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Abstract

Ubiquitination is a crucial post-translational modification that can target proteins for degrada-

tion. The E3 ubiquitin ligases are responsible for recognizing substrate proteins for ubiquiti-

nation, hence providing specificity to the process of protein degradation. Here, we describe

a genetic modifier screen that identified E3 ligases that modified the rough-eye phenotype

generated by expression of cindrRNAi transgenes during Drosophila eye development. In

total, we identified 36 E3 ligases, as well as 4 Cullins, that modified the mild cindrRNA mis-

patterning phenotype. This indicates possible roles for these E3s/Cullins in processes that

require Cindr function, including cytoskeletal regulation, cell adhesion, cell signaling and cell

survival. Three E3 ligases identified in our screen had previously been linked to regulating

JNK signaling.

Introduction

Covalent attachment of ubiquitin to a protein is a post-translational modification that can sig-

nal its degradation by the 26S proteasome (reviewed by [1–4]). This process is crucial for the

clearance of proteins when no longer needed in a cell. Protein ubiquitination also serves

important proteasome-independent roles and has been implicated in signal transduction [5],

protein trafficking [6], endocytosis [7], DNA repair [8], transcriptional regulation [9] and his-

tone modification [10]. Given these diverse and important roles, the ubiquitination system can

profoundly influence the development and homeostasis of tissues.

Three core classes of enzyme complexes are required for ubiquitination [1–4]. The ubiqui-

tin-activating enzymes (E1s) catalyze conversion of ubiquitin to ubiquitin-adenylate interme-

diates that are momentarily bound to E1s. The active ubiquitin-adenylate is then transferred to

ubiquitin-conjugating enzymes (E2s). Finally, ubiquitin is transferred to target proteins in

reactions catalyzed by ubiquitin ligases (E3s) that provide substrate specificity by dictating

which target proteins are ubiquitinated.

E3 ligases are characterized according to their domains which catalyze transfer of ubiquitin

to target proteins: the HECT (homologous to the E6AP carboxyl terminus) and RING (Really

Interesting New Gene) domains [1, 2]. A more elaborate RBR (RING-between-RING) domain

PLOS ONE | https://doi.org/10.1371/journal.pone.0187571 November 8, 2017 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Ketosugbo KF, Bushnell HL, Johnson RI

(2017) A screen for E3 ubiquitination ligases that

genetically interact with the adaptor protein Cindr

during Drosophila eye patterning. PLoS ONE 12

(11): e0187571. https://doi.org/10.1371/journal.

pone.0187571

Editor: Amit Singh, University of Dayton, UNITED

STATES

Received: June 27, 2017

Accepted: October 23, 2017

Published: November 8, 2017

Copyright: © 2017 Ketosugbo et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was supported by the National

Institute of General Medical Sciences,

1R15GM114729-01A1 to Dr. Ruth I Johnson. The

funder had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

no competing interests exist.

https://doi.org/10.1371/journal.pone.0187571
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187571&domain=pdf&date_stamp=2017-11-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187571&domain=pdf&date_stamp=2017-11-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187571&domain=pdf&date_stamp=2017-11-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187571&domain=pdf&date_stamp=2017-11-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187571&domain=pdf&date_stamp=2017-11-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187571&domain=pdf&date_stamp=2017-11-08
https://doi.org/10.1371/journal.pone.0187571
https://doi.org/10.1371/journal.pone.0187571
http://creativecommons.org/licenses/by/4.0/


characterizes a subclass of E3s. In addition, proteins containing Cullin, U-box, N-recognin,

SKP1 and F-box domains contribute to the formation of functional E3 complexes. In recent

annotations, 617 putative E3 ligases were identified in the human genome and 80 putative E3

ligases in the yeast Saccharomyces cerevisiae, accounting for 1–2% of the proteins encoded in

the genomes of these species [11]. E3 ligases occupy a similar percentage of the Drosophila
genome [12]. Identifying the substrates of these E3 ligases and the cell behaviors for which

their functions are crucial will facilitate a comprehensive understanding of the importance of

ubiquitination but is a considerable challenge. Determining which E3 ligases are required in

specific tissues is an important first step in meeting this challenge.

The Drosophila eye neuro-epithelium has been extensively utilized to study cell behaviors

and signals that integrate to generate functional epithelia. This tissue is patterned with high

precision during development and disruptions to the epithelium are easily detected in the

adult eye. Here we describe a genetic modifier screen that identified E3 ligases that genetically

interact with Cindr, a conserved scaffold protein that is essential for eye development [13].

Expression of RNAi transgenes that targeted cindr generated a sensitized genetic background

that could be modified by mutations in E3 ligase loci. The UAS-cindrRNAi.2.21 transgene was

expressed by the driver line GMR-GAL4 (the genotype of these retinas is abbreviated to

GMR>cindrRNAi2 throughout this manuscript). This modestly compromised multiple cell

behaviors that require Cindr, including signal transduction, the correct localization of adhe-

sion proteins, and regulated remodeling of the actin cytoskeleton [13–16]. The E3 ligases iden-

tified in our screen therefore have potential roles in regulating any of these conserved cell

behaviors during the development of the eye epithelium.

Materials and methods

Drosophila stocks

All stocks used for our modifier screen were obtained from the Bloomington Drosophila Stock

Center (Indiana, USA) and are listed in Results. The GMR-GAL4; UAS-cindrRNAi2.21A / SM5:

TM6b line was generated from UAS-cindrRNAi2.21A transgene [13] and the GMR-GAL4 driver

line [17]. In addition, we utilized the following stocks: Canton-S, w1118, UAS-lacZ and UAS-puc
(gifts from R. Cagan), and bsk1 (Bloomington stock number BL-3088), UAS-bsk (BL-9310),

cblF165 (BL-9676), nopoexcl42 (BL-57335), nopoZ1447 (BL-57334), pucH246 (BL-4390), UAS-
slprWT-HA (BL-58820), Traf4EY09771 (BL-17600), UAS-Traf6.S (BL-58991) and Uev1aDG14805

(BL-20440).

Genetic modifier screen

Between six and eight young male flies of each stock screened were crossed to eight to ten vir-

gin GMR-GAL4; UAS-cindrRNAi2.21A / SM5: TM6b females. For control crosses, males were

crossed to GMR-GAL4 virgin females. Crosses were maintained at 25˚C. The parental flies

were removed from vials on day seven. On day fourteen the F1 progeny that had emerged

were scored blind and independently by two researchers. Scoring was repeated if their assess-

ments differed. Adults were frozen rapidly at -70˚C and imaged using a Leica M125 stereo-dis-

secting microscope fitted with an LED5000HDI ring light and diffuser (data presented in Fig 1

and Fig 2A–2D and 2F–2K and Fig 3D, 3F and 3J) or gooseneck light sources (Fig 2E and Fig

3A–3C, 3E, 3G–3I and 3K–3M), Leica IC80HD camera and Leica Acquire version 3.3 software

(Leica Microsystem, Exton, PA). Images were processed using Adobe Photoshop CC (Adobe,

San Jose, CA).
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Pupal eye dissection, immunofluorescence and analyses

All crosses and pupae were maintained at 25˚C. Eye-brain complexes were dissected at 40

hours after puparium formation (APF) in PBS, fixed on ice in 4% formaldehyde in PBS for 35

minutes, and incubated overnight in rat anti-Drosophila Ecadherin (1:20, DSHB DCAD2) at

4˚C. Tissue was then incubated in goat anti-rat secondary antibodies conjugated to AlexaFluor

488 (Jackson ImmunoResearch). Retina were removed from the brain complexes and imaged

using a Leica TCS SP5 DM fluorescent microscope and associated LAS AF Software (Leica

Microsystem, Exton, PA). Images were processed using Adobe Photoshop CC (Adobe, San

Jose, CA). Patterning errors were quantified as previously described [18].

Results

Selection of E3 ligases

We explored the Drosophila melanogaster genome using the Gene Ontology search function

hosted by FlyBase (the database for Drosophila Genes and Genomes) to identify loci annotated

to have domains or properties associated with ubiquitin ligase activity. These searches gener-

ated an initial candidate list of 156 predicted or experimentally confirmed E3 ligases (S1 Table,

summarized in Table 1), which included all ubiquitin ligases also identified by FlyBase curators

[19–21]. Since Cullin proteins function as scaffolds to assemble E3 ligase complexes [22], we

also included the six Drosophila Cullins into our candidate list. We did not include F-box and

SKP1 proteins, which are components of the Cullin-based E3 complexes.

Our primary goal was to identify E3 ligases that function in the cytosol during epithelial

tissue development, since Cindr resides in this compartment. Therefore, we removed from

our candidate list all E3 ligases that, at the time, were known or predicted to function pri-

marily in the nucleus, mitochondria, peroxisomes, the endoplasmic reticulum, lysosome

or the endosome (see S1 Table). Next, we removed E3 ligases that (at the time) were

known to modify Notch signaling (Bre1, Deltex, Mind Bomb 1, Suppressor of deltex,

Nedd4, Neuralized) and Decapentaplegic/SMAD signaling (Smurf/Lack), because these

signaling pathways are essential for processes that also require Cindr during Drosophila
eye development [23, 24]. However, we included Cbl, a proto-oncogene that modifies

Receptor Tyrosine Kinase (RTK) signaling, including Epidermal Growth Factor Receptor

Signaling (EGFR) which is extensively utilized during Drosophila eye development [25,

26]. Since the vertebrate orthologs of Cbl and Cindr are known to interact [27], we pre-

dicted that alleles of cbl would be identified in our screen, which would verify the efficacy

of our approach.

The Bloomington Drosophila Stock Center (BDSC) maintains stocks carrying classical

mutations or transposable element insertions. Gene expression is modified in many of these

Drosophila lines. Unfortunately, alleles were not available for 39 of the 110 loci that we wished

to screen (S1 Table). Alleles for the remaining 71 loci were obtained.

Fig 1. A screen for E3 ligases that regulate Drosophila eye development. (A) An eye of the Canton S

strain of wild type flies. (B) Cartoon drawing of columnar adult ommatidia. A bundle of photoreceptor cells

(grey) forms the core of each ommatidium. These are surrounded by epithelial pigment cells (dark pink). Each

ommatidium is capped with a lens (light grey). (C) The eye of an adult heterozygous for GMR-GAL4. The eye

is wild type in appearance. (D) The eye of an adult heterozygous for GMR-GAL4 and UAS-cindrRNAi. The eye

is mildly mis-patterned. (E) Crossing scheme used in screen. (F) Mis-patterned eye of a fly heterozygous for

cblF165 and expressing cindrRNAi. (G) The correctly-patterned eye of an adult heterozygous for cblF165 and

GMR-GAL4.

https://doi.org/10.1371/journal.pone.0187571.g001
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The genetic modifier screen

TheDrosophila eye is a simple neuro-epithelium composed of ~750 hexagonally shaped omma-

tidia, each capped with a domed lens that is easily observed using a standard stereo-dissecting

microscope (Fig 1A and 1B) [28]. Each ommatidium is composed of eight photoreceptor neurons

Fig 2. Modification of the rough-eye phenotype by alleles of E3 ligases linked to JNK signaling. (A) A correctly patterned heterozygous

GMR-GAL4/+ eye. (B) Mild mis-patterning manifested as mildly disordered facets that were not arranged in straight rows in the GMR>cindrRNAi eye.

Mis-patterning was suppressed by (C) ectopic nopo (nopoG5845) but (D) on its own, nopo expression did not disrupt the eye. (E) parkc00062 enhanced

cindrRNAi mis-patterning whilst (F) park1 and (G) parkΔ21 suppressed cindrRNAi mis-patterning. (H) Traf6EP325 and (I) Traf6EP1516 also modestly

suppressed the cindrRNAi rough eye. (J) Traf6EP325 and (K) Traf6EP1516 did not disrupt the eye when crossed to GMR-GAL4.

https://doi.org/10.1371/journal.pone.0187571.g002
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Fig 3. The cindrRNAi eye is modified by JNK activity. (A) Eye of a GMR-GAL4 heterozygote and (B) GMR>cindrRNAi adult. (C)

cindrRNAi–induced mis-patterning was mildly enhanced by ectopic bsk (D) but (D) on its own bsk expression did not disrupt the eye.

Similarly (E) ectopic slpr enhanced the cindrRNAi rough eye but (F) the GMR>slpr adult eye was correctly formed. (G) pucH246, (H)

bsk1 and (I) ectopic puc enhanced cindrRNAi- mis-patterning, whilst (J) expression of only puc did not perturb patterning. Similarly

(K) Traf4EY09771 enhanced the GMR>cindrRNAi rough eye whilst (L) GMR>Traf4EY09771 adults had correctly patterned eyes. (M)

Uev1aDG14805 severely enhanced the GMR>cindrRNAi rough eye.

https://doi.org/10.1371/journal.pone.0187571.g003
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encapsulated by four cone-cells and two primary pigment cells that secrete the material that

becomes each lens. Secondary and tertiary pigment cells surround each ommatidium. The hexag-

onally-shaped ommatidia are neatly packed in rows, giving the adult eye its precisely-ordered

appearance (Fig 1A and 1C). Even small disturbances during eye development can disrupt this

simple pattern, alter the shape or dimensions of the ommatidial lenses, and give rise to mis-pat-

terned ‘rough’ eyes. Expression of RNAi transgenes that targeted cindr generated a mild rough-

eye phenotype (Fig 1D). Cindr is required for the regulation of a multitude of cellular processes

during eye development including the correct remodeling of the actin cytoskeleton, the appropri-

ate spatio-temporal localization of adhesion proteins, cell-signaling, and the apoptotic removal

of superfluous cells from the eye field [13–16]. Given these diverse cell behaviors, theGMR>
cindrRNAi2 rough-eye provided a sensitized background for a modifier screen to identify E3 ligases

and Cullins essential for eye patterning. Enhancement or suppression of theGMR>cindrRNAi2

eye phenotype could be easily scored.

Males of each candidate stock were crossed to GMR-GAL4; UAS-cindrRNAi2.21A / SM5:

TM6b (abbreviated to GMR>cindrRNAi) or GMR-GAL4 females and the eyes of adult progeny

scored (Fig 1E). All progeny from control crosses had correctly patterned eyes (an example is

shown in Fig 1G). As expected, the cblF165 allele enhanced the cindrRNAi-rough eye (Fig 1F).

Alleles of 2 HECT E3 ligase loci, 29 RING E3 loci, 2 RBR loci, 2 TRIM loci and 1 U-box loci

modified the GMR>cindrRNAi2 phenotype (Table 2). Alleles of 4 of the 6 Cullins modified

GMR>cindrRNAi2 mis-patterning. In many instances, p-element insertions that included UAS

sites which potentially increased protein expression and transgenic insertions that disrupted

gene loci inversely modified the GMR>cindrRNAi2 adult eye. For example, Cul202074 reduced

mis-patterning whilst this was enhanced by the UAS insertion Cul2EY09124. Similarly, Ltn11

enhanced mis-patterning whilst the UAS insert Ltn1G9156 suppressed the GMR>cindrRNAi2

phenotype.

Alleles of Cul1, Cul2, Cul3 and CG11261modified the GMR>cindrRNAi2 eye. Diverse roles

for Drosophila Cul1 and Cul3 have been suggested that may account for their interactions with

GMR>cindrRNAi2. Cul1 has been implicated in regulating Cyclin E to promote cell division

[29] and may therefore modify mitosis during larval eye development. Cul1 and Cul3 are also

regulators of Cubitus Interruptus [30–32], transcription factor activated by Hedgehog signal-

ing, which is required during early eye patterning [23]. In addition, Cul3 has been described as

a regulator of the actin cytoskeleton [33–36], though this role has not been explored in epithe-

lia. Cul2 function has been mainly explored in Drosophila germline development [37, 38].

Many of the E3 ligases that modified GMR>cindrRNAi2 have yet to be characterized and

named (Table 2). In addition, we identified E3 ligases that have been linked to differentiation,

Table 1. Summary of E3 ligase loci and Cullins identified and included in screen.

Class of protein Number of genes in Drosophila genome Number tested in screen

Golliath 2 0

HECT 14 6

IAP 2 0

RING 119 44

RBR 5 5

ROC 3 3

TRIM 5 3

U-box 6 5

Cullin 6 6

Total 162 72

https://doi.org/10.1371/journal.pone.0187571.t001
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Table 2. List of E3 ligase and Cullin proteins tested in screen.

Known/

predicted domain

class1.

CG

number

Gene

symbol

Allele Nature of allele (known or

predicted)2.
Phenotype: enhanced (E), suppressed (S) or no

modification (NM) of GMR>cindrRNAi2

Cullin CG11261 c06238 P insert E

Cullin CG11861 Cul3 gft2 loss of function S

Cullin CG1401 Cul5 EY00051 UAS insert NM

EY21463 UAS insert NM

Cullin CG1512 Cul2 02074 P insert S

EY09124 UAS insert E

Cullin CG1877 Cul1 BG02329 GAL4 insert E

EY11668 UAS insert NM

Cullin CG8711 Cul4 KG02900 P insert NM

HECT CG4238 MI13092 Minos insert NM

KG04649 P insert E

HECT CG42574 ctrip G19129 UAS insert NM

HP35916 UAS insert NM

HECT CG6190 Ube3a EP3214 UAS insert NM

HECT CG8184 B uncharacterized point

mutation

NM

HECT CG9153 Sherpa G5486 hypomorph S

HECT CG9484 hyd 15 uncharacterized EMS

mutation

NM

c017 P insert NM

RING CG10263 Hakai KG01389 P insert E

RING CG10523 park UAS-park.

G

UAS line S

c00062 P insert E

1 P insert S

Δ21 loss of function S

RING CG10916 f03629 P insert E

RING CG10961 Traf6 EP325 UAS insert S

EP1516 UAS insert S

RING CG10981 dgrn DK partial loss of function E

EY09862 UAS insert NM

RING CG11329 Nse1 k00605a P insert S

RING CG12477 BG01986 P insert E

RING CG12489 dnr1 KG01493 P insert NM

BG02050 P insert NM

RING CG13025 EY10081 UAS insert NM

CG13025 e03112 P insert NM

RING CG13030 sinah 1 loss of function S

RING CG13344 c05454 P insert NM

RING CG13605 G14745 UAS insert NM

RING CG14472 poe 01659 P insert E

RING CG15104 Topors f05115 amorph E

RING CG15141 KG06005 P insert NM

RING CG15439 EY01496 UAS insert NM

RING CG16807 roq EY09493 UAS insert E

RING CG16947 MI07089 Minos insert S

(Continued )
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Table 2. (Continued)

Known/

predicted domain

class1.

CG

number

Gene

symbol

Allele Nature of allele (known or

predicted)2.
Phenotype: enhanced (E), suppressed (S) or no

modification (NM) of GMR>cindrRNAi2

RING CG17492 mib2 4 uncharacterized EMS

mutation

NM

1 amorph NM

RING CG17721 G18680 UAS insert S

RING CG1815 EY01163 UAS insert NM

RING CG1909 C024 P insert E

RING CG32210 Ltn1 1 not known E

G9156 UAS insert S

RING CG32369 EY10338 UAS insert S

MI02469 Minos insert NM

RING CG32486 CC00904 P insert E

SH095 P insert NM

RING CG32581 G10126 UAS insert NM

RING CG32592 hiw ND8 loss of function NM

RING CG4080 KG08382 P insert NM

EY01375 UAS insert NM

RING CG4909 POSH k15815 P insert, amorph NM

RING CG5140 nopo G5845 UAS insert S

RING CG5555 EY00181 UAS insert S

RING CG6752 c06604 P insert E

RING CG6923 G4352 UAS insert S

RING CG7037 Cbl F165 loss of function E

RING CG7184 Mkrn1 EY14602 UAS insert NM

RING CG7376 e02832 P insert E

RING CG7694 07551 P insert 3. E

RING CG8786 EY09040 UAS insert S

RING CG8910 c01167 P insert NM

RING CG8974 G757 UAS insert E

RING CG9086 Ubr1 BG01122 GAL4 insert NM

RING CG9381 mura EP-643 UAS insert E

EY00506 UAS insert NM

RING CG9941 G242 UAS insert E

RING CG9949 sina SH deletion E

3 amorph NM

RING-between-

RING

CG11321 LUBEL MB00197 GAL4 insert NM

RING-between-

RING

CG12362 MI06577 Minos insert E

RING-between-

RING

CG33144 KG08822 P insert NM

RING-between-

RING

CG5659 ari-1 EY01960 UAS insert S

EP317 UAS insert S

EY08909 UAS insert NM

RING-between-

RING

CG5709 ari-2 07768 P insert NM

ROC CG16982 Roc1a G824 UAS insert NM

ROC CG16988 Roc1b dc3 loss of function NM

(Continued )
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signaling, and the modification or maintenance of cell structure or organization. These

included Prp19which regulates RAS/MAPK signaling [39, 40]; poe a component of the spliceo-

some complex that was recently implicated in regulating MAPK stability [41]; dgrn, an antago-

nist of Notch signaling [42]; Sherpa, which is required for Toll signaling [43]; roq, which plays

a role in mRNA degradation [44]; Ltn1, which associates with the ribosome to mediate degra-

dation of polypeptides translated from mRNAs lacking stop codons [45]; Topors, which has

been implicated in chromatin organization and nuclear lamin organization [46–48]; mura,

which has also been isolated in screens for loci involved in the DNA damage response, ethanol

tolerance, memory and cardiovascular development [49–53]; ari-1, which has been implicated

in axon pruning and re-wiring and adult myogenesis and is especially important during meta-

morphosis as it targets the ecdysone receptor [54–57]; tn, which is crucial for the assembly and

maintenance of myofibrils [58, 59]; and sinah and sina, which have been implicated in photo-

receptor and bristle differentiation [60]. In addition, several E3 ligases connected to Jun-N-ter-

minal Kinase (JNK) signaling modified GMR>cindrRNAi2 phenotypes.

A cohort of JNK-associated E3 ligases were identified in the screen

A set of sequentially-activated kinases comprise the core of the JNK signaling pathway, a devel-

opmentally regulated pathway that is also activated in response to stress signals [61–63]. JNK

activity influences the establishment of planar polarity in the fly retina [64], but otherwise does

not contribute significantly to eye development [65]. However, we found that a UAS-insertion

allele of no poles (nopo) suppressed GMR>cindrRNAi2 mis-patterning (Fig 2C). Nopo promotes

apoptosis in response to Eiger-TNF Receptor signaling [66]. Modification of GMR>cindrRNAi2

by alleles of parkin (park), was inconsistent: defects were suppressed by park1 and mildly

Table 2. (Continued)

Known/

predicted domain

class1.

CG

number

Gene

symbol

Allele Nature of allele (known or

predicted)2.
Phenotype: enhanced (E), suppressed (S) or no

modification (NM) of GMR>cindrRNAi2

ROC CG8998 Roc2 KG07982 UAS insert NM

EP2487 UAS insert NM

TRIM CG15105 tn f02741 P insert E

TRIM CG31721 Trim9 KG05017 P insert NM

TRIM CG8419 MB06410 Minos GAL4 insert E

U-box CG2218 EY02167 UAS insert NM

U-box CG5519 Prp19 G3080 UAS insert S

07838 P insert S

U-box CG6179 f08025 P insert NM

U-box CG7747 f02221 P insert NM

U-box CG9934 G13471 UAS insert NM

1. Classification according to http://flybase.org/reports/FBgg0000069.html, http://flybase.org/reports/FBgg0000128.html, and http://flybase.org/reports/

FBgg0000131.html

2. P-element insertions that include UAS sites are listed here as UAS inserts. These may lead to ectopic protein expression in the presence of the

GMR-GAL4 driver, although the UAS insertion may also perturb the locus.

All other P-element insertions are listed as P-inserts. These, as well as the Minos-transposon (Minos insert) lines listed, may display perturbed gene

expression.

P-element insertions that include the GAL4 transgene are listed as GAL4-inserts. These may perturb expression of a locus and in addition drive additional

expression of the UAS-cindrRNAi transgene.

3. The 07551 P-element insertion may perturb both CG7694 and the neighboring locus fray.

https://doi.org/10.1371/journal.pone.0187571.t002
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repressed by parkΔ21 but severely enhanced by parkc00062 (Fig 2E–2G). It is possible that the

parkc00062 line contains additional mutations that contribute to eye disruption. Parkin has been

implicated in inhibiting JNK activity to suppress apoptosis, possibly by indirectly reducing bsk
expression [67, 68]. Finally, two alleles of tumor necrosis factor receptor-associated factor 6
(Traf6) that potentially drive ectopic Traf6, Traf6EP325 and Traf6EP1516 suppressed cindrRNAi

mis-patterning (Fig 2H and 2I). Traf6 promotes JNK activity downstream of the TNF Receptor

[69].

Identifying alleles of nopo, parkin and Traf6 in our screen suggested that JNK activity is

modified in the eye epithelium in response to expression of UAS-cindrRNAi2 transgenes, a rela-

tionship that we have observed in Drosophila wing epithelia [16]. To verify this, we tested

whether alleles of other JNK signaling components modified the GMR>cindrRNAi2 adult eye

phenotype. Over-expression of basket (bsk, which encodes the Drosophila JNK [65]) mildly

enhanced cindrRNAi2 mis-patterning (Fig 3C). In addition, ectopic slpr, a JNKKK that functions

upstream of Bsk, [70, 71], also enhanced the cindrRNAi2 rough eye (Fig 3E) as did mutations in

the Bsk inactivator, puckered (puc, [72], Fig 3G). As the potential for JNK activity would have

been enhanced in these three genetic manipulations, we expected that manipulations that

decreased JNK activity would suppress GMR>cindrRNAi2 adult eye phenotypes. However,

mutations in bsk and over-expression of puc enhanced cindrRNAi2 mis-patterning (Fig 3H and

3I). These data could reflect cross-talk between JNK and other signals that are utilized during

eye development, including Notch, Hedgehog and RTK networks [73]. In addition, ectopic

Traf4, which promotes JNK signaling [74], also enhanced the cindrRNAi2 rough eye as did

mutations in the ubiquitin-conjugating enzyme variant 1a (dUev1A) an E2 enzyme that pro-

motes JNK activity [75] (Fig 3K and 3M). Interestingly, alleles of two Cullins tested in our

screen—Cul1 and Cul3—also modified the GMR>cindrRNAi2 adult eye (Table 2). Activity of

these Cullins has not been linked to JNK signaling, but they have been implicated in dendrite

morphogenesis and apoptosis, processes that require JNK activity. Surprisingly, Cul4, which

has been shown to regulate JNK (as well as Wingless) activity [76], did not modify the

GMR>cindrRNAi adult eye–it is possible that the Cul4KG02900 allele used in the screen does not

significantly perturb the locus.

To better understand how nopo, park and Traf6 modified the phenotype of GMR>cindrR-
NAi2 adult eyes, we dissected retinas from pupae in which these E3 ligases were modified (Fig

4). At 40 hours after puparium formation (APF), the stereotyped arrangement of ommatidial

cells and the interweaving cell lattice is established (Fig 4A and 4B). Specifically, four cone cells

and two primary pigment cells encapsulate each group of photoreceptors, which are buried

below the apical epithelium surface. Three bristle groups, three tertiary pigment cells and six

secondary pigment cells are arranged about each ommatidium, thus generating the honey-

comb lattice (Fig 4A and 4B). This precise cellular pattern is reflected in the arrangement and

shapes of the lenses of adult eyes (Fig 1A and 1B). The neat arrangement of interommatidial

cells was mildly disrupted in GMR>cindrRNAi2 retinas (Fig 4C and 4D) due to the introduction

of a variety of patterning errors which are quantified in Table 3. Specifically, many cells failed

to adopt correct positions and shapes and consequently the honeycomb interommatidial cell

lattice was mildly distorted. Expression of nopo, park and Traf6 generated few defects in the

arrangement of cells in the retina (Fig 4E, 4I and 4M, Table 3). However, ectopic nopo and

park significantly restored patterning of interommatidial cells in GMR>cindrRNAi2 retina (Fig

4F and 4J, compare to panel C, Table 3). To verify the contribution of Traf6 we obtained an

additional UAS line (BL-58991), which mildly improved patterning of the pupal eye (Fig 4N,

compare to 4C, Table 3). Mis-patterning of the lattice of GMR>cindrRNAi2 retinas was mildly

enhanced by alleles of nopo (Fig 4G, 4H, compare to 4D) and improved by park1 and parkΔ21(-
Fig 4K and 4L, Table 3).
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Discussion

Many signals and cell behaviors integrate to pattern complex epithelia. In this screen, we have

identified 36 E3 ligases and 4 Cullins that interact with the adaptor protein Cindr, which is

required for these processes (Table 2). Few of these E3s/Cullins have been characterized and

the roles of most of these in epithelia are unexplored. Deciphering the substrates of the E3

ligases and the conserved cell behaviors that they modify will be an important next step in

understanding their contribution to epithelial patterning.

Amongst those loci identified in our screen were a set encoding E3 ligases that had previ-

ously been implicated in modifying JNK activity (Fig 2). These E3s modified cindrRNAi-
induced patterning defects that were evident in the errant arrangement of cells in the pupal

eye and reflected in the disordered arrangement of lens facets in the adult. Cindr is required to

inhibit JNK activity in the developing Drosophila wing epithelium [16]. Hence identifying

nopo, parkin and Traf6 in our screen likely reflects that Cindr-JNK interactions are important

for the correct development of most epithelia. However, since many E3 ligases regulate multi-

ple proteins, it is possible that Nopo, Parkin or Traf6 have targets besides components of the

JNK cascade. Over-expression of these proteins did not disrupt the eye (Fig 4E, 4I and 4M)

and investigations of loss-of-function phenotypes are required to clarify whether these E3

ligases contribute to JNK-independent processes that pattern epithelia.

It is intriguing that genetic manipulations that potentially increased JNK activity (ectopic

bsk and slpr expression, mutations in puc) as well as those that perturbed JNK (mutations in

bsk, expression of puc) enhanced mis-patterning of the adult GMR>cindrRNAi fly eye. Solv-

ing this anomaly will require investigation of the cell behaviors regulated by JNK during lar-

val and pupal eye development. However, our data are less surprising if one considers the

effect of specific cell behaviors that converge to organize the eye. For example, during pupal

development, local cell movements rearrange interommatidial cells to generate the honey-

comb lattice [77] and too much cell movement, as well as too little, can impede patterning

to generate adult eyes that appear similarly disordered. Hence, whilst the adult Drosophila
eye provides an excellent model for genetic screens such as the one described in this manu-

script, further investigations may be essential to pinpoint the cell behaviors that generate

adult eye phenotypes.

Our screen did not include all E3 ligases encoded in the Drosophila genome and some of

the alleles used may not have disrupted gene expression sufficiently to modify the cell behav-

iors responsible for mis-patterning of the GMR>cindrRNAi2 eye. Nonetheless, we have identi-

fied a large number of E3 ligases and Cullins that potentially function with Cindr to modify

the cytoskeleton, adhesion or signaling as the eye epithelium is organized [13–16]. Due to the

high degree of conservation between Drosophila and vertebrates, the orthologs of these E3

ligases and Cullins are likely to modify processes regulated by CD2AP and CIN85, the verte-

brate orthologs of Cindr [78–83].

Fig 4. Patterning of the pupal retinal was modified by interactions between park, nopo and Traf6 and cindr. (A) A single ommatidium in a wild-

type eye dissected at 40 h APF, with constituent cell types indicated. Photoreceptors are positioned beneath the surface of the tissue and not clearly

observed in this image of the apical eye surface. (B) Small region of a correctly patterned control pupal retina and (C) retina expressing cindrRNAi

together with lacZ or (D) only cindrRNAi. Expression of (E) nopoG5845, (F) nopoG5845 and cindrRNAi. (G) Expression of cindrRNAi in a nopoexcl42

heterozygote and (H) nopoZ1447 heterozygote. Expression of (I) park, (J) park and cindrRNAi. (K) Expression of cindrRNAi in a park1 heterozygote and (L)

parkΔ21, heterozygote. (M) Expression of Traf6S and (N) Traf6S and cindrRNAi. Anti-ECad was used to visualize all adherens junctions of retinas.

Fluorescence images have been transformed into greyscale and interommatidial cells pseudo-colored red in order to highlight the honeycomb lattice.

Examples of patterning defects are indicated as follows: blue arrow = mis-orientation of ommatidial core; outlined in green = small primary pigment

cells; yellow circle = tertiary position not defined; blue circle = bristle misplaced and star-like arrangement of cells around bristle; orange asterisks = two

cells rather than one in a secondary pigment cell position; blue asterisks = cells grouped in multiple rows rather than single file.

https://doi.org/10.1371/journal.pone.0187571.g004
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