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Identification of bacterial type III secreted effectors (T3SEs) has become a popular research topic in the field of bioinformatics due
to its crucial role in understanding host-pathogen interaction and developing better therapeutic targets against the pathogens.
However, the recognition of all effector proteins by using traditional experimental approaches is often time-consuming and
laborious. Therefore, development of computational methods to accurately predict putative novel effectors is important in
reducing the number of biological experiments for validation. In this study, we proposed a method, called iT3SE-PX, to identify
T3SEs solely based on protein sequences. First, three kinds of features were extracted from the position-specific scoring matrix
(PSSM) profiles to help train a machine learning (ML) model. Then, the extreme gradient boosting (XGBoost) algorithm was
performed to rank these features based on their classification ability. Finally, the optimal features were selected as inputs to a
support vector machine (SVM) classifier to predict T3SEs. Based on the two benchmark datasets, we conducted a 100-time
randomized 5-fold cross validation (CV) and an independent test, respectively. The experimental results demonstrated that the
proposed method achieved superior performance compared to most of the existing methods and could serve as a useful tool for

identifying putative T3SEs, given only the sequence information.

1. Introduction

The type III secretion systems (T3SSs) are sophisticated pro-
tein transport nanomachines that are widely distributed
among diverse Gram-negative pathogenic bacteria, including
the causative agents of devastating human diseases, such as
plague, typhoid fever, and dysentery [1]. Using T3SSs, a
variety of virulence proteins are secreted and translocated
into host cells, in which they exert a number of effects that
help the pathogen to survive and to escape an immune
response. These virulence proteins are called type III secreted
effectors (T3SEs), which can cause a sequence of changes in
host cells, including the subversion of host defences and the
modulation of signal transduction pathways [2]. T3SEs vary
in number, function, and sequence among different T3SSs
or bacterial species, which makes it difficult for identification
of T3SEs. Thus, the comprehensive prediction of new T3SEs
in pathogenic Gram-negative bacterial proteomes is still a
key step towards understanding the molecular mechanisms
of host-pathogen interaction and developing better therapeu-

tic targets for critical pathogens. Traditionally, effector pro-
teins are identified and characterized by experimental
techniques such as translocation assays [3]. However, con-
ventional experimental methods are often time-consuming
and laborious, especially when screening the genome-wide
effectors in bacteria. With the development of high-
throughput sequencing technology and rapid increase of
protein sequence data, there is a growing demand to explore
cost-effective computational methods to predict putative
T3SEs solely based on their primary sequences.

From the machine learning (ML) perspective, identifica-
tion of T3SEs is usually described as a binary classification
problem. Given a protein sequence as input, ML-based
methods automatically predict whether the query protein is
a T3SE or not. In recent years, many supervised learning
algorithms have been proposed in the literature to solve this
problem, including support vector machine (SVM) [4-8],
random forest (RF) [9], naive Bayes (NB) [3], artificial neural
network (ANN) [10], Markov model [11], latent Dirichlet
allocation model [12], ensemble classifiers [13-16], and deep
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learning [17-19]. The performance of ML-based models
depends mainly on the power of their feature encoding
schemes. Feature representation numerically formulates
diverse-length protein sequences as fixed-length feature
vectors, which could be categorized into two groups: (1) N-
terminal sequence-based models and (2) full-length
sequence-based models.

Previous studies have shown that the first 100 amino
acids at the N-terminus of T3SEs may contain important sig-
nals that guide their specific recognition by T3SSs [20, 21].
According to this hypothesis, various computational
approaches have been applied to predict T3SEs by extracting
N-terminal sequence features as inputs of ML-based models
[22, 23]. These features usually include amino acid composi-
tion (AAC) [22], k-spaced amino acid pair composition [5],
certain physic-chemical properties [3], secondary structure
[4], solvent accessibility [6], and position-specific scoring
matrix (PSSM) profile [9]. For instance, Arnold et al. [3]
explored the first ML-based model for predicting T3SEs,
called EffectiveT3, by combining AAC and secondary struc-
ture of N-terminal sequences. The EffectiveT3 predictor
revealed that a strong secretion signal exists in the N-
terminus of T3SEs, which can be used to effectively identify
T3SEs [3]. Almost simultaneously, Samudrala et al. [8] devel-
oped an SIEVE approach to detect T3SEs from genomic pro-
tein sequences based on sequence-derived information and
to delineate a putative N-terminal secretion signal common
to the majority of T3SEs. They also showed that SIEVE can
identify known secreted effectors very well with high specific-
ity (SP) and sensitivity (SN) when trained on one species and
tested on the other [8]. Then, an SVM-based classifier, called
BPBAac, was proposed by Wang et al. for the prediction of
T3SEs [22], which extracted the N-terminal position-
specific AAC feature by using a Bi-profile Bayes model. The
BPBAac classifier outperformed other current implementa-
tions in a 5-fold cross validation (CV) and was also robust
when tested on a small-size training dataset [22]. A Markov
model, namely, T3_MM, was subsequently designed to per-
form the identification of T3SEs by comparing the total
AAC conditional probability difference between N-terminal
sequences of T3SEs and non-T3SEs [11]. T3_MM also
achieved the more accurate and robust prediction perfor-
mance when compared with other T3SE recognition
algorithms [11]. Dong et al. developed a linear SVM predic-
tor BEAN to identify T3SEs from pathogen genomes by
extracting the k-spaced amino acid pair composition from
the N-terminal sequences based on the hidden Markov model
profiles [23]. Later, Dong et al. presented BEAN 2.0 as an inte-
grated web resource to predict, analyse, and store T3SEs, in
which multiple functional analysis tools were provided to
assist users in annotating putative T3SEs conveniently [5].

However, recent studies have indicated that some fea-
tures for accurate effector prediction are contained at the
full-length protein sequence level, instead of only residing
within the N-terminal region [7, 15]. Goldberg et al. built
pEffect as a computational tool to identify T3SEs by combin-
ing the sequence similarity-based inference with the SVM-
based prediction [7]. The pEffect model not only reached
higher performance than existing tools but also suggested
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for the first time that the recognition signals of T3SEs are dis-
tributed over the entire protein sequence and can be picked
up by using the local sequence alignment [7]. Recently, a
two-layer ensemble predictor Bastion3 was established to
accurately classify T3SEs and non-T3SEs from protein
sequence data [15]. Bastion3 outperformed several state-of-
the-art approaches mainly due to a light gradient boosting
machine (LightGBM) used to model training and a wide
range of features extracted from three major sources of infor-
mation, i.e., sequence-based features, physiochemical prop-
erties, and evolutionary information [15]. Among these
features, the PSSM profile has been shown to provide more
important and discriminatory information than sequence
itself for various protein function classification tasks such as
DNA-binding protein prediction [24], protein structural
class identification [25-27], and protein fold recognition
[28, 29]. However, the informative features encoded in the
PSSM profile have not been adequately explored for the iden-
tification of T3SEs in earlier studies.

In this work, we presented a novel predictor, called
iT3SE-PX, which further extracted more informative features
solely from the PSSM profile to improve the prediction of
T3SEs with the help of a powerful feature selection technique.
The iT3SE-PX model was designed based on the following
four major steps: (i) the PSSM profile of a protein was trans-
formed into a fixed-length feature vector by fusing three fea-
ture extraction methods including reduced PSSM (RPSSM),
evolutionary difference transformation (EDT), and normal-
ized Moreau-Broto auto correlation (NMBAC); (ii) the
hybrid features were scaled into the 0-1 range using the
Min-Max normalization; (iii) the extreme gradient boosting
(XGBoost) algorithm was adopted as a feature selection tech-
nique to rank these features according to their importance;
and (iv) a classical SVM learner was used to perform the final
prediction of T3SEs based on selected optimal features. The
evaluation results indicated that iT3SE-PX performed better
on the 100-time 5-fold CV as well as on the independent test
compared with existing bioinformatics tools for detecting
T3SEs.

2. Materials and Methods

In this section, we reported all details of the presented model
for the computational recognition of T3SEs based on protein
sequence data only. The overall workflow of iT3SE-PX was
illustrated in Figure 1. Several important intermediate steps
in the design process were explained in detail in the following
subsections.

2.1. Datasets. To model the task of T3SE identification as an
ML problem, the first important step is to establish a compre-
hensive, reliable, and high-quality benchmark dataset which
consists of samples from both positive (T3SEs) and negative
(non-T3SEs) classes. In this study, the same dataset con-
structed by Wang et al. [15] was adopted to evaluate the
proposed method. They first collected the training dataset
by mining currently known T3SEs from the literature and
several existing T3SE databases [5, 30, 31]. Then, they man-
ually removed wrongly annotated effectors and homologous



Computational and Mathematical Methods in Medicine

Training procedure

Testing procedure

Training dataset

Testing dataset

S— l

PSI-BLAST

UniRef50
database T

PSSM profiles

L

| Extract features

| | Extract features |

N2 N2 N2
[rRpssM | | EDT | [NMBAC]
| I I

L

| Fused features

Fused features |

L

1

| Normalized features |

| Normalized features |

L

L

| Feature selection

| | Feature selection |

L

Classifier

L

| Training model

k
I

Predicted results

FIGURE 1: System diagram of the proposed iT3SE-PX model.

sequences with more than 70% sequence similarity using the
CD-HIT program [32]. As a result, the final benchmark
dataset contained 379 T3SEs and 1112 non-T3SEs, which
were applied for model training and testing by using the
100-time 5-fold CV.

In addition, an independent test dataset which was also
built by Wang et al. [15] was used to further rigorously exam-
ine the robustness of our predictor and compare it with the
existing state-of-the-art T3SE classifiers. The independent
dataset consisted of 108 T3SEs and 108 non-T3SEs, which
was generated by using the similar strict criteria. They first
manually extracted T3SEs from recently published literature
and non-T3SEs from various bacterial species and then
removed these proteins that have 40% or higher sequence
similarity with any protein in the training dataset.

2.2. Feature Extraction

2.2.1. PSSM Profiles. Novel T3SEs are usually difficult to
identify given that they are very diverse in their AAC and sec-
ondary structure elements. Limited prediction accuracies
were obtained by sequence-based predictors which only
mined characteristics from protein sequences. In contrast,
evolutionary features extracted from the PSSM profile can
provide more informative patterns and have been widely
applied to protein attribute and function classification tasks.

In this work, PSSM profiles were first generated by run-
ning the PSI-BLAST program [33] against the UniRef50
database with three iterations and a specified e-value score
of 0.001. For a query protein with length of L, its PSSM pro-
file is an L x 20 matrix. The (i, j)th entry of the resulting
matrix denotes the probability score of amino acid type j
occurring at the ith position of the query sequence. Obvi-
ously, the higher the score, the more conserved the amino

acid at the corresponding position. Each element of the
PSSM profile was normalized to the range between 0 and 1
by using the following sigmoid function:

B 1
T ltex’

f(x) (1)

where x is the original value of the PSSM profile.

Next, we extracted three types of evolutionary features by
exploring information from the PSSM profiles in different
aspects, including RPSSM, EDT, and NMBAC.

2.2.2. RPSSM-Based Features. For convenience, we denoted
the standardized PSSM of the query sequence as follows:

P= (PA, Py, P» Pps P, Py P, Py Py, P, Py, Py, Py, P, Py, P, P, Py, Py, Pv) s

(2)

or

P= (P, Py,:-,Py) = (Pi,j) (3)

b
Lx20

where P,,Py,--,P, or P,P,,---,P,, represent the 20
columns in the original PSSM corresponding to the 20 native
types of amino acids.

RPSSM is an L x 10 matrix by merging some columns of
the original PSSM profile [34], which could be denoted as

M= (M, M,,"--,M;,) = (m (4)

iJ)Lxlo'



4
Here,
Pp+Py+ Py Py +P; P, +PpPy,
M, = 3 > My = b >z = » M,
P, +P;+Pg Py + Py Py+Pp+Pp
= > 5= > 6= ’M7
3 2 3
_ Pr+ Py

,Mg=Pg, My =Pg, M,y =Pp.
(5)

Then, RPSSM is transformed into a 10-dimensional
feature vector by using the following formula:

Ds = %i (mi,s - ms)z’ (6)

where

3
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—

m;(s=1,2,--,10). (7)

As we all know, sequence-order information is as impor-
tant as its AAC in a protein sequence. To partially reflect the
local sequence-order effect, the pseudo-composition of the
gapped dipeptide is introduced to explore the long-range
correlation between two residues separated by one or more
positions, which can be computed by

1 L-lag

(mi,s - mi+lag,t)2 1
> 5 (1<s5,t<10).  (8)
i=1

D s,tlag =

L-lag

Here, the value of position interval lag ranges from 1 to
10. As a result, we obtained a total of 1010 features extracted
from RPSSM by combining D, and D,

s,tlag*

2.2.3. Evolutionary Difference Transformation (EDT). EDT is
able to mine the information of the noncooccurrence proba-
bility of two residues separated by a certain distance d in the
any two columns of the PSSM profile [35]. A 400 x D —
dimensional feature vector could be finally generated as
follows:

| L 5
froya= 14 Z, (pi)x _pi+d,y) (I1<xy<20,1<d<D),
©)

where p; ; represents the value in the ith row and jth column
of the normalized PSSM profile and D is the maximum value
of d. Note that the value of parameter D was set to 10 in the
subsequent analysis.

2.24. Normalized  Moreau-Broto Auto  Correlation
(NMBAC). NMBAC is a kind of autocorrelation descriptors
and has been widely used as a feature encoding technique
for the prediction of protein attribute and function, including
membrane protein types [36], DNA-binding proteins [37],
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and protein subnuclear localizations [38]. In this work, we
adopted NMBAC to extract the correlation features between
two elements within each column of the PSSM profile using
the following function:

L-lag
NMBAC,, ; = g Y Pij X Pisiag (1< <20).  (10)
i=1

Here, lag denotes the distance between two elements and
also ranges from 1 to 10. Finally, a 200-dimensional vector
was obtained for each protein sequence.

2.3. Feature Normalization. Since the range of values of raw
features varies widely, feature scaling is regarded as an essen-
tial step towards increasing the ability of the predictive
models, especially for the distance-based classifiers. In this
study, we adopted the Min-Max normalization method to
rescale the raw features into the range between 0 and 1. The
Min-Max algorithm maps an original value X to the normal-
ized value X', using the following linear transformation:

X=X
X'=_— Tmin (11)
Xmax - Xmin
Here, X, and X, ,, represent the minimum and the

maximum values of the variable X in the training samples.
2.4. Model Construction

2.4.1. Support Vector Machine (SVM). SVM, which was first
proposed by Cortes and Vapnik [39], is one of the most
widely used supervised learning algorithms in computational
biology, especially suitable for the binary classification tasks
[40]. Given a set of labelled training examples, an SVM algo-
rithm learns a linear decision boundary by finding the
optimal hyperplane to assign new examples to one category
or the other. In addition, SVM can efficiently perform a non-
linear classification when using the kernel trick, implicitly
mapping the inputs into high-dimensional feature spaces.
In this work, we used the Scikit-learn Python library [41] to
construct the SVM-based T3SE predictor based on protein
sequence data alone. The radial basis function was chosen
as the kernel function due to its excellent performance in
the previous applications. We performed a grid search
method to optimize the two parameters C and y in the search
spaces {27°,273,271 ..., 215} and {2°,2',271,.--,271%}, and
the other parameters were set at the default.

2.4.2. Feature Selection. In ML, feature selection is the process
of selecting a subset of most relevant features from the orig-
inal features for use in model construction. Generally, feature
selection techniques can avoid the curse of dimensionality,
shorten the training times, and enhance generalization by
reducing redundant or irrelevant features without incurring
much loss of information. In this work, an XGBoost-based
feature selection approach was carried out in an incremental
stepwise greedy method [42]. First, we applied the XGBoost
classifier to compute an importance score for each feature
based on its participation in making key decisions with
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boosted decision trees. Next, all of features were ranked
according to their importance scores. Then, we generated sev-
eral feature subsets that contained the different top K ranked
features. Finally, these feature subsets were sequentially input
into an ML classifier to select the optimal one. To the best of
our knowledge, XGBoost-based feature selection technique
has not been used for the identification of T3SEs.

2.5. Performance Evaluation. To rigorously and comprehen-
sively evaluate the performance of the proposed model, five
widely used standard metrics were reported based on the
CV test as well as the independent test, including sensitivity
(SN), specificity (SP), accuracy (ACC), F-value, and
Matthew’s correlation coefficient (MCC) [43-46]. These
metrics are defined as follows:

SN = TP
" TP+EN’
N
P=— |
TN + FP
TP+ TN
ACC= >
TP + FP + TN + FN
2TP
F-value= ———————,
2TP + FP + FN
MCC = TP x TN — FP x FN

/(TP + FN) x (TP + FP) x (IN + FP) x (IN + EN) '

(12)

where TN, FN, TP, and FP denote the numbers of true neg-
ative, false negative, true positive, and false positive, respec-
tively. Besides, the receiver operating characteristic (ROC)
curve was adopted to illustrate the diagnostic ability of a
binary classifier, which is created by plotting the true positive
rate (TPR) against the false positive rate (FPR) at various
threshold settings. Note that the TPR is also known as SN,
and the FPR can be calculated as 1-SP in ML. The area under
the curve (AUC) was also used as a reliable measure. The
larger the value of AUC, the better the performance of the
predictor.

3. Results and Discussion

3.1. The Effect of Feature Selection Based on XGBoost. In this
work, we first obtained a 5210-dimensional feature vector for
each protein sequence by performing three feature extraction
methods (i.e, RPSSM, EDT, and NMBAC). Although the
integrated features captured more sequence information
from multiple aspects, the original feature space could con-
tain some redundant or irrelevant features which may lead
to the model overfitting and the training time increasing.
Therefore, we adopted an XGBoost-based feature selection
technique to find the optimal subset of features and improve
the prediction performance: (1) less prone to overfitting, (2)
much faster, and (3) higher overall accuracy. These features
were ranked based on their classification ability, and the top
K features were examined by the 5-fold CV test, where K =
10, 20, 30, -+, 150. The results on the training dataset are

0.97
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0.94

0.93
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T T
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Top K features

F1GURE 2: This graph shows how different top K features affect the
overall accuracies.

illustrated in Figure 2. As can be seen, the accuracy achieves
a maximum value (96.7%) when K increases to 80 and 110.
This finding suggested that the most discriminative features
from the original feature space could be extracted to form a
subset that preserved the original semantics of variables and
may be better modelled and interpreted by ML algorithms.
In order to select an optimal feature subset for final peptide
representation, we constructed two models based on the
top 80 features (80D) and the top 110 features (110D) for fur-
ther analyses.

3.2. Performance Comparison of Models Trained Using
Different Features. To further evaluate the effectiveness of
the proposed XGBoost-based feature selection strategy, we
compared the performance of the models trained using dif-
ferent feature encoding methods as well as the selected 80D
and 110D features. For each feature type, we trained an indi-
vidual feature-based SVM model with the optimally tuned
parameters and validated its predictive performance by per-
forming a 100-time randomized 5-fold CV test. As shown
in Table 1, three individual feature-based models performed
well with the ACC of about 95%, which indicated that the
informative patterns for identifying T3SEs may be captured
by these PSSM-based feature encoding strategies. Particu-
larly, the 80D-based model showed superior overall
prediction performance compared with three individual
feature-based models and obtained the highest SN value of
92.3%. Moreover, the model trained using the 110D features
achieved the best overall performances in term of four met-
rics: ACC of 96.7%, SP of 98.2%, F-value of 93.4%, and
MCC of 0.912. This suggested that the selected 80D and
110D-based models not only reduced the training time and
the computational complexity but also had reasonable
discriminatory power for the prediction of T3SEs.

3.3. Performance Comparison with Commonly Used ML
Algorithms. In this section, we evaluated the performances
of commonly used ML classifiers trained using the selected
110D features, including SVM, k-nearest neighbour (KNN),
NB, GBM, RF, and XGBoost. To make a fair performance
comparison, all experiments were conducted on the same



Computational and Mathematical Methods in Medicine

TaBLE 1: Performance comparison of different SVM classifiers on the 5-fold CV test.

Feature SN SP F-value MCC ACC

RPSSM 0.895 +0.007 0.976 +0.003 0.911 £ 0.005 0.881 +0.007 0.955+0.003
EDT 0.910 +0.005 0.976 £ 0.002 0.919 +£0.004 0.891 +0.005 0.959 +0.002
NMBAC 0.911 +0.008 0.965 +0.003 0.905 + 0.006 0.872 +0.008 0.951 +0.003
80D 0.923 +0.006" 0.981 +0.002 0.933 £ 0.004 0.911 + 0.006 0.966 + 0.002
110D 0.920 +0.004 0.982 +0.001" 0.934 +£0.004" 0.912 +0.005" 0.967 +0.002*

Values were expressed as the mean + standard deviation. *The best performance value for each measure (the same below).

TaBLE 2: Performance comparison of different classifiers based on the 5-fold CV tests.

Method SN SP F-value MCC ACC
SVM 0.920 + 0.004" 0.982 +0.001" 0.934 +0.004" 0.912 +0.005" 0.967 £ 0.002"
KNN 0.913 £ 0.006 0.962 +0.003 0.902 +0.005 0.869 £+ 0.006 0.950 + 0.002
NB 0.915 £ 0.004 0.913 £0.002 0.844 +0.003 0.790 £ 0.004 0.914 £ 0.002
GBM 0.900 £ 0.007 0.974 £ 0.002 0.911 £0.005 0.881 £0.007 0.955 +0.002
RF 0.875 £ 0.009 0.967 £ 0.003 0.888 £0.007 0.851 £0.009 0.943 £ 0.004
XGBoost 0.908 £ 0.006 0.976 £0.002 0.917 £0.004 0.890 £ 0.006 0.958 +£0.002
training dataset by using the 100-time 5-fold CV tests. The 1.0 : 7
prediction results are shown in Table 2. el

As can be seen, the SVM predictor clearly outperformed osd [ P A
the other classifiers in terms of five measures: SN, SP, F ' 3 e
-value, MCC, and ACC. Moreover, the XGBoost method ® el
obtained the second-best predictive performance except that 206 e
its SN value was just a little lower than those of the KNN and é ,,/
NB classifiers. In comparison, the NB model performed 2 o
worst in this task. Additionally, the algorithms of KNN, 3 047 -7
GNM, and RF showed the acceptable performances with =
the ACC value of larger than 0.94, the MCC value of larger 024l
than 0.85, the F-value of larger than 0.85, and the SP value ;
of large than 0.96. To assure the distinct and high quality of
the target figure, only three ROC curves associated with 0.0 . . . .

0.0 0.2 0.4 0.6 0.8 1.0

SVM, RF, and NB models are plotted in Figure 3, which
illustrated the consistent conclusions with Table 2. Owing
to its accurate prediction power, SVM was adopted as the
final predictor for the identification of T3SEs in this work.

3.4. Performance Comparison with Existing Methods. In this
section, we first compared the performance of the proposed
iT3SE-PX model with that of the Bastion3 predictor [15]
on the same training dataset by using the 100-time 5-fold
CV test. Bastion3 explored a wide range of features from var-
ious types such as sequence-based features, physicochemical
properties, and evolutionary information [15]. Among these
features, five PSSM-based feature encoding methods
achieved the top-level performance [15]. To make a fair com-
parison, the prediction results of our method and only five
PSSM-based models in Bastion3 are provided in Table 3.
From Table 3, we observed that the proposed iT3SE-PX
model outperformed the listed methods used in Bastion3 in
terms of ACC (96.7%), MCC (0.912), and SP (98.2%). Espe-
cially, compared with the other five models, iT3SE-PX
provided more than 10% improvement in ACC value. It is

False positive rate

—— NB (AUC = 0.948)
RF (AUC = 0.980)
— SVM (AUC = 0.982)

Ficure 3: ROC curves of SVM, RF, and NB classifiers based on the
5-fold CV tests. The AUC values were calculated and shown in the
inset.

worth mentioning that the PSSM-composition method
achieved the remarkable SN value of 93.0% and the DP-
PSSM method achieved the best F-value of 94.5%. This
means that these algorithms could acquire the important rec-
ognition signals from different views and have a mutually
supplementary effect. In addition, our method gave the
acceptable performance in term of SN (>90%) and F-value
(>93%) when only 110 features were used. This observation
reconfirmed that PSSM-based feature encoding schemes
could indeed extract more informative patterns for T3SE
identification, and feature selection techniques could help
to effectively enhance the performance of T3SE prediction.
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TaBLE 3: Performance comparison between iT3SE-PX and Bastion3 on the 5-fold CV test.
Method SN Sp F-value MCC ACC
PSSM-composition 0.930 + 0.006" 0.949 + 0.003 0.944 +0.003 0.893 £ 0.005 0.857 £0.006
RPM-PSSM 0.900 + 0.008 0.945 + 0.003 0.933 £ 0.003 0.872 +0.007 0.828 £ 0.009
D-FPSSM 0.865+0.010 0.949 £ 0.004 0.927 £ 0.004 0.857 £0.008 0.809 £0.011
TPC 0.900 £ 0.007 0.953 £ 0.003 0.940 + 0.003 0.883 £ 0.006 0.843 +£0.008
DP-PSSM 0.925 +0.007 0.952 +£0.003 0.945 +0.003" 0.894 +0.005 0.858 £0.007
iT3SE-PX 0.920 £0.004 0.982 +0.001" 0.934 £0.004 0.912 +0.005" 0.967 £ 0.002"
TABLE 4: Performance comparison on the independent test.

Method SN Sp F-value MCC ACC
iT3SE-PX 0.946 £ 0.043 0.981 £0.036 0.963 +0.035" 0.927 £ 0.069" 0.963 + 0.034"
Bastion3 0.954 +0.034" 0.958 £0.025 0.958 £0.010 0.917+0.017 0.959 £0.008
BEAN 2.0 0.891 £ 0.060 0.917 £ 0.069 0.906 £ 0.024 0.816 £ 0.033 0.908 £0.015
pEffect 0.878 £0.088 0.909 £ 0.041 0.889 £ 0.066 0.790 £ 0.100 0.895+0.048
EffectiveT3 0.741 £0.086 0.873 £0.037 0.794 £ 0.051 0.623 £0.068 0.809 £0.038
T3_MM 0.804 = 0.04 0.783 £0.054 0.797 £0.043 0.588 £ 0.066 0.795£0.031
BPBAac 0.288 £0.067 0.978 £0.031 0.437 £0.082 0.371 £ 0.072 0.629 £0.062
SIEVE 0.122 £0.057 1.000 + 0.000* 0.214 £0.091 0.247 £ 0.063 0.557 £0.048

To further assess the performance and robustness of the
proposed model, we carried out the same independent test
with Bastion3 [15], where iT3SE-PX was beforehand trained
on the benchmark training dataset. Table 4 reports five
performance measures of iT3SE-PX and seven other state-
of-the-art methods on the independent dataset, including
Bastion3 [15], BEAN 2.0 [5], pEffect [7], EffectiveT3 [3],
T3_MM [11], BPBAac [22], and SIEVE [8].

As shown in Table 4, the iT3SE-PX gained an advantage
over other models in terms of ACC (96.3%), MCC (0.927),
and F-value (96.3%). The resulting SN (94.6%) and SP
(98.1%) values ranked next to the best. SIEVE achieved the
highest SP values, but SN values were less than 20%, which
indicated a tendency to generate more false negatives. In
addition, the recently reported Bastion3 model attained the
comparable performance with that of our method. We
noticed that the Bastion3 applied a two-layer ensemble
learning technique to establish a powerful predictor for the
identification of T3SEs, which utilized three different types
of features. However, our method also obtained satisfactory
prediction results when only selected 110D features were
used to train an SVM model.

In summary, the proposed method achieved better
prediction performance using the relatively few features in
comparison with previous studies. However, we should point
out that there is still more room for further improvement by
exploring multiview features from protein sequences,
physicochemical properties, and evolutionary information
and developing powerful ensemble classifiers. In the
future, we will also develop a user-friendly and publicly
accessible online web server of iT3SE-PX to maximize user
convenience.

4. Conclusions

Despite a dramatic increase in the number of available
whole-genome sequences, accurate prediction of T3SEs still
remains a challenging problem in bioinformatics. In this
work, we proposed an iT3SE-PX model to further improve
predictive accuracy of T3SEs solely based on sequence data.
First, we integrated three feature extraction techniques (i.e.,
RPSSM, EDT, and NMBAC) to transform the PSSM profiles
of query proteins into 5210-dimensional feature vectors.
Then, the XGBoost algorithm was adopted to calculate an
importance score for each feature, and all of the features were
ranked according to these scores. Finally, the optimal 110
features were selected by using an incremental stepwise
greedy method and input into the SVM classifier to perform
the prediction of T3SEs. Validation results on two working
datasets showed that our method performed better than most
of the other existing predictors based on the 100-time 5-fold
CV test as well as on the independent dataset test. These
promising results also indicated that the proposed iT3SE-
PX model could be used for effective prediction of T3SEs,
given only the sequence information. For easy implementa-
tion, all the datasets and the source codes for this study are
freely available to the academic community at https://
github.com/taigangliu/iT3SE-PX.

Data Availability

The data used to support the findings of this study are freely
available to the academic community at https://github.com/
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