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ABSTRACT: Multicomponent Petasis reaction has been widely
applied for the synthesis of functionalized amine building blocks
and biologically active compounds. Employing primary aromatic
amines that are not typical reactive substrates contributes to
expand the application scope of the Petasis reaction. In this study,
we demonstrated the synthesis of functionalized 2-aminothio-
phenes using Gewald-reaction-derived 2-aminothiophenes as the
amine substrates, whose low reactivity in the Petasis reaction was
overcome using hexafluoro-2-propanol as the solvent in a mild condition. The obtained Petasis products are amenable for further
transformations owing to the presence of multiple functional handles. A following intramolecular cyclization of selected Petasis
products afforded substituted tricyclic heterocycles that incorporate a pharmaceutically interesting thienodiazepine moiety.
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Petasis borono-Mannich reaction, or Petasis reaction (PR),
is a powerful multicomponent transformation of an amine,

an aldehyde, and a boronic acid to afford functionalized amines
via the in situ formation of a tetraboronate intermediate
(Figure 1A).1−3 Although a wide selection of carbonyl
compounds and boronic acids or esters have been successfully
applied in PRs, reactive amine substrates in PRs are still mainly
restricted to secondary nonaromatic amines,1−5 as shown in
recent applications in peptide modification, selective bio-
conjugation, and DNA-encoded library synthesis.6−9 Primary
aromatic amines are typically not reactive substrates in PRs,
although anilines, pyridine-2-amines, and naphthalen-2-amines
have been used in a few catalyzed variants or at the expense of
microwave irradiation conditions (Figure 1B).3,10 Overall, the
PR provides a versatile strategy to access highly functionalized
amines that are of both synthetic and biological interest.
Aminothiophene is a common moiety in biologically active

compounds and FDA-approved drugs.11−15 For example,
diverse 2-aminothiophene-containing compounds, such as
RS-C-5966451/-5950331 and MD-C1-3/-C2-3, were reported
as activators of latent ribonuclease and have been evaluated for
their antiviral activity and applied to recruit ribonuclease to
cleave an oncogenic microRNA (Figure 1C).16,17 Olanzapine is
a thienodiazepine that is used as an antipsychotic drug (Figure
1D). Furthermore, 2-aminothiophene-containing compounds
have been evaluated for their anticancer activities by inhibiting
kinases or bromodomain-containing protein 4.18−20 One of the
most robust methods to synthesize 2-aminothiophene is via the
three-component Gewald reaction (GR) of a ketone, an α-
cyanoester, and sulfur, as well as a few optimized variants.21−24

As a part of our current efforts to evaluate scaffold-diverse
small molecules as potential modulators of RNA-binding
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Figure 1. Background and overview. (A) Petasis reaction (PR) of an
amine, an aldehyde, and a boronic acid. DG: Directing group. (B)
Primary aromatic amines that have been applied in the PR under
demanding conditions. (C) 2-Aminothiophene-containing molecules
that were reported as activators of ribonuclease L. (D) Olanzapine is a
2-aminothiophene-containing antipsychotic drug. (E) Gewald reac-
tion (GR)−PR−intramolecular cyclization (IMC) in this study to
synthesize highly functionalized 2-aminothiophenes and thienodiaze-
pines.

Letterpubs.acs.org/acscombsci

© 2020 American Chemical Society
495

https://dx.doi.org/10.1021/acscombsci.0c00173
ACS Comb. Sci. 2020, 22, 495−499

This is an open access article published under a Creative Commons Attribution (CC-BY)
License, which permits unrestricted use, distribution and reproduction in any medium,
provided the author and source are cited.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jimin+Hwang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Lydia+Borgelt"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Peng+Wu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acscombsci.0c00173&ref=pdf
https://pubs.acs.org/doi/10.1021/acscombsci.0c00173?ref=pdf
https://pubs.acs.org/doi/10.1021/acscombsci.0c00173?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acscombsci.0c00173?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acscombsci.0c00173?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acscombsci.0c00173?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acscombsci.0c00173?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acscombsci.0c00173?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acscombsci.0c00173?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acscombsci.0c00173?fig=fig1&ref=pdf
pubs.acs.org/acscombsci?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acscombsci.0c00173?ref=pdf
https://pubs.acs.org/acscombsci?ref=pdf
https://pubs.acs.org/acscombsci?ref=pdf
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html


proteins, we report herein the synthesis of a series of
functionalized 2-aminothiophenes via a GR−PR route,
followed by an intramolecular cyclization (IMC) to afford
thienodiazepines (Figure 1E).
The 2-aminothiophene-3-carboxamide 2a was obtained by a

straightforward Gewald condensation of α-cyanoamide 1a
derived from ethyl cyanoacetate and ethyl amine, cyclo-
hexanone, and sulfur.20 Using ethyl cyanoacetate 1b in the
Gewald condensation gave the 2-aminothiophene-3-carbox-
ylate 2b.25 Then the three-component Petasis reaction of the
Gewald condensation product 2a, glyoxylic acid 3a, and
phenylboronic acid 4a was performed to test the optimal
condition to form the target phenylacetic acid 5a. Our initial
test of the reaction in dichloromethane did yield the Petasis
product 5a, although in low conversion of only 24%. Solvents
of different acidity were then tested in the presence of
molecular sieves (MS) for the Petasis reaction (Table 1).

Consistent with the reactivity enhancement using hexafluoro-
isopropanol (HFIP) in the Petasis reaction,26−28 the use of
HFIP accelerated the reaction and led to the improved
conversion to the expected product 5a. In monitoring the
reaction in a duration up to 24 h, the maximum conversion was
observed after 1 h. The formation of two byproducts with a
combined conversion of less than 10% judged by LC−MS was
also observed. It is noteworthy that sequential addition of
amine 2a and aldehyde 3a first before adding boronic acid 4a
showed a lower conversion to 5a in comparison with
simultaneous addition of all three components (entries 2 and
7, Table 1)an indication that both the direct migration of
the phenyl group to the iminium intermediate and the
migration with the formation of a tetra-coordinated boronate
intermediate are likely involved, with the latter being the
favored pathway.29 HFIP presumably promotes the formation
of the iminium species and stabilizes ionic transition states
involved in the Petasis reaction owing to its ionizing
property.26−28,30 The condition with the best conversion of
63% in HFIP led to an isolated yield of 53% for product 5a and
was used to synthesize 2-amino-3-carbonylhydro-
benzothiophene derivatives 5 and 6.

We then investigated the scope for the Petasis reaction in
terms of both boronic acids and aldehydes under the HFIP
condition (Scheme 1). The Petasis reaction using carboxamide

2a as the amine substrate tolerates a range of boronic acids,
such as phenyl (5a) and substituted phenyl boronic acids.
Most phenyl boronic acids substituted by electron-donating
groups at the 4-position led to isolation of the Petasis products
in good yields (5b−d), whereas the 3-hydroxyphenyl boronic
acid only led to the Petasis product 5f in poor yield in
comparison with that of 5a. Phenylboronic acids substituted by
electron-withdrawing groups at the 3-position, such as fluoro-,
trimethylfluoro-, and a carboxylic acid group, only led to less
than 10% conversion, as monitored by LC−MS, even with
prolonged reaction time (5g−i). The electron-rich 2-
furanylboronic acid, which usually showed high reactivity in
Petasis reactions, did not lead to 5j in synthetically useful
conversion, whereas product 5k from 2-thienylboronic acid

Table 1. Reaction Conditions for the Three-Component
Petasis Reaction Using the Gewald Reaction Product 2a

entry solvent time (h) conversion (%)a

1b CH2Cl2 24 24
2b HFIP 1 37
3b MeCN 6 13
4b EtOH 12 trace
5b THF 24 trace
6c CH2Cl2 1 48
7c HFIP 1 63

aMonitored by LC−MS. bAmine 2a and aldehyde 3a were stirred for
10 min before boronic acid 4a was added . cSimultaneous addition of
all three components.

Scheme 1. Scope of the Petasis Reaction Testing Boronic
Acids

aConversion monitored by LC−MS.
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was isolated in good yield as did product 5l from (E)-
styrylboronic acid. Use of the carboxylate 2b as the amine
substrate showed the same tolerable profile among the same
group of boronic acids, with the 4-hydroxyphenyl boronic acid
affording product 6e in the highest yield (85%).
Evaluation of the aldehyde scope revealed varied results

(Scheme 2). Glyceraldehyde (dimer) 3b led to the Petasis

product 6m in good yield but a reduced yield in comparison
with that of 6e, presumably due to the reduced electrophilicity
of glyceraldehyde in comparison to that with glyoxylic acid.
The fact that pyruvic acid also afforded the Petasis product 6n
showed that this reaction is tolerable to certain ketones, albeit
with reduced reactivity. Ethyl glyoxylate 3d and pyruvaldehyde
3e only led to the corresponding products 6o and 6p in poor
yields, which may be explained by the lack of a strong directing
effect by an α-hydroxy group that can facilitate the formation
of the tetraboronate intermediate. For the same assumption,
phenylglyoxals 3f and 3g afforded the products in low yield,
whereas acetylbenzoyl 3h did not proceed with significant
conversion even with prolonged reaction time. For the
benzaldehydes, unless substituted by the strong electron-
withdrawing nitro or trifluoromethyl group at the para-position
(3i and 3j), benzaldehydes did not lead to isolatable products
(6v and 6w). Additionally, N-Boc-2-aminoacetaldehyde 3m
did not lead to isolatable product 6x. In summary, the results
of evaluating aldehydes revealed that the low nucleophilicity of

the 2-aminothiophene requires the use of an activated carbonyl
component to render the 2-amine sufficiently reactive toward
in situ formation of the tetraboronate intermediate. The
obtained 2-amino-3-carbonylhydrobenzothiophenes 5 and 6
share several common structural moieties with reported RNase
L activators, such as the tetrahydrobenzo[4,5]thieno moiety of
C-5950331 and the 3-carboxylate-2-aminothiophen-3-one
moiety of C-5966451 and MD-C1-3 (Figure 1C), and are
thus currently being evaluated in-house for their ribonuclease-
activating activity.
In addition to being potential biologically active compounds,

the obtained 2-amino-3-carbonylhydrobenzothiophenes 5 and
6 feature several functional handles that are amenable for
further transformations to novel scaffolds. One such scaffold
could be a corresponding tricyclic thienodiazepine core after a
further intramolecular cyclization step. Indeed, screening of
different coupling conditions revealed EDC as the optimal
coupling reagent that led to the intramolecularly cyclized
thienodiazepine-3,5-diones 7a−h from the Petasis products
5a−j in overall good yields (56−88%). It is noteworthy to
mention that a condition using DCC as the coupling reagent
led to the intermolecular cyclization to afford the correspond-
ing dimerized compound 8 (Scheme 3).

In conclusion, a synthesis method to access highly
functionalized 2-aminothiophenes has been developed using
a three-component Petasis reaction employing Gewald
reaction products as the amine substrates. This method
converts low reactive primary aromatic amines into corre-
sponding Petasis products under a mild and easily operational
condition (no complex catalysts, microwave irradiation, or
photoredox conditions) using HFIP. We obtained a collection
of functionalized 2-aminothiophenes by testing the scope of
the Petasis reaction, which is tolerable toward a wide range of
boronic acids with yields up to 87%, although a limited
selection of aldehydes led to satisfactory yields. The obtained

Scheme 2. Scope of the Petasis Reaction Testing Aldehydes
and Ketones

aConversion monitored by LC−MS. bSolvent: HFIP/CH2Cl2 (v/v,
1/1). cReflux.

Scheme 3. Cyclization of the Petasis Products 5
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2-aminothiophene products are amenable for further trans-
formations to construct biologically interesting scaffolds, such
as the formation of the new thienodiazepines 7 through an
intramolecular cyclization in good yield up to 88%. This is the
first report of applying 2-aminothiophenes as the amine
substrate in Petasis reactions. The highly functional 2-
aminothiophenes 5 and 6 and the tricyclic thienodiazepines
7 are being evaluated for their modulating activities against
RNA-cleaving and -binding proteins.
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