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Abstract: Polycyclic aromatic hydrocarbon (PAH) concentrations in wharf roach (Ligia spp.), as an en-
vironmental indicator, and in environmental components of the intertidal and supralittoral zones
were determined, and the PAH exposure pathways in wharf roach were estimated. Wharf roaches,
mussels, and environmental media (water, soil and sand, and drifting seaweed) were collected
from 12 sites in Japan along coastal areas of the Sea of Japan. PAH concentrations in wharf roaches
were higher than those in mussels (median total of 15 PAHs: 48.5 and 39.9 ng/g-dry weight (dw),
respectively) except for samples from Ishikawa (wharf roach: 47.9 ng/g-dw; mussel: 132 ng/g-dw).
The highest total PAH concentration in wharf roach was from Akita (96.0 ng/g-dw), followed by
a sample from Niigata (85.2 ng/g-dw). Diagnostic ratio analysis showed that nearly all PAHs in soil
and sand were of petrogenic origin. Based on a correlation analysis of PAH concentrations between
wharf roach and the environmental components, wharf roach exposure to three- and four-ring PAHs
was likely from food (drifting seaweed) and from soil and sand, whereas exposure to four- and
five-ring PAHs was from several environmental components. These findings suggest that the wharf
roach can be used to monitor PAH pollution in the supralittoral zone and in the intertidal zone.

Keywords: polycyclic aromatic hydrocarbons; Ligia spp.; supralittoral zone; exposure pathway

1. Introduction

Polycyclic aromatic hydrocarbons (PAH) are composed of two or more fused aromatic
rings without modification and include more than 100 chemical species. PAHs found in
the environment are either of petrogenic origin, such as from natural oil seeps and acci-
dental oil spills [1–3], or are of pyrogenic origin, which includes volcanic activity [4], the
combustion of fossil fuels [5] and organic matter [6], and automobile exhaust [7]. PAHs are
ubiquitous contaminants in the atmosphere [8,9], terrestrial soil [10,11], marine and fresh-
water sediment [12–14], seawater [15], and fresh water [16,17], and they can accumulate
in a broad range of wildlife [18–21]. In addition, PAHs are a common contaminant found
in the human body [22,23]. However, field data of PAH pollution in marine invertebrates
are limited [24], except in bivalves [2,3,25,26]. Field surveys of PAH contamination in
invertebrates in the supralittoral zone are particularly sparse [27].

PAH toxicity has been extensively studied. These compounds are well known for
their carcinogenicity [28,29], mutagenicity [30], endocrine-disrupting activity [31], and
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developmental toxicity [32,33]. Owing to their toxicity and distribution, the United States
Environmental Protection Agency has selected 16 representative PAHs as priority com-
pounds for environmental monitoring. The International Agency for Research on Cancer
has classified benzo[a]pyrene into group 1, indicating that it is “carcinogenic to humans”;
dibenz[a,h]anthracene is in group 2A, indicating it is “probably carcinogenic to humans”.

Surveying the intertidal and supralittoral zones contributes to understanding the
toxicity in nearshore organisms. Furthermore, many contaminants accumulate in this area.
Therefore, a wide range of pollutants, such as heavy metals [34], pesticides [35], persistent
organic pollutants [36,37], pharmaceuticals [38], antibiotics [39], and PAHs in seawater
and sediment have been monitored. These contaminants are continuously deposited in
coastal areas, with vertical distributions in the intertidal and supralittoral zones. While the
intertidal zone is a common focus, the supralittoral zone is also a site of contamination and
should also be monitored.

For this purpose, researchers often sample mussels [19,34,40] to conduct biomonitoring
in coastal areas. However, mussels may not be appropriate or accessible for environmental
biomonitoring in the supralittoral zone. To address this, our research group has identified
the wharf roach (Ligia spp.) as a suitable environmental indicator for biomonitoring in
the supralittoral zone. The wharf roach has a global distribution [41]. It has a relatively
small habitat area [42] and is omnivorous [43]; therefore, it is exposed to environmental
pollutants because it feeds on land above the tidal line [44]. Environmental pollutants
such as radiocesium and radiosilver from the Fukushima Daiichi Nuclear Power Plant [45],
tributyltin, dibutyltin [44], and PAHs and alkylated PAHs [46] have been assessed by
sampling wharf roaches in the supralittoral zone. Although appropriate as a novel envi-
ronmental indicator of PAHs in the supralittoral zone, wharf roaches live in the boundary
region between the marine and terrestrial environments, and their exposure routes to PAH
compounds are unclear.

In this study, the correlations between PAH concentrations in wharf roaches and
in environmental components were investigated using field samples, and the exposure
pathways by which wharf roaches are exposed to PAHs are estimated. Wharf roaches,
mussels, seawater, soil and sand, and drifting seaweed were collected at 12 sampling sites
in Japan along coastal areas around the Sea of Japan. These sites were chosen because
transboundary PAH air pollution from the continent has been reported in this area [8].

2. Materials and Methods
2.1. Chemicals and Reagents

A PAH standard mixture containing the following 16 PAHs was purchased from Su-
pelco (Bellefonte, PA, USA): naphthalene (Nap); acenaphthylene (Acy); acenaphthene (Ace);
fluorene (Flu); phenanthrene (Phe); anthracene (Ant); fluoranthene (Flut); pyrene (Pyr);
benzo[a]anthracene (BaA); chrysene (Chr); benzo[b]fluoranthene (BbF); benzo[k]fluoranthene
(BkF); benzo[a]pyrene (BaP); benzo[g,h,i]perylene (BP); dibenzo[a,h]anthracene (DA); and
indeno[1,2,3-cd]pyrene (IP). The following five deuterium isotopes of PAHs were purchased
from Wako Pure Chemical Industries, Ltd. (Osaka, Japan): D8-Nap; D10-Ace; D10-Phe;
D10-Pyr; and D12-BaP. All organic solvents were of pesticide residue and polychlorinated
biphenyl test grade. Other chemicals and ultrapure water were of analytical grade.

2.2. Sampling

Wharf roaches (Ligia spp.) were collected in September 2018 from 12 sampling sites
in Japan located along coastal areas of the Sea of Japan (Figure 1, Table 1). Wharf roaches
were collected by hand and using tools.
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Figure 1. Locations of the 12 sampling sites.

Table 1. Site locations and sampling date.

Site No. City, Prefecture GPS Coordinate Sampling Date

1 Ajigasawa, Aomori 40.779312, 140.215660 12 September 2018
2 Yurihonjo, Akita 39.501981, 140.045146 13 September 2018
3 Tsuruoka, Yamagata 38.722078, 139.685163 13 September 2018
4 Nagaoka, Niigata 37.646270, 138.764767 14 September 2018
5 Suzu, Ishikawa 37.307115, 137.231492 28 September 2018
6 Miyazu, Kyoto 35.558870, 135.186588 15 September 2018
7 Kami, Hyogo 35.652180, 134.605145 16 September 2018
8 Hamada, Shimane 34.904503, 132.060741 17 September 2018
9 Hagi, Yamaguchi 34.437040, 131.416821 17 September 2018
10 Fukuoka, Fukuoka 33.603976, 130.274923 18 September 2018
11 Karatsu, Saga 33.484003, 129.944348 19 September 2018
12 Hirado, Nagasaki 33.361646, 129.626395 19 September 2018

Mussels (Mytilus spp.), seawater, soil and sand, and drifting seaweed were also col-
lected. The sampling sites were located in the habitable zone for both wharf roaches and
mussels and were suitable for sampling seawater, soil and sand, and drifting seaweed.
Mussels were collected from the shore area by hand or using a metal spatula. We collected
four liters of seawater from the water surface at each location using brown glass bottles.
After collection, the seawater samples were spiked with PAH internal standard mixture and
extracted on-site using an Empore C18 extraction disc (3M, Maplewood, MN, USA). Soil and
sand and drifting seaweed samples were randomly collected from the supralittoral zone
near the wharf roach sampling location using a metal shovel or tweezers. All of the samples
were immediately stored at 4 ◦C and sent to the laboratory where they were kept at −30 ◦C.
Debris was frequently observed at the sampling sites (supplementary materials: Figure S1).
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2.3. PAH Analysis

The analytical methods were conducted as in Ito et al. [19] and Honda et al. [46],
with slight modifications. Briefly, the samples (wharf roaches, mussels, drifting seaweed,
and soil and sand) were placed in a glass container and freeze-dried for 48 h (FDU-1200;
Eyela, Tokyo, Japan). After freeze-drying, 5–10 wharf roach samples were pooled and
homogenized (whole body), 2–5 mussels were pooled and homogenized (whole soft tissue),
and approximately 1 g of drifting seaweed was pooled and homogenized. Large-grain
sand, pebbles, and other foreign matter were removed from the soil and sand samples to
produce a roughly uniform grain size. Approximately 0.3 g of wharf roach, mussel, or
drifting seaweed and 1 g of soil and sand was weighed and placed into a glass tube. After
spiking with the internal standard mixture (20 ng of D8-Nap, 4 ng each of D10-Ace, D10-Phe,
D10-Pyr, and D12-BaP), PAHs were extracted twice with 20 mL of dichloromethane/hexane
(50%:50%, v/v). The extracts were saponified with 6 mL of 1 M potassium hydroxide in
ethanol at 90 ◦C for 1 h. After saponification, the samples were extracted with hexane.
The extracts were washed with ultrapure water and dehydrated with anhydrous sodium
sulfate. The dehydrated samples were purified with silica gel (3% water content, v/v) and
eluted with hexane and 3% acetone in hexane (v/v). The eluates were concentrated to 0.2 mL
with N2 gas and transferred into gas chromatography (GC) vials for analysis. Extraction
of PAHs from the C18 Empore discs was performed by cutting the disc into pieces and
extracting it similarly to the other samples. The uncertainty of single measurements of
individual samples was alleviated by sample pooling.

PAHs were quantified using a gas chromatograph (8890 GC system; Agilent, Santa
Clara, CA, USA) equipped with a mass spectrometer (5977B GC/MSD; Agilent). Target
analytes were separated using a DB-5ms column (0.25 mm i.d. × 30 m length, film thickness
0.25 µm; Agilent). The target analytes were quantified in selected ion monitoring mode.
Details of the GC and mass spectrometry parameters are provided in Table S1. The moni-
tored mass of target analytes, the internal standards, and the approximate retention times
are provided in Table S2.

2.4. Quality Assurance and Quality Control

A method blank and a matrix-spiked sample were analyzed with each batch of 10 sam-
ples. Method blanks contained PAH concentrations that ranged from less than the limit of
detection (LOD) to 2.79 ng/mL. Matrix effects were corrected using the isotope dilution
method of quantification and the retention time. The recovery of PAHs in spiked samples
(spiked content: 2–40 ng) ranged from 84.2 (Flu) to 118% (BaA). The instrumental LODs of
each analyte ranged from 0.20 to 9.34 ng/mL. Because of the high background and relatively
low recovery, Nap was excluded from the analysis.

2.5. Statistical Analysis

PAHs with concentrations below the LOD were substituted with the value of LOD/2 for
the statistical analysis. R software (ver. 4.0.2, R Development Core Team) was used to conduct
the statistical analysis, and the significance level was set at p ≤ 0.05. As a non-parametric
statistical test, Spearman’s rank–order correlation coefficient was used to examine significant
correlations of PAH concentrations among samples. Principal component analysis (PCA)
was used to discern whether there were differences between the various sample types. The
PCA was performed using SPSS statistics software (ver. 25; IBM, Armonk, NY, USA). Three
factors retained based on the scree plot. PCA scores and loading plots were constructed using
Microsoft Excel.

3. Results and Discussion
3.1. PAH Concentrations in Organisms

In wharf roach, the highest concentration of the total of 15 PAHs (ΣPAH) was detected
in the sample from Akita (96.0 ng/g-dry weight (dw); Figure 2, Table 2), followed by sam-
ples from Niigata, Saga, Yamagata, Fukuoka, Aomori, Ishikawa, Shimane, Hyogo, Kyoto,
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Nagasaki, and Yamaguchi. The detected ΣPAH concentrations (median: 48.5 ng/g-dw,
detected range: 26.9 to 96.0 ng/g-dw) were similar to previously reported concentra-
tions, except for samples that were previously collected in highly polluted areas (median:
47.0 ng/g-dw, detected range: 28.6 to 72.2 ng/g-dw) [46]. The PAH composition was
largely consistent among the 12 sampling sites (Figure 2). The predominant PAH species
was Pyr (median: 24.9 ng/g-dw), followed by Phe, Flut, and Acy (median: 7.71, 6.44, and
5.40 ng/g-dw, respectively). In a previous study, the dominant PAH species were Phe,
followed by Ace and Pyr [46]. Thus, the current results differ from previous observations.
The composition differences reflect differences in pollution among the sampling sites and
differences in contamination sources between sampling seasons (current study: summer,
previous study: fall–winter; [47]). High molecular weight PAHs (HMW-PAHs) (i.e., five-
and six-ring PAHs) were detected at lower concentrations than low molecular weight PAHs
(LMW-PAHs) (i.e., three- and four-ring PAHs), which were the most common. Three-ring
PAHs were contributed at 30% and four-ring PAHs at 68% of ΣPAH concentration. It is
generally believed that HMW-PAHs do not highly accumulate in organisms because of
a lower intake efficiency [48].

Figure 2. The concentrations of 15 PAHs in wharf roaches (ng/g-dw) collected from 12 sampling sites.
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Table 2. Total concentration of 15 PAHs in samples from 12 sampling sites (ng/g-dw or ng/L).

Prefecture Wharf Roach
(ng/g-dw)

Mussel
(ng/g-dw)

Soil/Sand
(ng/g-dw)

Drifting Seaweed
(ng/g-dw)

Sea Water
(ng/L)

Aomori 49.2 65.1 23.8 34.4 12.4
Akita 96.0 44.5 9.95 12.4 19.1

Yamagata 53.0 30.1 37.6 31.0 7.79
Niigata 85.2 33.4 20.2 11.8 9.90

Ishikawa 47.9 132 506 82.4 12.8
Kyoto 42.1 43.2 138 89.5 15.6
Hyogo 44.1 53.3 58.1 50.6 16.4

Shimane 44.1 35.4 47.5 na 10.0
Yamaguchi 26.9 29.2 2.06 21.3 10.2

Fukuoka 52.8 41.1 3.45 62.9 17.8
Saga 85.0 16.6 3.85 18.7 11.9

Nagasaki 37.7 38.6 11.1 109 16.4

A consistent trend of high Pyr concentrations (median: 11.6 ng/g-dw) was observed in
mussel tissue. The highest ΣPAH concentration was detected in a sample from Ishikawa
(132 ng/g-dw; Figure 3), followed by samples from Aomori, Hyogo, Akita, Kyoto, Fukuoka,
Nagasaki, Shimane, Niigata, Yamagata, Yamaguchi, and Saga. The detected range of ΣPAH
among the 12 sampling sites was 16.6 to 132 ng/g-dw. This finding is similar to that of pre-
vious studies; 16 PAHs, 87.3–361 ng/g-dw [19]; 18 PAHs, 15.2 to 527 ng/g-dw (both values
were converted from initial reported values of 2.6 to 90 ng/g-ww by using an 82.9% moisture
content) [40]. Of the 15 PAHs, Pyr was the predominant species (median: 11.6 ng/g-dw),
followed by Phe and Flut (7.10 and 5.83 ng/g-dw, respectively). Additionally, the con-
centrations of HMW-PAHs were greater in mussels than in wharf roaches. The relative
standard deviation of ΣPAH among the 12 sampling sites was larger for mussels than
for wharf roaches (0.63 and 0.39, respectively). These differences reflect differences in the
PAH pollution in the supralittoral and intertidal zones and suggest that wharf roaches and
mussels differ in their exposure pathways and bioaccumulation capability.

3.2. PAH Concentrations in Environmental Media

The ΣPAH composition was consistent across seawater samples (Figure 4). The de-
tected range of ΣPAH among the 12 sampling sites was 7.79 to 19.1 ng/L (mean 13.4 ng/L).
This finding is similar to that of previous studies; 13 PAHs, 6.83 to 13.81 ng/L (mean
9.4 ng/L) in the Japan Sea [49]; 13 PAHs, 10.9 to 29.7 ng/L (mean 19.6 ng/L) in the Sea
of Japan and East Sea [50]. Phe was the predominant species (median: 5.67 ng/L). In
general, there was a high contribution of three-ring PAHs to ΣPAH (87%). Comparatively,
four-, five-, and six-ring PAHs had very low contributions to ΣPAH (11%, 1.5%, and 0.4%,
respectively). The concentrations of LMW-PAHs were higher than those of HMW-PAHs
owing to their increased water solubility [47,51].

The detected range of ΣPAH in soil and sand among the 12 sampling sites was 2.06 to
506 ng/g-dw (median 22.0 ng/g-dw). This finding is lower than that of previous studies;
18 PAHs in sea sediment, 6.40 to 7765 ng/g-dw in Osaka Bay, Japan [12]; 16 PAHs in
wharf soil, 842 ± 203 ng/g-dw in Guangdong, China [52]. Phe was the predominant
species (median: 5.67 ng/g-dw). At seven sampling sites, that had relatively small particles
and a larger soil fraction, the soil and sand samples contained a larger amount of HMW-
PAHs than the seawater samples (Aomori, Ishikawa, Kyoto, Hyogo, Fukuoka, Saga, and
Nagasaki; Figure 5). The other five sites, which had relatively large sand particles, had
PAH compositions similar to that of the seawater samples (Akita, Yamagata, Niigata, and
Shimane). The PAH with the highest median concentration detected among the 12 sites
was Pyr (4.91 ng/g-dw), followed by Flut and Chr (2.35 and 1.57 ng/g-dw, respectively).
There were four-ring PAHs predominant in the ΣPAH at 61%, which was much higher than
the percentage of three-ring PAHs (20%). Additionally, five- and six-ring PAHs comprised
a much higher percentage of ΣPAH in soil and sand (12.1% and 6.9%, respectively) than in
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seawater (1.5% and 0.4%, respectively). PAH hydrophobicity is positively correlated with
ring number and molecular weight. Higher molecular weight PAHs tend to partition into
the particle phase. Therefore, HMW-PAHs were more likely to be found in the soil and
sand samples than in the seawater samples. Additionally, the sampling sites of Ishikawa
and Kyoto were located in a wharf area, while the other sites were located in beach or rocky
areas. Soil samples were collected from a small ditch near a wharf in Ishikawa and Kyoto,
and they contained higher concentrations of PAHs (506 and 138 ng/g-dw, respectively)
compared with the other 10 sites (median: 15.7 ng/g-dw). This difference was not observed
for the other analyzed samples.

Figure 3. Concentrations of 15 PAHs in mussels (ng/g-dw) collected from 12 sampling sites.
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Figure 4. Concentrations of 15 PAHs in seawater (ng/L) collected from 12 sampling sites.

Drifting seaweed is a major food source for wharf roaches. The detected range of
ΣPAH in drifting seaweed among the 12 sampling sites was 11.8 to 109 ng/g-dw (mean
47.6 ng/g-dw). This finding is higher than that of previous studies; 16 PAHs in living
seaweed, 1.0 to 56.4 ng/g-dw (mean 7.0 ng/g-dw) in Venice, Italy [53]. The PAH composition
in drifting seaweed was roughly separated into two groups, with two exceptions (Figure
6) (notably, drifting seaweed samples could not be found at the Shimane site). One group
was largely consistent with the PAH trends in seawater (Akita, Yamagata, Niigata, Kyoto,
and Shimane). The other group was more similar to the composition found in soil and sand
samples (Yamaguchi, Fukuoka, Saga, and Nagasaki). There were two exceptions: Aomori and
Ishikawa. As with other environmental media, Pyr was the predominant species (median:
14.4 ng/g-dw). However, Aomori had a higher concentration and percentage of BP (6.95 ng/g-
dw, 20%), and Ishikawa had a higher concentration and percentage of Flut (38%). Beyond
Pyr, Flut and Phe also had substantial concentrations (6.85 and 4.11 ng/g-dw, respectively).
Seaweed can accumulate PAHs from seawater during its lifecycle [53]. Therefore, it is likely
that these PAHs were transferred from the seawater and nearby soil and sand into the seaweed.
Additionally, aerial deposition on drifting seaweed is a possible exposure source [54].
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Figure 5. Concentrations of 15 PAHs in soil and sand (ng/g-dw) collected from 12 sampling sites.

3.3. PCA

The PCA confirmed some of the similarities found among the various sample types
(Figure 7). In the first principal component (PC) (accounting for 73.4% of the variance),
wharf roach and seawater were closely related, whereas soil and sand and mussels formed
a related group. The loading plot indicated that the separations in the first PC were largely
driven by differences between the three-ring PAHs (i.e., Acy and Ace) and the larger
molecular weight PAHs (Figure S2). In general, concentrations of the larger five- and
six-ring PAHs were higher in soil and sand, seaweed, and mussels than in wharf roach and
seawater (Table S3). By contrast, seawater samples contained greater concentrations of the
smaller three-ring PAHs. These differences may account for the separation between these
groups in PC1. Compared with the other samples, the relative similarities between soil
and sand and mussels were expected given the hydrophobic tendency of PAHs, whereby
they partition onto particles or into the high lipid content of mussels. This partitioning
also explains the results of the correlation analysis, where four- and five-ring PAHs were
particularly well correlated between seawater and wharf roaches. The close association
between wharf roaches and seawater supports the idea that the wharf roach can be a useful
proxy for assessing surface-layer PAH contamination. However, there appear to be some
differences, as seen in PC2, though this accounts for only 14.6% of the variance. Although
the loading plot indicated that these separations are caused by differences between the
four-ring PAHs and the five and six-ring PAHs, it is not clear why these differences exist.
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Figure 6. Concentrations of 15 PAHs in drifting seaweed (ng/g-dw) collected from 11 sampling sites. Samples could not be
found at the Shimane Prefecture site.

Figure 7. PCA score plot in which the first two PCs account for 88% of the variance.
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3.4. Identification of Pollution Sources

PAHs are derived from several sources, such as petrogenic, pyrogenic, biogenic, and
diagenetic sources [25,55]. PAH pollution in the marine environment is generally thought
to be mainly derived from pyrolytic and petrogenic sources. Diagnostic ratios comparing
PAH isomers are commonly used to identify pollution sources [2,56,57]. Based on these
ratios, petrogenic sources were found to predominate in the soil and sand samples collected
at nine of the 12 sampling sites (Figure 8). Pyrolytic sources were detected in samples
from three sites (Ishikawa, Kyoto, and Nagasaki), though these associations were weak.
Pollution sources for the seawater samples were different from those of the soil and sand
samples. The seawater samples likely had a high contribution from pyrolytic sources.
Intertidal and supralittoral zones collect floating oil derived from oil contamination from
boats or domestic wastewater [5] in the marine environment and are easily polluted by
combustion sources located in the surrounding terrestrial area. The ratios found in this
study may reflect these phenomena.

Figure 8. Diagnostic ratios calculated for soil and sand samples and seawater samples.

3.5. Correlation between PAH Concentrations in Wharf Roaches and Environmental Components

Wharf roaches were presumed to be exposed to PAHs through the soil and sand,
seawater, and dietary seaweed exposure pathways. Wharf roaches are terrestrial isopods
that occupy the supralittoral zone, but they take in seawater through their legs [58]. They
feed on drifting seaweed and biofilms [43]. The correlations between PAH ring numbers
and organisms and substrates were analyzed. The three-ring PAHs were significantly
correlated between wharf roach and drifting seaweed and soil and sand (Spearman’s
rank correlation, p = 0.01, <0.01; rho = 0.34, 0.51, respectively); the four-ring PAHs were
significantly correlated between wharf roach and drifting seaweed, seawater, and soil
and sand (p = 0.01, <0.01, 0.01; rho = 0.62, 0.59, 0.36, respectively); the five-ring PAHs
were significantly negatively correlated between wharf roach and seawater (p = 0.02;
rho = −0.33). Detected concentrations of five-ring PAHs were relatively low in all analyzed
samples. Therefore, it is likely that there was no significant variation in five-ring PAH
concentrations to result in a significant correlation between wharf roach and seawater.
Because several samples had concentrations of six-ring PAHs that were less than the LOD,
correlations for these PAHs could not be analyzed (detection frequency: 80%).

For mussels, the major exposure pathway of LMW-PAHs is generally considered to
be water, and that of HMW-PAHs is considered to be particles [59]. This is explained
by the hydrophobic properties of PAHs, which make them more likely to partition onto
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nonpolar particulate surfaces. Mussels continuously filter seawater containing organic
matter, which constitutes the majority of its food. For this reason, mussels are liable to
accumulate PAHs that are present in the dissolved and particulate phases. The ΣPAH
concentration in mussels from Ishikawa (132 ng/g-dw) was the highest among sampling
sites, likely because Ishikawa also had the highest soil and sand ΣPAH concentration
(506 ng/g-dw).

However, wharf roaches are omnivorous scavengers and are not directly exposed to
marine sediment. Food is generally considered the major pathway by which organisms
take in PAHs [60]. Surprisingly, the statistical analysis results indicated that LMW-PAHs
(i.e., three- and four-ring PAHs) were significantly correlated between wharf roach and
food source (i.e., drifting seaweed; rho = 0.34, 0.62). There was also a significant correlation
between LMW-PAH concentrations in soil and sand and in wharf roach (rho = 0.51, 0.36).
The LMW-PAH composition results indicated that the LMW compounds in wharf roaches
had a pattern similar to that in soil and sand (especially in samples from Akita, Niigata,
and Shimane; Figures 2 and 5) and to that in drifting seaweed (especially in samples from
Akita, Yamagata, Niigata, Kyoto, Hyogo, and Saga; Figures 2 and 6). Some terrestrial
isopods accumulate PAHs from contaminated soil [61,62]. In the present study, particles of
soil and sand were frequently detected in the intestines of wharf roaches (data not shown).
It is possible that wharf roaches directly ingest soil and sand particles to obtain the organic
matter adhered to them. This may have been a possible exposure route in the current
study. Additionally, van Brummelen et al. [61] reported a negative correlation between
biota-to-soil accumulation factors and the PAH Kow. Therefore, soil and sand may have
contributed less than other routes to the HMW-PAH exposure of wharf roaches. However,
the actual contribution ratio of each exposure pathway and the metabolism of PAHs in
isopods remain unclear. It is possible that efficient LMW-PAH metabolism lowered their
concentrations in the samples, thereby masking a detectable correlation between wharf
roach and seawater.

Compared with LMW-PAHs, HMW-PAHs are metabolized more slowly in the body [63,64];
however, HMW-PAHs (more than five rings) are highly hydrophobic and are found less
frequently in aquatic samples. Therefore, it is difficult to evaluate the wharf roach exposure
pathway to HMW-PAHs. Wharf roaches take in seawater from the ocean surface [58] where
there is often floating oil and related hydrophobic substances. Furthermore, the water surface is
relatively hydrophobic compared with the underlying water. Therefore, in addition to drifting
seaweed and soil and sand, wharf roaches can possibly accumulate a broad range of PAHs via
seawater. However, HMW-PAH concentrations in wharf roaches were negatively correlated
with those in seawater. This phenomenon may not have indicated a negative association
between these two groups, rather, it could have resulted from the relatively low concentrations
of five-ring PAHs in the wharf roach and seawater samples. In general, HMW-PAHs are not
efficiently taken up and accumulated by organisms because of their high hydrophobicity [63].
Although not significant, in the samples taken from Saga, the relatively high BP concentration in
wharf roach may have been related to the high BP concentrations in the soil/sand and drifting
seaweed samples. Therefore, it is possible that wharf roaches are exposed to HMW-PAHs
through several environmental components; however, no single component has a predominant
contribution because of the low intake efficiency.

Bioconcentration, biomagnification, and biota-sediment accumulation have different
exposure pathways and contribution ratios that affect the total accumulation. In addition
to drifting seaweed, wharf roaches feed on biofilms and other organic matter distributed
throughout the supralittoral zone. Additionally, PAH metabolism varies considerably
among species. Therefore, it is necessary to expose wharf roaches to several PAHs under
laboratory conditions to assess the actual accumulation system and calculate the biocon-
centration and biomagnification factors.
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4. Conclusions

The PAH correlation analysis between wharf roaches and the environmental media
(seawater, soil and sand, and drifting seaweed) indicated that exposure to LMW-PAHs
occurred mainly via soil and sand and drifting seaweed. HMW-PAH exposure occurred
via several environmental components. These findings suggest that wharf roaches can
reflect PAH pollution in a broad range of coastal components. To our knowledge, this is the
first study estimating PAH exposure pathways for an organism in the supralittoral zone.

There are several limitations to this study. Sorption can occur across many particulate
types (e.g., microplastics) and requires further investigation. Additionally, exposure may
vary by season and should be further clarified.
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