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Simple Summary: Uveal melanoma (UM) is the most common primary intraocular malignancy
in adults. More than 90% of UMs harbor mutually exclusive activating mutations in G-proteins.
The mutations are early events in UM development and considered to be driver mutations in
carcinogenesis. Even after treatment of primary uveal melanoma, up to 50% of patients subsequently
develop recurrence, predominantly in the liver. GNAQ mutations are not reported to be correlated
to survival, while the mutations in GNA11 are reported more frequently in metastatic UM. We
investigated the correlation of survival after development of metastasis (Met-to-Death) of metastatic
uveal melanoma (MUM) patients with GNA11 and GNAQ mutations. We identified that MUM with
mutation patterns of Q209P vs. Q209L in GNA11 and GNAQ might predict survival of MUM patients.

Abstract: Uveal melanoma is the most common primary ocular malignancy in adults, characterized
by gene mutations in G protein subunit alpha q (GNAQ) and G protein subunit alpha 11 (GNA11).
Although they are considered to be driver mutations, their role in MUM remains elusive. We
investigated key somatic mutations of MUM and their impact on patients’ survival after development
of systemic metastasis (Met-to-Death). Metastatic lesions from 87 MUM patients were analyzed
by next generation sequencing (NGS). GNA11 (41/87) and GNAQ (39/87) mutations were most
predominantly seen in MUM. Most GNA11 mutations were Q209L (36/41), whereas GNAQ mutations
comprised Q209L (14/39) and Q209P (21/39). Epigenetic pathway mutations BAP1 (42/66), SF3B1
(11/66), FBXW7 (2/87), PBRM1 (1/66), and SETD2 (1/66) were found. No specimen had the
EIF1AX mutation. Interestingly, Met-to-Death was longer in patients with GNAQ Q209P compared
to GNAQ/GNA11 Q209L mutations, suggesting the difference in mutation type in GNAQ/GNA11
might determine the prognosis of MUM. Structural alterations of the GNAQ/GNA11 protein and
their impact on survival of MUM patients should be further investigated.

Keywords: uveal melanoma; metastasis; metastatic uveal melanoma; survival; GNA11; GNAQ;
Q209P; Q209L; BAP1; SF3B1

1. Introduction

Uveal melanoma (UM) is the most common primary intraocular malignancy in adults
with incidence rate of 5.2 cases per million per year in the United States [1]. Among all
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melanomas involving the eye, 83% arise from uvea (UM), 5% from conjunctiva, and 10%
from other sites [2]. Despite the common embryologic origin of cutaneous and uveal
melanocytes, UM has many differing epidemiologic, prognostic, biological features and
molecular mechanisms which differ from cutaneous melanoma [3]. For instance, the major-
ity of cutaneous melanoma harbor mutations of B-Raf proto-oncogene, serine/threonine
kinase (BRAF), NRAS proto-oncogene, GTPase (NRAS) and neurofibromin 1 (NF1) as well
as loss of cyclin dependent kinase inhibitor 2A (CDKN2A) encoding P16NK4a. On the
other hand, uveal melanoma rarely harbors these abnormalities. [4–6].

Regardless of successful therapy of primary UM, up to 50% of patients subsequently
develop systemic recurrence, especially in the liver via the hematogenous route. A bimodal
pattern of the mortality displays the first peaks at 2–3 years and the second surge at 8–
9 years after enucleation [7]. After development of hepatic metastasis, the median survival
of patients is reported to be 12 to 17 months [8].

G protein-coupled receptor (GPCR) pathway mutations in UM has been well docu-
mented. Mutations in G protein subunit alpha q (GNAQ) and G protein subunit alpha
11 (GNA11) are the most common in UM and considered to be driver mutations in car-
cinogenesis [9,10]. Also reported in UM are mutations in cysteinly leukotriene receptor
2 (CYSLTR2) or phospholipase C beta 4 (PLCB4) which are located directly upstream or
downstream of the G protein [11,12]. In general, these mutations are mutually exclusive
and seen as somatic mutations. Approximately 90% of UM reportedly possesses mu-
tually exclusive GNA11 and GNAQ mutations [9,13]. Mutations are frequently seen at
the conserved catalytic glutamine (Q209 in Gαq, exon 5) replaced by either Proline, P, or
Leucine, L, which leads to GTPase function deficiency and constitutive activation. Less fre-
quently, mutations were found at position 183 (exon 4) replacing Arginine, R. GNA11 and
GNAQ Q209 mutations are considered to send stronger signals to downstream pathways
compared to R183 mutations [9,14]. These oncogenic mutations trigger a wide range of
cell signaling cascades including the mitogen-activating protein kinases (MAPK), phos-
phoinositide 3-kinase/serine/threonine protein kinase (PI3K/AKT), and yes-associated
protein/transcriptional co-activator with PDZ-binding motif (YAP/TAZ) pathways [15,16].
These mutations arise early in tumor evolution and may promote tumor progression [17].
Although these mutations are the predominant pathways for the development of UM, they
are reportedly not associated with overall survival of UM patients [18]. In particular, GNAQ
mutations were not correlated with disease-free survival, while the mutations in GNA11
have been reported more frequently in metastatic UM (MUM) [19,20]. It is speculated
that mutations in UM with GNA11 mutations may be more aggressive than those with
GNAQ mutations.

UM may have secondary somatic mutations affecting BRCA1 associated protein 1
(BAP1), splicing factor 3b subunit 1 (SF3B1), serine and arginine rich splicing factor 2
(SRSF2), or eukaryotic translation initiation factor 1A X-linked (EIF1AX), which tend
to occur exclusively from each other [13,21]. These secondary mutations determine the
metastatic potential of UM cells. For example, UM with BAP1 alterations tends to develop
systemic recurrence earlier compared to those with SF3B1 mutations [22,23]. Tumor cells
which harbor EIF1AX mutation tend not to metastasize [23].

These previous studies focused on time from initial diagnosis and treatment of primary
UM to development of systemic recurrence or death. These studies did not address
prognostic factors to determine time from diagnosis of metastasis to death (Met-to-Death).
Here in this study, we aim to identify the correlation of Met-to-Death in MUM patients with
commonly seen mutations in MUM. We identified that differences in mutation patterns
(Q209P vs. Q209L) in GNAQ and GNA11, rather than GNAQ and GNA11 themselves, might
predict the survival of MUM patients.
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2. Subject and Methods
2.1. Patients and Clinical Data

Tumor samples were collected and profiled from patients with MUM between the year
2013 and 2018 in this retrospective analysis. This study was approved by the Institutional
Review Board (IRB) at Thomas Jefferson University [IRB#18D-183]. Clinical data were
obtained from their medical records.

2.2. Tumor Tissue Samples

Tissue specimens from metastatic uveal melanoma patients were retrieved in paraffin-
embedded archival core biopsy or surgically removed specimens for mutation analysis.
Molecular profiling studies were done at Caris Life Sciences (Headquarters, Irving, TX,
USA), except one specimen which was done at Foundation Medicine (Headquarters, Cam-
bridge, MA, USA). In terms of molecular analysis done by Caris Life Sciences, either
formalin-fixed paraffin-embedded tissue block or formalin-fixed paraffin-embedded 10 un-
stained tissue slides that could be enriched to a minimum of 20% tumor by microdissection
were sent to Caris Life Sciences. Detailed information on molecular profiling technology
is available from the following website (https://www.carislifesciences.com/molecular-
profiling-technology (accessed on 28 September 2021)). In brief, tumor DNA was extracted
from the tumor specimens obtained by microdissection of the tumor area under the super-
vision of board-certified pathologists. Tumor samples were analyzed by next-generation
sequencing (NGS) of exons using either TruSeq Amplicon 48 Gene Cancer Panel with
MiSeq system (Illumina, San Diego, CA, USA) or 592 cancer-relevant genes panel (Sure-
Select XT, Agilent, Santa Clara, CA, USA) with the NextSeq instrument (Illumina). The
overall average depth of coverage was typically >1000×. Variants were called based on a
combination of coverage and depth using a sliding scale. The minimum possible variant
frequency was approximately 5%. The minimum depth for a called variant was 100×.
If coverage fell below 100× in any region of a gene, the entire gene was called “Indeter-
minate.” Amplification analysis was performed in samples tested by the 592 gene panel.
Genes with at least six copies were called amplified. The data for the analysis in this study
were obtained from a clinical laboratory system of Thomas Jefferson University that stores
all laboratory results ordered by physicians.

2.3. Statistical Analysis

We investigated the correlation between somatic mutations in MUM specimens and
survival of patients after development of systemic metastasis. The endpoint of survival
analysis was from metastasis to death (Met-to-Death).

Patient characteristics were summarized with frequency counts and percentages for
categorical variables and median and interquartile range (IQR) for continuous variables.

For unadjusted comparison of patient characteristics by gene mutation groups, Fisher’s
exact test was used for categorical variables, and the Kruskal-Wallis test was used for con-
tinuous variables.

The Kaplan-Meier (K-M) survival curves were used to estimate the overall survival
(OS) from metastasis and the corresponding median survival time by patient characteristics.
Log-rank tests were used to compare the K-M curves.

Univariable Cox proportional hazards models was used to assess the association
between survival from metastasis and continuous clinical-pathological factors: age, and
time from the primary treatment to the metastases. Multivariable Cox proportional hazards
model was used to evaluate the effect of gene mutation type on OS while controlling for
other significant predictors of OS. Death due to metastasis was considered an event. All
the analyses were performed with SAS 9.4 (SAS Institute Inc., Cary, NC, USA).

https://www.carislifesciences.com/molecular-profiling-technology
https://www.carislifesciences.com/molecular-profiling-technology
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3. Results
3.1. Tumor and Patient Characteristics

We submitted 102 samples to commercial companies for analysis; 15 samples were
indeterminated for mutation analysis. A total of 87 patients were analyzed for somatic
mutations in their metastatic specimens. Of 87 patients, 21 patients were analyzed by
NGS with 48 selected cancer genes including GNA11, GNAQ and FBXW7, and 66 patients
were analyzed for mutations by NGS with 592 cancer genes including BAP1 and SF3B1
mutations as well as MYC amplification (Supplement Table S1). Median survival time
after metastasis was 25 months with a range of 1–137 months. Metastatic specimens were
collected within 1 year from diagnosis of metastasis in 72 patients, while 9 specimens were
obtained 1–2 years after initial diagnosis of metastasis and 6 specimens were obtained more
than 2 years after initial diagnosis of metastasis. No treatment targeting GNAQ/GNA11
mutations was given to any of these patients.

At the end of follow-up, 72 patients died including one unexpected non-cancer event;
2 patients were lost to follow-up; and 13 patients were alive (total 87 patients). There were
46 males and 41 females (Table 1). Median ages at diagnosis of primary and metastatic
UM were 58 and 60 years of age, respectively. Most patients were treated with radioactive
plaque for their primary UM (74.7%) and 90.8% of patients received a liver-directed therapy
in the first and/or second treatment option of metastatic UM [24–27]. Those diagnosed
with the first metastatic lesion in this patient cohort were mostly of the liver, lung and
omentum, 84/87 (96.5%), 2/87, (2.3%), 1/87, (1.2%), respectively. Those patients who were
diagnosed with only extrahepatic metastases initially had subsequently developed liver
metastases (3/3, 100%).

Table 1. Demographic features of UM patients with metastasis.

Characteristic Number

Number of Patients 87
Gender
Male 46
Female 41

Age at primary eye diagnosis (years)
Median (Range) 58 (21–88)
Male 59 (28–88)
Female 55 (21–77)

Location of primary uveal melanoma (%)
Choroidal 67 (77.0)
Ciliary 20 (23.0)
Other 0

Treatment for primary uveal melanoma (%)
Radiopaque 65 (74.7)
Enucleation 13 (14.9)
Others 7 (8.0)
Unknown 2 (2.2)

Age at metastasis diagnosis (years)
Median (Range) 60 (24–88)
Male 60 (28–88)
Female 60 (24–78)
Metastatic site (at the diagnosis) (%)
Liver 84 (96.5)
Lung 2 (2.3)
Omentum 1 (1.2)

M stage (%)
M1a ≤ 3 cm 69 (79.3)
M1b 3.1–8.0 cm 14 (16.1)
M1c ≥ 8.1 cm 4 (4.6)

First and second treatments option at metastatic site (%)
Liver-directed alone 41 (47.1)
Liver-directed + Systemic 38 (43.7)
Systemic alone 4 (4.6)
Recession 1 (1.1)
Unknown 3 (3.5)



Cancers 2021, 13, 5749 5 of 14

3.2. Frequency of GNA11 and GNAQ Mutations in Metastatic Uveal Melanoma

Mutations in GNA11 and GNAQ are considered to be driver mutations that lead
to constitutive activation of GPCR signaling. We first assessed these known UM driver
mutations. The frequent alteration of GNAQ and GNA11 were identified as nearly mutually
exclusive in 81 of 87 patients (92.0%) (Table 2). Mutually exclusive GNA11 mutations
were found in 41/87 (47.1%) tumors, while GNAQ mutations were found in 39/87 tumors
(44.8%). One case (Case 23) harbored two simultaneous mutations of GNA11 Q209L in
exon 5 and GNAQ T96S in exon 2, which might indicate the tumor specimen contained
a heterozygous population of tumor cells (Supplement Table S2). Six out of 87 tumors
were not found to have either GNA11 or GNAQ mutation. As previously reported exon
5 of GNA11 and GNAQ genes, which contains the hotspot mutation leading to the most
frequent alteration of the Q209 amino acid, was identified in 74 of 87 patients (85.1%)
(Table 2). Frequently, mutations were seen at the position 209 glutamine (Q) to either
proline (P) or leucine (L). Of those with GNA11 mutations, the Q209L mutation was found
in 37 of these 42 cases (88.1%) while Q209P mutation was found in one case (Case 52)
(2.4%). One specimen showed the Q209M mutation (Case 75), one case (Case 74) harbored
both the R183C and V344M mutations in GNA11, and two cases had a single mutation
at R183C. One specimen had GNA11 Q209L mutation as well as GNAQ T96S mutation
(Case 23) (Supplement Table S2).

Table 2. Frequency of mutations in the two major genes in metastatic uveal melanoma.

Mutation Status N

GNA11 41 (47%)
Q209L 36
Q209P 1
Q209M 1
R183C 2
R183C, V344M 1

GNAQ 39 (45%)
Q209L 14
Q209P 21
R183Q 2
G48L 1
R183Q, R338H 1

Both GNA11 and GNAQ 1 (1%)
GNA11 Q209L, GNAQ T96S 1

No GNA11 or GNAQ 6 (7%)

Of those with GNAQ mutation, the Q209L mutation was found in 14 of these 40 cases
(35.0%) while Q209P mutation was found in 21 of 40 cases (52.5%). Two MUM specimens
harbored a single mutation at R183Q in exon 4 (2/39, 5.1%). One showed a single mutation
at G48L in exon 2 (Case 79). One specimen showed simultaneous mutations of R183Q in
exon 4 and R338H in exon 7 (Case 80). One specimen (Case 23) had GNAQ T96S mutation
as well as GNA11 Q209L mutation. (Table 2, Supplement Table S2). As expected, the
mutations in GNA11 and GNAQ were almost mutually exclusive except for one specimen.
These results show that double mutations seem to be rare events in MUM as previously
reported in primary UM [9,13].

3.3. Other Somatic Mutations

Among 87 MUM specimens, 66 specimens were analyzed for target-captured deep
sequencing of 592 cancer genes. Other mutations found in MUM specimens were mostly
related to epigenetic pathways including BAP1 (42/66; 63.6%), SF3B1 (11/66; 16.6%), F-box
and WD repeat domain containing 7 (FBXW7) (2/87; 2.3%), protein polybromo-1 (PBRM1)
(1/66; 1.5%), and SET domain containing 2, histone lysine methyltransferase (SETD2) (1/66;
1.5%) (Supplement Tables S1 and S2). One case (Case 80) harbored simultaneous alterations
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of BAP1 and the mutation of SF3B1. In addition, MYC amplifications were assessed and 13
out of 66 specimens (19.7%) were positive for MYC amplifications (Supplement Table S1).
No specimen had EIF1AX mutation. NRAS and BRAF mutations, which are commonly
seen as driver genes in cutaneous melanoma, were not found either.

Location of BAP1 alterations were variable. SF3B1 mutations including R625C, R625H,
R625G, R625L, N626Y, and G742D were detected. SF3B1 mutations were almost always mutu-
ally exclusive of the presence of BAP1 alteration in tumor specimens except one specimen.

Two tumors (Cases 34 and 70) had FBXW7 mutations, which has been reported as a
tumor suppressor gene [28,29]; one sample carried the mutation in exon 12, c.1856-2A > G;
and another sample carried exon 4, c.585-1G > T. One tumor (Case 34) had a mutation (exon
11, c.996-1G > T) of PBRM1, which is the second most common tumor suppressor gene in
kidney cancer. The other tumor (Case 73) had a mutation (exon 1, c.68_71 + 1delCTGAG)
of SETD2, a histone methyltransferase that mediates trimethylation of lysine 36 on Histone
3 (Supplement Table S2).

3.4. Survival Analysis of Met-to-Death

To examine the possibility for showing a difference in clinical characteristics of tumors
with different mutations, we analyzed the Met-to-Death between the mutation of proline
(P) and leucine (L) at the position of 209 in GNA11 or GNAQ.

Among 74 patients whose tumors harbored Q209 mutations, 69 patients were analyzed
for their survival data. One specimen with mutations in both GNAQ and GNA11 and
specimens with GNA11 Q209P (n = 1) and Q209M (n = 1) were excluded from this statistical
analysis due to small sample size for statistical justification. Two patients with GNAQ
Q209P were also removed from survival analysis due to patients lost in follow-up. Table 3
summarizes the patient characteristics of each group. For unadjusted comparison, there
were no statistically significant associations between gene mutation types and patient
characteristics (Table 3). Similar proportions of patients with and without BAP1 alterations
and SF3B1 mutations were observed across different GNA11/GNAQ mutation types. Other
potential confounding factors such as M stage, treatment after metastasis, and time from
primary eye treatment to development of metastasis were comparable.

Table 3. Association between Patients Characteristics and the Type of Gene Mutation.

Characteristic ALL
(n = 69)

GNA11/Q209L
(n = 36)

GNAQ/Q209L
(n = 14)

GNAQ/Q209P
(n = 19) p-Value

Gender, n (%)
Female 31 (44.9) 19 (52.8) 5 (35.7) 7 (36.8)

0.391Male 38 (55.1) 17 (47.2) 9 (64.3) 12 (63.2)
Primary Site, n (%)

Choroidal 54 (78.3) 26 (72.2) 11 (78.6) 17 (89.5)
0.373Ciliary 15 (21.7) 10 (27.8) 3 (21.4) 2 (10.5)

Age at Primary Dx,
median (IQR)

58.0
(50.0, 66.0)

59.0
(48.5, 66.5)

61.5
(57.0, 77.0)

54.0
(49.0, 61.0) 0.133

Age at Metastasis,
median (IQR)

60.0
(54.0, 69.0)

60.0
(51.0, 69.0)

65.0
(60.0, 78.0)

59.0
(52.0, 63.0) 0.074
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Table 3. Cont.

Characteristic ALL
(n = 69)

GNA11/Q209L
(n = 36)

GNAQ/Q209L
(n = 14)

GNAQ/Q209P
(n = 19) p-Value

Metastasis site, n
(%)

Liver 68 (98.6) 36 (100.0) 13 (92.9) 19 (100.0)
0.203Omentum 1 (1.4) 0 (0.0) 1 (7.1) 0 (0.0)

Months from
Primary Tx to Met,

median (IQR)
25.0

(11.0, 44.0)
26.0

(11.0, 37.0)
27.0

(15.0, 57.0)
25.0

(14.0, 55.0) 0.809

BAP1—Mutation, n
(%)

Yes 31 (44.9) 15 (41.7) 7 (50.0) 9 (47.4)
1.000No 19 (27.5) 10 (27.8) 4 (28,6) 5 (26.3)

N/A 19 (27.5) 11 (30.6) 3 (21.4) 5 (26.3)
SF3B1—Mutation,

n (%) Yes 7 (10.1) 3 (8.3) 1 (7.1) 3 (15.8)
0.661No 43 (62.3) 22 (61.1) 10 (71.4) 11 (57.9)

N/A 19 (27.5) 11 (30.6) 3 (21.4) 5 (26.3)
M stage (tumor size

in Liver), n (%)
≤3 cm 53 (76.8) 28 (77.8) 8 (57.1) 17 (89.5)

0.2093.1–8.0 cm 12 (17.4) 5 (13.9) 5 (35.7) 2 (10.5)
≥8.1 cm 4 (5.8) 3 (8.3) 1 (7.1) 0 (0.0)

Tx after metastasis
(Tx1 + 2), n (%)

Liver direct Tx +
Systemic Tx 31 (45.6) 17 (47.2) 5 (38.5) 9 (47.4)

0.730Liver direct therapy 33 (48.5) 17 (47.2) 7 (53.8) 9 (47.4)
Recession 1 (1.5) 0 (0.0) 1 (7.7) 0 (0.0)

Systemic Tx 3 (4.4) 2 (5.6) 0 (0.0) 1 (5.3)

We then analyzed the association of the patient characteristics and the time from Met-
to-Death. Kaplan Meier survival (K-M) curve showed patients with GNAQ Q209P mutant
tumors had a more favorable outcome than patients with GNA11 Q209L and GNAQ Q 209L
mutant tumors after development of metastasis (n = 69, Log-rank test, p = 0.006, Table 4
and Figure 1). The univariable Cox models revealed patients with GNA11 Q209L mutant
tumors or GNAQ Q209L mutant tumors showed shorter median survival (Met-to-Death)
than patients with GNAQ Q209P mutant tumors. The median survival (Met-to-Death) was
21 months (95% CI: 15–25) for GNA11 Q209L, 21.5 months (95% CI: 8–29) for GNAQ Q209L,
and 35 months (95% CI: 26–89) for GNAQ Q209P, respectively (p = 0.006) (Table 4).

There was a difference in Met-to-Death OS by BAP1 status. Patients with BAP1
alterations showed shorter median survival than those without BAP1 alterations (Table 4).
Although the sample size of patients with known SF3B1 status was small (n = 50), MUM
patients whose tumors had SF3B1 mutations (n = 7) had the tendency to live longer [median
survival of 89 months (95% CI: 13–96, n = 7)] than those who did not have this mutation
[median survival of 23 months (95% CI: 19–29), n = 43)] (p = 0.011) (Table 4). Based on
this observation, we reanalyzed the survival between BAP1 alterations and non BAP1
alterations. All patients with SF3B1 mutations were excluded from the non BAP1 alteration
group for this analysis. After removing patients with SF3B1 mutations, Met-to-Death OS
analysis showed no statistical difference between patients with BAP1 alteration (n = 31)
and without BAP1 alteration (n = 12) (p = 0.845) (Supplement Table S3). Additionally,
we observed about 4% increase in hazard of death per each additional year of age at eye
diagnosis (Hazard Ratio (HR) = 1.04, 95% CI: 1.02–1.07; p < 0.001) and age at metastasis



Cancers 2021, 13, 5749 8 of 14

(HR = 1.04, 95% CI: 1.01–1.06; p = 0.004) (Table 4). These were consistent findings as
reported by Seeder, et al. [8].

Table 4. Association between Patients Characteristics and Survival from Metastasis.

Characteristic N (%) Median OS (95% CI) p-Value

Gender, n (%)
Female 31 (44.9) 31.0 (20.0, 41.0)

0.122Male 38 (55.1) 22.5 (15.0, 26.0)
Primary Dx, n (%)

Choroidal 54 (78.3) 25.5 (20.0, 33.0)
0.331Ciliary 15 (21.7) 21.0 (13.0, 25.0)

Met Dx site, n (%)
Liver 68 (98.6) 23.5 (19.0, 29.0)

0.387Omentum 1 (1.4) 67.0 *

Gene Mutation, n (%)
GNA11/Q209L 36 (52.2) 21.0 (15.0, 25.0)

0.006GNAQ/Q209L 14 (20.3) 21.5 (8.0, 29.0)
GNAQ/Q209P 19 (27.5) 35.0 (26.0, 89.0)

BAP1—Mutation, n (%)
Yes 31 (62.0) 25.0 (19.0, 31.0)

0.040No 19 (38.0) 36.0 (13.0, 89.0)
11

SF3B1—Mutation, n (%) Yes 7 (14.0) 89.0 (13.0, 96.0)
0.011No 43 (86.0) 23.0 (19.0, 29.0)

M stage (tumor size in Liver),
n (%)

≤3 cm 53 (76.8) 25.0 (22.0, 33.0) 0.102
>3 cm 16 (23.2) 12.0 (7.0, 26.0)

Tx after metastasis # (Tx1 + 2),
n (%)

Liver direct Tx + Systemic Tx 31 (44.9) 33.0 (23.0, 45.0)

0.104
Liver direct therapy 33 (47.8) 18.0 (14.0, 26.0)

Recession 1 (1.4) 23.0 *
Systemic Tx 3 (4.3) 13.0 *
Unknown 1

HR (95% CI)
Age at Primary Dx

1.04 (1.02, 1.07) <0.001
Age at Metastasis

1.04 (1.01, 1.06) 0.004
Months from Primary Tx to

Met (log-transformed)
0.85 (0.69, 1.03) 0.101

* The 95% CI is not estimable due to the small number of observations. # Tx1 + 2 = First treatment + Second treatment.

Multivariable Cox models were also performed to evaluate the effect of gene mutation
types on Met-to-Death OS with adjusting age at metastasis and log-transformed time from
primary treatment to metastasis (Table 5). The analysis revealed that patients with GNA11
Q209L mutant tumors or GNAQ Q209L mutant tumors had shorter Met-to-Death OS as
compared to patients with GNAQ Q209P mutant tumors (Hazard Ratio (HR); 3.42, 95% CI:
1.68–6.96, p = 0.001 for GNA11 Q209L vs. GNAQ Q209P, and HR = 3.08, 95% CI: 1.35–7.04,
p = 0.008 for GNAQ Q209L vs. GNAQ Q209P). The comparison of Hazard between patients
with GNAQ Q209L mutant tumors and patients with GNA11 Q209L mutant tumors did
not show a significant difference (HR = 1.11, 95% CI: 0.57–2.15; p = 0.759) (Table 5). Older
age at metastasis diagnosis was independently associated with a higher hazard of death
(HR = 1.04, 95% CI: 1.01–1.06; p = 0.005). Additionally, longer time from the initial eye
treatment to metastasis was associated with lower hazard of death (HR = 0.79, 95% CI:
0.63–0.99; p = 0.041).
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Figure 1. The Kaplan-Meier Curves for Met-to-Death OS. Kaplan-Meier Curves showing patients carrying tumor mutations
with Q209L of GNA11, Q209L of GNAQ and Q209P of GNAQ. The red line represents Q209P of GNAQ (n = 19), the green
line represents Q209L of GNAQ (n = 14) and the black line represents Q209L mutation of GNA11 (n = 36).

Table 5. Results from the main multivariable Cox Model for OS from Met to Death.

Factor HR (95% CI) p-Value

Gene Mutation 0.003
GNA11/Q209L vs. GNAQ/Q209P 3.42 (1.68, 6.96) 0.001
GNAQ/Q209L vs. GNAQ/Q209P 3.08 (1.35, 7.04) 0.008
GNA11/Q209L vs. GNAQ/Q209L 1.11 (0.57, 2.15) 0.759

Age at Metastasis (Continuous) 1.04 (1.01, 1.06) 0.005
Time from Primary Tx to Metastasis

(log-transformed) 0.79 (0.63, 0.99) 0.041

Tumors with BAP1 alterations in UM is a consistent finding for a poor prognosis
marker [30]. To confirm the result of the multivariable Cox model in Table 5, we also
examined the patients with tumor-analyzing BAP1 status (n = 50). We excluded 19 patients
with GNAQ or GNA11 at Q209 mutant tumors who had no data on BAP1 status. Due to
sample size limitation, BAP1 wild type specimens with SF3B1 mutations were not excluded
from the BAP1 alteration negative population in this analysis. Although patients with
BAP1 altered tumors tended to show poorer Met-to-Death survival than patients with BAP1
wild type tumors, the result was not statistically significant (HR = 1.62, 95% CI: 0.75–3.60;
p = 0.214) (Supplement Table S4). Meanwhile, controlling for BAP1 status, patients with
GNA11 Q209L mutant tumors (n = 29) or GNAQ Q209L mutant tumors (n = 13) still had a
poor Met-to-Death survival as compared to patients with GNAQ Q209P mutant tumors
(n = 16) (HR = 4.07, 95% CI: 1.62–10.23; p = 0.003 for GNA11 Q209L, and HR = 3.69, 95% CI:
1.31–10.36, p = 0.0013 for GNAQ Q209L) (Supplement Table S4).
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4. Discussion

In this study, we investigated the frequency of mutations in MUM specimens and the
role of commonly mutated GNA11/GNAQ genes in survival after development of systemic
metastasis (Met-to-Death). In 87 MUM patients, we showed that GNA11 and GNAQ mutations
were found in 47.1% and 44.8% of patients, respectively. This result was consistent with
the analysis performed by other researchers in primary uveal melanoma [9,31], whereas
Griewank et al. report on MUM showed more GNA11 mutations than GNAQ mutations in
MUM patients [20]. There also has been inconclusive discussion whether prognosis of UM
tumors with GNA11 is poorer than that of UM tumors with GNAQ mutations. It is of note
that glutamine (Q) at position 209 in GNA11 was commonly replaced with leucine (L) in
97.3% of samples, compared to replacement with proline (P) in 2.7% of these samples [9,20];
therefore, potentially poor prognosis of GNA11 mutated UM tumors might be due to
dominant 209L mutation in GNA11. We tested this hypothesis and investigated Met-to-
Death survival in patients with MUM after stratifying mutations at position 209 between
GNA11 and GNAQ. Interestingly, patients with Q209P in GNAQ mutant tumors significantly
correlated with favorable prognosis after development of metastasis. Traditionally, the
prediction of prognosis in UM patients has been based on the survival from the date of
treatment of primary UM to their death. It has been reported that loss of Chromosome 3
and Chromosome 8q gains in primary UM tumor specimens have been shown to predict
survival of UM patients [13,32,33]. In addition, the expression gene profile of class 2 is
used for the prediction of prognosis [34]. Currently, other biological prognostic markers
are explored with the expression of PRAME or autophagy related proteins in primary
uveal melanoma specimens. The level of Beclin-1 expression on primary uveal melanoma
correlated with a lower risk of metastasis and higher disease-free survival times [35]. On
the other hand, the expression of PRAME identified increasing metastatic risk [36]. None
of the above investigations was extended to the analysis on Met-to-Death and the factors
to predict survival after development of metastasis remains to be investigated.

GNA11 and GNAQ mutations were considered to occur early and represent initiating
events in tumorigenesis [17]. It has been shown that the difference in GNAQ and GNA11
mutations did not affect survival of UM patients after their treatment of primary UM. In
this regard, it is rather interesting that our data showed substitutions Q209L vs. Q209P
rather than G protein (GNAQ vs. GAN11) impacting the survival of UM patients with
metastasis. The substitutions in Q209 might play a role in determining prognosis of MUM
patients, especially Met-to-Death.

It remains to be investigated why UM patients with GNAQ Q209P mutant tumors
showed favorable outcome after development of metastasis in our study. Since clinical
teams does not make any treatment decision based on GNAQ and GNA11 mutation status,
there was no difference in their clinical stages and treatment approaches to these patients,
including M stage and choice of treatments. There was no difference in frequency of BAP1
or SF3B1 mutations and time from primary eye treatment to development of systemic
recurrence among MUM patients with Q209L and Q209P mutations. One of the possibilities
is that Q209P mutant tumor may have a signature of higher immunological characteristics
than Q209L mutant tumor. Immunogenicity of Q209P mutation might be different from that
of Q209L. In this regard, Weeghel et al. reported Q209P or Q209L mutation does not have
significant impact on the immunological characteristics of the tumors [37]. It is also possible
that the main difference between Q209P mutant and Q209L mutant is that one may have
unique structural properties that may impact its ability to bind different interacting partners
such as G protein βγ subunits, and Q209P may have a distinct functional feature not shared
by Q209L [38]. Different degrees and pathways of downstream signal transduction might
result in resistance to treatments and contribute to difference in survival of MUM patients.
Investigation on this possibility is underway in our group.

A more widely accepted concept is that UM patients with BAP1 alterations have poor
prognosis. Based on our data supported by our basic research experiments using BAP1
altered cell lines, this might not be due to rapid growth of BAP1 altered cells in metastasis.
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In point of fact, it is reported that BAP1-deficient UM cell lines generally are associated with
extremely slow growth characteristics [39]. The distinct slow doubling time that has been
seen in established cell lines in vitro has not represented patient outcome. In fact, impact of
BAP1 alteration on Met-to-Death is not clearly shown in our survival analysis excluding
patients with SF3B1 mutations. It is of note that the detection rate of BAP1 alteration in
our subjects is relatively lower than previously published data [5,20]. This is most likely
due to differences in detection assay since inactivating BAP1 alterations can be present
anywhere along the gene body. The panel sequencings used for our analysis were BAP1
exons assay which did not include intron sequences for BAP1 gene. Furthermore, our NGS
assay did not detect large deletions or duplications over ~100 bp. Further studies with more
detailed BAP1 gene analyses are needed to investigate the association of BAP1 alteration
with Met-to-Death. BAP1 alterations might be an important factor for development of
systemic recurrence; however, the role of BAP1 alteration for rapid growth of metastasis
or resistant mechanisms for treatments remain to be proven. In this regard, Szalai et al.,
reported the metastatic pattern might be different between patients with BAP1 altered
tumor and SF3B1 mutant tumor. Time to clinically detectable metastases has different peaks
among these two mutations. The earlier peaks appear to be associated with BAP1 altered
tumors and the later peak is associated with SF3B1 mutated tumors [23]. Although the
sample size is small and further investigation with a larger cohort is required, our data also
indicate that the presence of SF3B1 mutations might affect the survival of MUM patients
(Met-to-Death). These data indicate that BAP1 alterations may be a predictive factor for
early systemic recurrence; however, it might not be a prognostic factor for MUM patients
who already developed metastasis. Furthermore, future clinical trials might require the
stratification of MUM patients based on the status of SF3B1 mutations in addition to type
of GNAQ/GNA11 Q209 mutations (P vs. L).

Lastly, our data showed the amplification of MYC was determined in 19.7% of
metastatic specimens (13/66). The progression of uveal melanoma has often seen with the
amplification of chromosome 8q which is the common region of amplification found to
range from 8q24.1 to 8q24.3 [40]. The proto-oncogene MYC is located at 8q24.12-q24.13
and is one candidate for the amplification at this site. Parrella et al., reported 70% of uveal
melanoma detected extra copies of the region around the MYC locus by fluorescent in
situ hybridization [41]. Later, Ehlers et al. analyzed the region of chromosome 8q with
gene expression microarray analysis using Affymetrix Hu133A and B GeneChips. They
reported that DDEF1 gene, located at chromosome 8q24, was increased in 8q amplified
tumor whereas MYC expression remained unchanged [42]. This indicates that MYC is not
always amplified in 8q24 chromosome region in 8q-amplified but other oncogenes residing
in chromosome 8q24 might play a role in tumor progression. Since numbers of specimens
with MYC amplification were limited, we could not conduct detailed statistical analysis
on the role of MYC on Met-to-Death. More studies at 8q24 loci are needed to explore the
association of MYC amplification for tumor progression in uveal melanoma.

There are several limitations of this study. First of all, metastatic specimens were
obtained more than 2 years from the diagnosis of metastasis in 6 of 87 patients. It is possible
that mutational patterns of metastatic tumors had changed with previous treatments. Since
there is no treatment given directly targeting GNAQ/GNA11 mutations, we believe it is
less likely that the frequency and pattern of GNAQ/GNA11 mutations changed from the
diagnosis of metastasis to the time of tumor specimen procurement in this study. Obviously,
we do not exclude the possibility of differences in tumor characteristics between primary
uveal melanomas and their metastasis.

Another potential confounding factor is the change in analysis methods during the
study period. Of 87 patients, 21 patients were analyzed using TruSeq Amplicom 48
Gene Cancer Panel with the MiSeq system for GNAQ and GNA11 mutations, while the
rest were analyzed using 592 genes panel with the NexrSeq instrument for NGS assay.
Since individual assays were validated for commercial use, we believe the results of
GNAQ/GNA11 mutation analysis in individual assays are reliable and consistent. We did
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not include PLCB4 and CYSLTR2 mutational status for our analysis since those data were
not available for analysis in our dataset. Six specimens that had no GNAQ and GNA11
mutations might be identified to have either PLCB4 or CYSLTR2.

In terms of BAP1 alteration analysis, it is possible that our assays underestimate the
frequency of dysfunctional BAP1 in tumors since we did not check the intron sequences
for BAP1 gene. Since most tissue specimens were exhausted for NGS assay, we were not
able to check the expression of BAP1 protein in tissue specimens. The sample size of this
study is too small to reliably investigate the role of BAP1 alternation and SF3B1 mutations
in survival of metastatic uveal melanoma patients and this remains to be investigated in
future studies.

5. Conclusions

This clinical study indicates that MUM tumors with different mutations of Q209 in
GNAQ and GNA11 might have different characteristics in terms of survival and response to
treatments after development of systemic metastasis. Among patients with MUM, Q209P
mutation in their tumor specimens would have a more favorable prognosis than those with
Q209L mutation after development of metastases. This might indicate a different signal
transduction pattern between these two mutations and well-designed molecular studies
should be considered to identify the difference between Q209P compared to GNAQ/GNA11
Q209L mutant UM cells.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13225749/s1, Table S1: Frequency of Mutations in Metastatic Uveal Melanoma Tissues,
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Table S3: Association between BAP1 Mutation Status and Survival from Metastasis after Removing
Patients with SF3B1 Mutations (n = 43), Table S4: Results from the Multivariable Cox Model for OS
from Met to Death in 50 Patients with Known BAP1 Alteration status.
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