
1Scientific RepoRts |  (2018) 8:10521  | DOI:10.1038/s41598-018-28851-7

www.nature.com/scientificreports

Effective Resistivity in Collisionless 
Magnetic Reconnection
Z. W. Ma  , T. Chen, H. W. Zhang   & M. Y. Yu  

An effective resistivity relevant to collisionless magnetic reconnection (MR) in plasma is presented. It 
is based on the argument that pitch angle scattering of electrons in the small electron diffusion region 
around the X line can lead to an effective, resistivity in collisionless plasma. The effective resistivity so 
obtained is in the form of a power law of the local plasma and magnetic field parameters. Its validity is 
confirmed by direct collisionless particle-in-cell (PIC) simulation. The result agrees very well with the 
resistivity (obtained from available data) of a large number of environments susceptible to MR: from the 
intergalactic and interstellar to solar and terrestrial to laboratory fusion plasmas. The scaling law can 
readily be incorporated into existing collisional magnetohydrodynamic simulation codes to investigate 
collisionless MR, as well as serve as a guide to ab initio theoretical investigations of the collisionless MR 
process.

Magnetic reconnection (MR) often occurs in plasmas containing sheared magnetic fields and can efficiently con-
vert magnetic energy into the kinetic and thermal energies of the charged particles1–3. The process plays impor-
tant roles in the evolution of the solar corona4,5, the geomagnetic tail6,7, the magnetosphere8,9, the intergalactic and 
interstellar, as well as laboratory plasmas10,11. In particular, collisionless or fast MR (FMR) on time scales much 
less than the inter-particle collision time can occur. FMR has often been attributed to anomalous resistivity aris-
ing from local current-instability driven turbulence in the small electron diffusion region of the MR12,13. However, 
the evolution and effect of the turbulence during the MR are difficult to follow and remain unclear. Existing stud-
ies14,15 have noted that the lifetime of a particle in the diffusion region can be considered as an effective collision 
time, since in terms of its momentum and energy changes, the electron dynamics in the electron diffusion region 
resembles that of electrons being scattered by collisions, except that here the scattering partners are the local 
magnetic and electric fields. In particular, Speiser14 introduced an ad hoc resistivity (more precisely, conductivity) 
based on the behavior of the electric current flow in the diffusion region. However, the problem remains unclear 
and no general conclusion can be drawn14–16.

It is well known that pitch-angle scattering of electrons in highly bending magnetic fields such as that in the 
diffusion region around the X point of MR can lead to particle momentum transfer from the parallel to the per-
pendicular initial current direction. In this paper, we reconsider the dynamics of electrons in this small region. 
The transit times of typical electrons in the region near the X line are determined by following their motion as the 
FMR process evolves. An effective resistivity in the form of power-law scaling of the most relevant local plasma 
parameters is obtained by replacing the mean-free-time in the expression for the collisional resistivity by an 
ensemble averaged electron transit time that depends on the local plasma and field parameters in the diffusion 
region. Validity of our approach is confirmed by full particle-in-cell (PIC) simulation of the FMR. Moreover, 
when compared with a large number of plasmas susceptible to MR: from the intergalactic and interstellar space 
to solar and terrestrial, as well as fusion, plasmas, it is found that the effective resistivity agrees very well with 
that estimated from the known parameters of these plasmas. The scaling law can readily be incorporated into the 
existing macroscopic MHD simulation codes17 for investigating FMR in complex space and fusion plasmas, as 
well as serve as guide for detailed theoretical investigation of the FMR physics.

Analytical formulation of effective resistivity
Accordingly, collisionless MR can be investigated by replacing the mean free time τmft between collisions in the 
collisional resistivity ηcoll = me/ne2τmft, where n, e, and me are the electron number density, charge, and mass, 
respectively, by the mean transit time τtransit of electrons in the diffusion region around the X line (see Fig. 1). The 
resulting effective, or collisionless, resistivity η τ= m ne/eff e transit

2  can then be implemented in the existing theories 
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and MHD simulation codes. In the following, we shall obtain τtransit by concentrating only on, in our opinion, the 
most relevant physics involved.

The local magnetic and electric fields in the electron diffusion region of the MR (Fig. 1) can be approximated 
by
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where Lx and Lz are the characteristic lengths of the electron diffusion region, respectively, and the coefficients Bx, 
Bz(<<Bx), and Ey are constants. When Lz << Lx, the current sheet becomes elongated. This MR geometry is ofter 
referred to as of Y type.

The electron trajectory near the X line is then governed by

= −d x ev B x L m/ (3)t y z x e
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where for simplicity we shall assume (consistent with the PIC simulation results below) that the electron velocity 
vy in the current sheet varies only a little from the average value 〈vy〉 ~ −Jy/ne.

Equations (3) and (4) yield

τ τ τ= +x t x t v t( ) cosh( / ) sinh( / ) (5)x x x x0 0

τ τ τ= +z t z t v t( ) cos( / ) sin( / ) (6)z z z z0 0

where τ = m L ev B/x e x y z  and τ τ= m L ev B/ ( )z e z y x x , and (x0, z0) and (vx0, vz0) are the initial position and 
velocity of the electron.

Equations (5) and (6) show that the electron is accelerated in the x direction but it only oscillates in the z direc-
tion. We can thus consider the transit time τtransit as the time for the electron to traverse the diffusion region in the 
x direction. Accordingly, from equation (5) we get
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where Dx = x(τtransit) can be chosen to be at the edge of the simulation box.
Near the X line, we can also reasonably assume that thermal effects can be neglected and the initial in-plane 

electron velocity is nearly zero. Considering that the electron motion in the z direction is oscillatory, for the tran-
sit time we only need to follow its motion in the x direction. Accordingly, equation (7) becomes
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Since the initial position x0 of an electron can be anywhere inside the diffusion region, the mean transit time is

Figure 1. The local magnetic field = +ˆ ˆB x zB z L B x L/ /x z z x and induction electric field = ˆE E yy  in the diffusion 
region. The current sheet is in the y direction. The magnetic field increases (from null) with the distance from 
the X line, which is in the y direction and appears in the x, z plane here as the X point at (0, 0). Several idealized 
electron trajectories are shown as dashed curves.
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the result of τtransit is independent of Dx. So that the effective collisionless resistivity is
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In deriving the electron transit time, we have made the reasonable but unsubstantiated assumption on the 
existence of a collisionless, or effective, resistivity that imitates the function of the classical collisional resistivity 
in the fluid description of the plasma. For verification, we next carry out full PIC simulations of the FMR in col-
lisionless plasma.

Particle-in-Cell simulation
We have performed 2.5D full PIC simulations for plasma particle motion in the diffusion region by assuming 
∂y = 0. For simplicity, we use the charge-conservation scheme (CCS) instead of solving the Poisson equation, and 
the finite difference time domain (FDTD) method to solve the other Maxwell’s equations. The equations used in 
the PIC simulations are
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where c is the light speed, vj and pj = mjvj are the particle velocity and momentum, respectively. The variables are 
normalized as follows: x/di0→x, (Vj, vj)/vAi0→(Vj, vj), ωci0t→t, B/B0→B, E/E0→E, J/J0→J, n/n0→n, pj/mivAi0→pj, 
where ω µ= =d c c n e m/ / /i pi i0 0 0

2
0 , μ=v B n m/Ai i i0 0 0 0 , ωci0 = eB0/mi, E0 = vAi0B0, and J0 = n0evAi0.

For the PIC simulations, we set = .v c/ 0 05Ai0 , the ion-to-electron mass ratio μ = mi/me is from 25 to 400, and 
the initial ion-to-electron temperature ratio is Ti/Te = 5. Our simulation domain is −Dx/2≤ x ≤Dx/2, 
−Dz/2 ≤ z ≤Dz/2, where Dx = 12.8di0, Dz = 6.4di0, dx = dz = 0.01di0 and the time step is ωci0Δt = 0.0002. Periodic 
and closed boundary conditions are adopted in the x and z directions, respectively. Nearly 82 million simulation 
particles for each species are used.

We use the Harris equilibrium as the initial configuration. The initial magnetic field is given by

= = =B B z b B Btanh( / ), 0 (14)x z y0 0

and the initial density profile is
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2
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where B0 = 1.0, b0 = 0.5, n0 = 1.0, nb = 0.2, and b0 is the width of the current sheet with the current intensity given 
by

= −J B b z b( / )cosh ( / ) (16)y 0 0
2
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In the simulation, the reconnection process is initiated by a small perturbation of the magnetic field.
Pressure balance yields

β+ = +P B B/2 (1 ) /2 (17)2
0
2

where P and B are the local thermal pressure and magnetic field, β = P/(B2/2), and P is normalized by μB /20
2

0. 
Here we set β = 0.2.

Comparison of the analytical and simulated resistivities
We first examine the y component of the velocity vy of electrons entering and leaving the electron diffusion region. 
For ion-to-electron mass ratio μ = 400, during the peak reconnection period (from t = 16 to 17) we found that 
the average change of vy is less than 10%. That is, vy is indeed roughly constant, as assumed in the evaluation of 
(5) and (6).

Next we compare the resistivities from our analytical model and the PIC simulation. Figure 2 shows the evo-
lution of the resistivities in the electron diffusion region. In the analytical formula for ηeff, the electron number 
density n, velocity vy, Bz, and Lx have been replaced by, as calculated from the PIC simulation results, the average 
electron number density n and electron velocity vy in the electron diffusion region (of size of de), the maximum Bz, 
and the characteristic length Lx of Bz in the X-point region, respectively. On the other hand, the resistivity from 
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the PIC simulation is calculated directly from the relation ηs = Ey/Jy by substituting the measured values of the 
average electric field intensity Ey and sheet-current density J . We see that our effective resistivity agrees quite well 
with the collisionless resistivity obtained from the PIC simulations. In particular, in the fast reconnection phase 
both resistivities increase rapidly and in a similar manner, thereby verifying the scaling of the field parameters in 
our model effective resistivity. We can also see that the peak value of the resistivity decreases with increase of the 
mass ratio μ, and the analytical and simulation results approach each other.

Discussion and Summary
In collisional plasma, the characteristic thickness of the current sheet taking into account magnetic field diffusion 
is18,19 η μΔ = L v/SP spz A0

, where L is the plasma size, vA is the Alfven speed, and ηspz is the Spitzer resistivity 
(based on Coulomb collisions). For the parameters of the Earth’s magnetopause and magnetotail20, the 
half-thickness of the thinnest current sheet during the nonlinear stage of magnetic reconnection can be of the 
order 10 m that is four to five orders of magnitude smaller than that obtained from the satellite data during mag-
netic reconnection: namely, ~100 km in the magnetopause21,22 and ~1000 km in the magnetotail23,24. Such a huge 
descrepancy suggests that Coulomb collisions are not the dominant dissipation mechanism for MR in the mag-
netopause and magnetail.

The effective resistivity in our model can be rewritten in the form of a power law:
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1
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local magnetic field components near the X line. The parameter α is thus the ratio of the characteristic lengths of 
Bx and Bz. Simulations have shown that in the MR configuration α increases as reconnected magnetic field Bz 
increases with time in the diffusion region and α is of order 0.1 when MR gets into the nonlinear stage. In the 
magnetotail20 on Earth’s nightside, the electron density is ne(ni) ≈ 0.3cm−3, the electron temperature is Te ≈ 600eV, 
the magnetic field is B0 ≈ 2 × 10−8T, and plasma size L ≈ 100RE, the current sheet thickness is about 
ΔSP ≈ 0.15RE ≈ 953km in the nonlinear phase of magnetic reconection with α = 0.1. On the other hand, for the 
magnetopause20 on the Earth’s dayside, with electron density ne(ni) ≈ 10cm−3, electron temperature Te ≈ 300eV, 
magnetic field B0≈5 × 10−8T, and plasmas size L ≈ 10RE, the current sheet thickness is ΔSP ≈ 0.021RE ≈ 137km. 
Thus, for both the magnetopause and magnetotail, the current sheet thicknesses as predicted by our model are in 
good agreement with that from the satellite observations. Moreover, one can easily show that for the parameters 
of the experimental device MRX20, our model yields ΔSP ≈ 3.38 cm, which is in good agreement with that from the 
direct laboratory measurement.

It is of interest to make a broader comparison of the results from our model with that from existing data on 
space and laboratory plasmas where MR is observed or expected to exist. Since classical collisions can be impor-
tant or relevant in some of the environments20, it is useful to introduce the total resistivity ηtot=ηspz+ηeff. Figure 3 
shows the plot of ηtot normalized by the Spitzer resistivity ηspz versus the mean-free-path λmfp normalized by the 
Sweet-Parker current sheet thickness ΔSP = 2Lz. From Fig. 3, it is clearly shown that all data points are distributed 
near the best-fitting line. Since η τ λ= =m v ne v m kT m ne/ 3 / /spz e the mft the e e e mfp

2 2 , we have the power-law scaling 
ηeff/ηspz = [4π−1α0.5(3μ0kTene)−0.5B0]λmfp/ΔSP = Cλmfp/ΔSP, should correspond to the slope of the data points in the 
figure. For α = 0.1 in the nonlinear stage of magnetic reconnection, we find that C is in the range 3 × 10−3 to 4 for 

Figure 2. Evolution of the effective resistivity ηeff (blue curve with stars) and the collisionless resistivity ηs 
(red curve with circles) obtained from the PIC simulations. The panels a to d are for μ = 25, 100, 256, and 400, 
respectively. Note that the quantitative discrepancy decreases as the the mass ratio becomes more and more 
realistic.
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collisionless (λmfp/ΔSP > 1) plasmas. The slope of the best-fit (red dashed) line in Fig. 3 is C = 0.1, which is in the 
middle of its range. We note that the data points only slightly deviate from the best-fit line, and can be attributed 
to uncertainties in the obervational data. The somewhat larger deviation for the data points from the 
magnetic-confinement-fusion devices ITER and TFTR can be attributed to the strong guiding magnetic field. It 
is well known that a guide field can suppress magnetic reconnection or reduce the effective resistivity, which is 
consistent with the fact that the ITER and TFTR data points are located below the best-fit line. The results here 
suggest that pitch angle scattering of electrons due to bending magnetic field lines, which is the basic assumption 
of our model, may be responsible for fast MR in collisionless plasmas.

The effective resistivity in our 2D model is mainly a result of diversion of electrons in the electron diffusion 
region, which has very small spatial scale. Three-dimensional (3D) effects are ignorable if the spatial scale of the 
magnetic field in the third direction is larger than the electron inertia length. This condition is usually valid for 
space and laboratory plasmas, which explains why the effective resistivity from our model agrees very well with 
that of a large number of environments, namely from intergalactic and interstellar to solar and terrestrial to lab-
oratory fusion plasmas. The reconnection rate in general depends on the ratio between the thickness and length 
of the diffusion region, or the current sheet. The thickness is usually determined by dissipation, or resistivity, of 
the system. Therefore, for given resistivity, the reconnection rate can increase with decrease of the current sheet 
length, say by an external driving force. For example, in tokamak plasmas, the slower tearing modes correspond 
to spontaneous MR and the sawtooth oscillations correspond to FMR driven by internal kink instabilities.

In summary, for understanding FMR we have introduced an effective resistivity that contains no free parame-
ters. The effective resistivity is based on self-consistent scattering or acceleration of electrons by bending of mag-
netic field lines, and it agrees in magnitude with that of a large number of environments where MR is observed or 
suspected. It can also be readily adapted in existing collisional-fluid simulation codes for investigating collision-
less FMR. The present work can also serve as a guide for a formal first-principles derivation of such an effective 
resistivity. Finally, it may be of interest to point out that our results are clearly also applicable to very small scale 
and very fast MR in the absence of ion dynamics. In fact, such novel ultrafast (45 millisecond) MR phenom-
ena have been recently reported to be occuring within the entangled magnetic fields in the Earth’s turbulent 
magnetosheath.25
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