farms are kept in close proximity, there is a risk of

disease transmission between batches of animals resulting

in spread of infection to multiple farms. Moreover, it is

known that movements from markets cover a large geo-

graphical area [37]. Therefore, we investigate the potential

role of markets in disease transmission between farms.

This study will be highly informative for countries where

livestock movement data are not routinely available. The out-

puts of this work will provide guidance to livestock industries

around the world regarding both the quantity of data required

to predict spread of disease and how to target data collection

should it not be possible to record all livestock movements.
2. Material and methods
In this paper, we use data from the 2010 CTS database for Great Brit-

ain, provided by the Department for the Environment, Food and

Rural Affairs (Defra) via the Animal and Plant Health Agency. If

multiple animals were moved on the same day from one farm to

another, this was treated as one movement; markets were initially

not explicitly included. Slaughterhouses were considered as sinks,

and therefore movements to slaughterhouses were ignored even

when going through a livestock market. In total, there were 70 243

farms and 327 markets in our dataset, with 856 454 movements in

total. A total of 635 016 movements passed through markets, with

47 692 farms using cattle markets at least once during 2010.

Four methods of sampling from this database are implemented

and compared here. A directed weighted-static adjacency matrix A
[38] was constructed for each set of sampled data, in which nodes

represent farms and edges represent (directed) cattle movements.

An edge aij is defined to be non-zero if cattle are moved from farm

i to farm j during the year. The weight of the edge represents the fre-

quency of movements from farm i to farm j in 2010 (i.e. the total

number of days on which movements occurred divided by 365).

(a) Movement sampling
For random movement sampling (RMS), we list the recorded

movements and randomly sample from this list. The depleted
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network is then built from the remaining movements and the

resultant network is rescaled such that the total weight of the

rebuilt network is equal to that of the original network,

Arebuilt ¼ Woriginal

Wdepleted
Adepleted, (2:1)

where Woriginal ¼
P

ija
original
ij and Wdepleted ¼

P
ija

RMS
ij : This method

explicitly depends on knowledge of the total weight of the network.

(b) Node sampling
In the node sampling schemes, a ‘sampled’ node has all its edges

sampled. A node is said to be ‘captured’ if it is connected to a

sampled node but it has not been sampled itself. For all of

these schemes, we assume that the total number of nodes N in

the network is known. We sample a set S of NS nodes and

capture NC nodes, the NS sampled nodes plus their connected

non-sampled neighbours. This method will therefore preserve

the degree of the initially sampled nodes NS, but for the remain-

ing nodes that are captured, only the edges that link them to the

NS nodes will be recorded.

We consider three methods of node sampling in this paper. In

the first method, we use random node sampling (RNS) such that

all movements from a certain percentage of nodes are selected.

A more advanced form of node sampling is SBS [36]. In this

method, an initial set of nodes are sampled at random. At the

next stage, the nodes captured by the initial sampled nodes are

in turn sampled. This process can continue until all nodes have

been sampled. In this paper, we consider second-order SBS, such

that an initial set of nodes are sampled and the nodes that this

set of nodes are connected to are also sampled.

The final node sampling scheme considered is targeted node

sampling (TNS). In TNS, we sample specific nodes based on cer-

tain criteria. In this case, we chose the weighted-degree of the

node. All nodes having a weighted-degree of at least x are

sampled and their neighbours are captured (electronic sup-

plementary material, figure S1). A graphical depiction of the

three node sampling network schemes is shown in the electronic

supplementary material, figure S2.

We first considered rescaling the network formed by the

node sampling methods in a similar way to that for the RMS

method. We used the average weighted-degree of the sampled

nodes kwsampledl ¼ 1=NS

P
i[S
P

j(aij þ a ji) to estimate the total

weight of the original network ~W
original ¼ kwsampledlN=2, and

rescale the network as in equation (2.1) but using the estimate

for the total weight of the original network. However, as

shown in electronic supplementary material, figure S6, these

scaled networks result in significant overpredictions of epidemic

size, particularly when small percentages of the nodes are

sampled. For the remainder of this paper, we therefore use the

unscaled versions of the node sampling methods.

(c) Network statistics
The properties of the underlying network may have a significant

effect on epidemic dynamics [39]. We therefore consider how net-

work properties change as fewer data are used by the various

sampling schemes. We first consider the number of strongly con-

nected components of the network. A subset of nodes forms a

strongly connected component if each of the nodes can connect

to each other node by following a path which preserves edge

direction. If the largest of these components is of the same

order as the complete network it is known as the giant strongly

connected component (GSCC) and gives a lower bound to the

maximum size of an outbreak on the network if the disease is

perfectly transmissible [33]. In addition, we explore the impact

of the sampling schemes upon the mean and standard deviation

of the weighted w and unweighted k degree of nodes in the

GSCC. Finally, we investigate the tendency for similar nodes to
connect to each other through degree assortativity [40,41].

These statistics are averaged over 1000 realizations of the net-

work for each sampling method. The diameter of the GSCC

was also measured but, owing to extensive computational time,

this was only calculated for a single realization of the network.

The diameter of a network is the length of the longest shortest

path across the network [40]. As well as the network statistics

mentioned previously, we also explore the number of nodes

and edges captured by the various sampling schemes as the

percentage of sampled data varies.

(d) Comparison of epidemic predictions
A stochastic susceptible–infectious–recovered (SIR) model was

used to investigate epidemic behaviour on the livestock network.

The probability of farm i becoming infected is defined as

li ¼ 1� exp �b
X

j

a jiIj

0
@

1
A, (2:2)

where Ii ¼ 1 if farm i is infected and zero otherwise, and b is the

transmission rate. Infected farms recover after a period T and

cannot be reinfected.

We aim to investigate spread of relatively ‘fast-moving’ dis-

eases in the absence of movement restrictions such as FMD.

We make the assumption that transmission of infection to a

farm results in all animals on that farm moving into the infec-

tious class. Given this assumption, the risk of infection between

any pair of nodes in the movement network is based upon the

number of movements between them rather than the number

of animals moved. In order to investigate the impact of epide-

miological parameters upon model predictions, we explore a

range of values for the transmission parameter and the infectious

period, such that b ¼ 1, 2, 5, 10 and T ¼ 7, 14, 21, 28 days.

After reconstructing the movement network, epidemics were

seeded randomly in Cumbria, Aberdeenshire or Devon. These

three counties have a high number of cattle farms and livestock

movements, and therefore epidemics starting in these counties

are more likely to produce a high number of cases than in

other parts of the UK. Cumbria and Devon were also two

major hotspots of infection during the UK FMD outbreak in

2001 [3]. A random source farm in each county was infected

initially for each simulation, and we investigated the predicted

final epidemic size, duration, peak size and the model prediction

of the geographical spread of disease.

A thousand networks were created for each sampling scheme.

Of these, 100 were randomly selected for simulations. Statistics are

averaged over 1000 simulations that had a final epidemic size of at

least 10 farms. Pseudo-code for the SIR process is included in

electronic supplementary material, algorithm 1.

(e) Livestock markets
Markets may play a key role in amplification of disease trans-

mission [37]. The CTS explicitly states whether a movement went

through a market and, if so, which market was used. This allows

us to construct networks that include markets as nodes. The

above-listed sampling schemes can all be applied to this situation.

There is significant uncertainty regarding the level of contact of ani-

mals from different batches (farms) on a market, and therefore the

risk of transmission between animals during their stay on the

market. For this reason, we investigate the effect of two extreme

assumptions of transmission within a market (electronic sup-

plementary material, figure S3). In the first scenario, we assume

no within-market transmission, such that infection is only trans-

mitted between the source and the destination farm. We assume

complete segregation between herds being strictly enforced (this

would be equivalent to having no markets in the network). In the

second scenario, we assume no segregation and no biosecurity at
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a market, such that all batches that move through a market mix with

one another homogeneously. In this case, we use the CTS data to

determine which batches of cattle move through a market. When

an infected batch moves to a market, that market becomes infected

and we then assume that infection can be transmitted to all possible

destination farms (as determined based on the destinations of all

batches that move from the market) with an equal probability.

A graphic depicting how the network is altered by the inclusion

of markets is shown in the electronic supplementary material,

figure S3, and pseudo-code for the updated epidemic process is

shown in the electronic supplementary material, algorithm 2.

In the UK, livestock has to be removed 4 h after the last

market sale and consequently does not stay overnight at a live-

stock market [42]. Therefore, we assumed that cattle are moved

on and off a market on the same day, and that an infectious

market becomes susceptible again the following day. If this

assumption were to be relaxed, the model could be altered by

giving markets a longer infectious period.

Simulations are carried out in the same way as detailed in

§2d with the one exception that we only run outbreaks for the

length of one infectious period. The increased transmissibility

from the inclusion of markets results in substantially larger epi-

demics, and therefore one infectious cycle is sufficient to

analyse the effects of the different sampling methods.
3. Results
(a) Comparison of network statistics
As the percentage of nodes sampled decreases, the number of

movements and nodes captured is observed to decrease for

all sampling methods (figure 1). As the network fragments,
the size of the GSCC decreases while the number of strongly

connected components increases. Both the TNS and SBS

sampling schemes outperform the RNS scheme in preserving

robustness across all measured statistics as the percentage of

nodes sampled decreases (figure 1). Within the giant com-

ponent, the mean degree and degree standard deviation

remain robust with approximately 15–20% of the data for

both TNS and SBS.

The complete network has assortativity coefficients close to

zero, meaning there is not a tendency for similar nodes to con-

nect to or avoid each other. This holds true within the GSCC for

all node sampling schemes (electronic supplementary material,

figure S4). Similar behaviour is observed for the mean local

clustering coefficient, which is small and does not change

appreciably. The network diameter is 24—TNS and SBS pre-

serve this relatively small diameter well within the GSCC,

but for small sample sizes the diameter increases under the

RNS scheme. Plots for assortativity, clustering and diameter

are shown in electronic supplementary material, figure S4.

(b) Comparison of epidemic predictions
In order to explore the epidemiological effects of the various

sampling methods, we compare each method with simulations

run on the full network. The robustness of a sampling method

is determined by whether the mean simulation for a method

using a certain percentage of data lies within the 95% CIs of

the mean of simulations run in the full network. We focus on

key epidemiological quantities such as final size, peak size

and epidemic duration. While it is informative to explore the

effect of partial knowledge upon epidemic duration, for
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many diseases livestock movement bans will be implemented

as soon as cases are reported. We therefore also look at predic-

tions of the epidemic size after 6 and 12 weeks using the

different sampling methods. We denote the threshold at

which a scheme fails to be robust as Smin, the minimum

sampling threshold. Initially, we set b ¼ 1 and T ¼ 21 days.

Sensitivity to these parameter values is explored below

(electronic supplementary material, figures S13–S16).

For outbreaks seeded in Cumbria and simulated on the full

dataset, we obtain a final mean epidemic size of 185 farms, with

a mean duration of 22 weeks and a mean peak size of 45 farms

(figure 2; electronic supplementary material, figure S8). The

mean epidemic sizes after 6 and 12 weeks were 23 and 64

farms, respectively. For all node sampling methods without

rescaling, the epidemic size is under-predicted as the percen-

tage of nodes sampled decreases (figure 2). After six weeks,

Smin ¼ 3% for the TNS method, 20% for the SBS method and

80% for the RNS method. After 12 weeks, the percentage of

nodes that must be sampled increases to 9%, 30% and 90%

for the TNS, SBS and RNS methods, respectively (figure 2b).

In order for these methods to accurately predict the full epi-

demic, 14%, 40% and 90% of the nodes must be sampled for

the TNS, SBS and RNS methods, respectively (figure 2c). For

the RMS method, Smin ¼ 30% for 6 weeks, 50% for 12 weeks

and 80% for the whole epidemic. Contour plots for epidemic

size predictions for outbreaks seeded in Cumbria for each

week of the outbreak (from week 1 to the end of the epidemic)

are shown in electronic supplementary material, figures S8–

S11. All methods provide accurate predictions of the size of

the epidemic in the first few weeks. However, for longer dur-

ations, the TNS and the SBS methods provide the most robust
predictions of epidemic size over time. Similar behaviour is

observed for model predictions of epidemic duration and epi-

demic peak size (electronic supplementary material, figures

S8–S11b,c)—the TNS method is able to accurately capture

these characteristics when only 15% of the nodes are sampled,

compared with 30%, 80% and 90% for the SBS, RMS and

RNS methods, respectively.

The TNS method is consistently found to provide most

accurate predictions of epidemic size, regardless of the

county of disease introduction and disease parameters. In

Devon, only 3% of the nodes require sampling for the TNS

method to predict epidemic sizes at 6 weeks, compared

with 10%, 20% and 80% for the SBS, RMS and RNS methods,

respectively, with similar effects seen at 12 weeks and for the

full epidemic (electronic supplementary material, figure S17).

Similar behaviour is observed in Aberdeenshire (electronic

supplementary material, figure S19). The values for Smin for

the full epidemic for all sampling methods for epidemics

seeded in the three counties are summarized in electronic

supplementary material, table S1.

As the transmission rate of the disease increases, epidemic

sizes increase and a higher percentage of nodes are required

for all sampling methods to make accurate predictions. For

example when b ¼ 2, 25% of the nodes must be sampled

using the TNS method and 50% for the SBS method to predict

the overall epidemic size for outbreaks seeded in Cumbria,

whereas for the RNS method almost all nodes must be

sampled to capture epidemic behaviour (electronic sup-

plementary material, figure S13). As the infectious period of

the disease increases, a higher percentage of nodes needs to

be sampled, but the effect of this is less pronounced than a
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variation in the transmission rate (electronic supplementary

material, figures S14 and S15). For diseases with a very high

transmission rate, a much higher percentage of nodes must

be sampled for all methods, even when the infectious period

is short (electronic supplementary material, figure S16).

When we include within-market transmission into our

model, we observe significantly larger epidemic sizes, with

the mean epidemic size after one infectious period when

b ¼ 1 and T ¼ 21 being 2266 farms for outbreaks seeded in

Cumbria. The TNS and SBS methods under-predict epidemic

sizes when less than 35% and 50% respectively of the nodes

are sampled (electronic supplementary material, figure S7).

In contrast to the scenario where markets do not amplify

transmission, the RMS method predicts epidemic sizes accu-

rately even when only a very small number (approx. 20%) of

movements are sampled. This suggests that, if a significant

level of transmission is thought to occur within markets,

then either TNS or RMS would be the preferred strategies if

only limited resources were available. Similar results are

observed for outbreaks seeded in Devon and Aberdeenshire.
(c) Spatial spread
It is important to consider not only the size of the simulated

epidemics, but also how well the model captures the spatial

spread of infection when partially sampled networks are
used. When epidemics are seeded in Cumbria, almost all

infected movements occur within Cumbria itself and to neigh-

bouring counties (figure 3). An average of 8.9 farms become

infected in Cumbria after 12 weeks, with 13.9 in North York-

shire and 4.2, 4.0, 4.0 and 8.0 in Durham, Lancashire,

Dumfries and Galloway, and Aberdeen, respectively. All

other counties have epidemic sizes of fewer than two farms

when the epidemic is seeded in Cumbria.

Using Smin for each of the sampling methods, we find that

SBS captures the main epidemic hotspots well, but slightly

overestimates epidemic sizes in these hotspots. RMS also per-

forms well, but slightly underestimates epidemic sizes. The

TNS method proves an accurate predictor of epidemic sizes

in all the most infected counties, with 8.7 and 13.7 farms

being infected on average after 12 weeks in Cumbria and

North Yorkshire respectively (figure 3).

When markets are included the pattern of spatial spread

is found to be similar to that without markets (electronic sup-

plementary material, figure S12). The three most highly

infected counties on the full network are Cumbria, North

Yorkshire and Aberdeenshire, with mean epidemic sizes of

210, 258 and 238, respectively. When markets are included,

we observe much larger epidemics in Devon, Somerset and

northeast Wales. We also observe that each of the three

sampling methods compares well with the original network

at the Smin threshold.
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Similar results are observed when outbreaks are seeded in

Aberdeenshire and Devon—transmission within markets

results in outbreaks with a much larger spatial extent than out-

breaks in which markets do not play a role in transmission

(electronic supplementary material, figures S21–S24).
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4. Discussion
In order for models to be used to predict the potential for dis-

ease spread in livestock, there is reliance upon accurate data

regarding farm locations and movements of livestock between

farms. Significant work has been done in the UK to predict the

potential for disease spread through the livestock network

[12,17,18] owing to the existence of the CTS and the animal

movement licence scheme. In many other countries around

the world, the lack of such databases means that it is impossible

to develop a model that uses precise movement data, and an

alternative approach must be used. In such countries, it may

be impossible to ever record all movement data either owing

to the sheer size of the industry (in countries such as the

USA) or owing to the cost associated with implementing an

animal licence scheme. However, a more limited data collec-

tion scheme may be possible, whereby movements are

recorded for a subset of the livestock movement network.

A simple way to collect a subset of livestock movement data

would be to randomly sample all movements from a given set

of random farms (i.e. using the RNS method). This method

proved ineffective at reproducing the mean epidemics seen on

the complete network. An alternative strategy to collect move-

ment data would be to randomly sample movements from

any farm (i.e. the RMS method). In a practical sense, this

would be a much more difficult strategy to implement, requir-

ing individual farmers to keep a record of livestock moving

from their farm a given percentage of the time. This method

is found to be more effective than the RNS method, particularly

in the case when within-market transmission occurs. In that

case, only 10–20% of movements are required in order to accu-

rately predict epidemic sizes. For lower percentages, the model

predicts smaller epidemics than observed using the true net-

work data, and in that case suggested intervention strategies

may not be sufficient to control outbreaks. It may, however,

be possible to make accurate predictions with a lower percen-

tage of movement data when incorporating a Bayesian kernel

approach to scale up a partially observed network [43]. An

alternative approach may be to adopt targeted movement

sampling where movements would be recorded based on

some criterion. For example, particularly frequent movements

between pairs of nodes could be recorded, or shipments invol-

ving a large number of animals. Both these options were

investigated, but neither proved to be particularly successful

at reconstructing an accurate realization of the original network.

If only limited resources are available for data collection,

it may be more efficient to record movements only from the

most highly connected farms (the TNS method) or to use

SBS (the SBS method). The TNS method proves significantly

more effective than both the RMS and RNS methods when

markets do not contribute to transmission—less than 20%

of all farms would need to be surveyed in order to predict

epidemic sizes to within 90% confidence in the UK for out-

breaks seeded in Cumbria, Devon and Aberdeenshire. The

model also gives a very good approximation of the spatial

spread of the disease, the size of the epidemic peak and the
epidemic duration. When markets contribute towards disease

amplification, the TNS method requires that around 30% of

all nodes would need to be surveyed in order to accurately pre-

dict epidemic sizes. The SBS method is found to perform less

effectively than the TNS method, as this strategy rapidly ident-

ifies the most highly connected nodes that are likely to

contribute most significantly to disease transmission. How-

ever, the SBS method may be more practical to implement as

it does not require prior knowledge of the relative connectivity

of the farms in the network.

The TNS and SBS methods have worked favourably in the

livestock network described here. While one must take care

when making inference from a subnetwork to the full network

[28], it would be of great interest to the broader study of disease

spread on partially observed networks to test these strategies

further on livestock networks such as those available in other

European countries [44–46]. The results of this work provide

evidence of the viability of using partially sampled data to pre-

dict disease spread in livestock [21] and humans [23–26], and

will inform data collection strategies in situations where com-

plete knowledge of the network is impossible (e.g. wildlife

movements [47,48]).

The role played by markets in disease transmission may

have a significant effect upon the predictability of the sampling

methods. When markets do not contribute to disease trans-

mission, only a very small percentage of nodes needs to be

sampled using the TNS method. However, when we make

the assumption that all batches on a market are well mixed, a

much larger proportion of the nodes must be sampled. We

also find that in this case, the RMS method requires sampling

of a much smaller percentage of movements than the non-

market scenario. This is unsurprising—markets represent

very highly connected nodes in the network, and therefore

when they are explicitly included in the model, an RMS

approach will preferentially sample movements to and from

these highly connected nodes. The model currently assumes

that livestock do not stay overnight on markets, in line with

Defra policy, and hence any infectious markets would

become susceptible the following day. Should this not be the

case, the role of markets in disease transmission may be slightly

altered. Therefore, our results suggest that a more thorough,

disease-specific analysis of the precise role of markets in dis-

ease transmission would be required in the future in order

to determine context-specific optimal sampling strategies.

However, our sensitivity analysis shows that TNS is the pre-

ferred sampling strategy for all studied transmission rates

and infectious periods.

The model presented in this paper uses a weighted static

network to simulate the risk of transmission between livestock

farms. Weighted static networks are regularly used in live-

stock disease models, and previous work indicates that they

provide good prediction of mean epidemic sizes, though may

potentially underestimate variability when compared with

results on dynamic networks [38]. The advantage with a

weighted static network approach is that it is possible to

determine the epidemic impact independent of time of year.

However, there is clear seasonality observed in the cattle move-

ment network [49], and it is therefore possible that a weighted

static network could result in an under- or over-prediction

of epidemic size. Our sensitivity analysis suggests that the pre-

ferred sampling strategies are robust, although the proportion

of nodes that need to be sampled may vary dependent upon

time of year. Future studies will focus upon constructing
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a dynamic network, and testing network sampling schemes

and temporal sampling schemes (whereby sampling is tar-

geted based on time of year) on their ability to predict

epidemic behaviour.

The results indicate that for a fast-spreading disease such

as FMD, sampling a small proportion of the network is suffi-

cient. This relies on the assumption that infected movements

result in all livestock on the destination farm becoming

rapidly infected. This is not the case for all livestock diseases.

For example, animals infected with bTB can remain asympto-

matic carriers for several months [13] before becoming

infectious. The model framework described here would not

be appropriate for a disease of this nature, and further

work will focus upon the development of optimal sampling

strategies for slow-spreading diseases such as bTB, where it

may be crucial to track movements of individual cattle.

Our results suggest that for countries with similar farming

practices, it may not be necessary to collect data on all livestock

farms, but only those that contribute most significantly to the

livestock trade. Of course, this creates something of a conun-

drum—in order to sample the most highly connected nodes,

and thus accurately represent epidemic risk on an unknown net-

work, one needs to know which farms have the most
movements. One solution to this would be for all farmers to be

required to record the number of movements they make in a

given year. These summary statistics could then be used to deter-

mine which farms should be sampled for the following year.

In the UK, at least, analysis of the movement network for mul-

tiple years suggests that those farms that have a high number

of movements in a given year are more likely to have a high

number of movements in the following year. This method may

therefore be used in countries where livestock movement data

are not currently available in order to inform epidemic models

and predict the potential for disease spread owing to animal

movements in the early stages of a disease outbreak.
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