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Abstract: This study aimed to validate whether 5-hydroxymethylcytosine (5hmC) level in
combination with ERG expression is a predictive biomarker for biochemical failure (BF) in men
undergoing radical prostatectomy (RP) for prostate cancer (PCa). The study included 592 PCa
patients from two consecutive Danish RP cohorts. 5hmC level and ERG expression were analyzed
using immunohistochemistry in RP specimens. 5hmC was scored as low or high and ERG was scored
as negative or positive. Risk of BF was analyzed using stratified cumulative incidences and multiple
cause-specific Cox regression using competing risk assessment. Median follow-up was 10 years
(95% CI: 9.5–10.2). In total, 246 patients (41.6%) had low and 346 patients (58.4%) had high 5hmC
level. No significant association was found between 5hmC level or ERG expression and time to BF
(p = 0.2 and p = 1.0, respectively). However, for men with ERG negative tumors, high 5hmC level was
associated with increased risk of BF following RP (p = 0.01). In multiple cause-specific Cox regression
analyses of ERG negative patients, high 5hmC expression was associated with time to BF (HR: 1.8;
95% CI: 1.2–2.7; p = 0.003). In conclusion, high 5hmC level was correlated with time to BF in men
with ERG negative PCa, which is in accordance with previous results.
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1. Introduction

Prognostication of outcome for prostate cancer (PCa) is currently based on clinicopathological
parameters [1–3]. Several studies have shown that active surveillance of patients with low risk disease
is safe, but not without risk of progression [4,5]. In contrast, some localized PCas treated with a
curative intent turn out to be more aggressive than predicted by the clinicopathological variables [6].
Applying biomarkers that reflect the biology of the tumor could potentially be a supplementary
approach to the clinicopathological variables, and refine prognostication of PCa patients. Despite the
enormous number of potential biomarkers reported in the literature and the clear clinical need for
better prognostication and individualized treatments, no biomarkers, except for a prostate-specific
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antigen (PSA), are used routinely. One repeating issue is the lack of validation studies of potential
novel biomarkers.

Approximately 40%–60% of PCa patients carry the TMPRSS2-ERG gene fusion resulting in ERG
protein expression [7]. Even though there is conflicting evidence whether ERG could be a biomarker
for PCa aggressiveness, several studies indicate that distinct molecular mechanisms are at play in
ERG negative vs. ERG positive tumors; thus, ERG in combination with other biomarkers might be a
valuable biomarker for PCa aggressiveness [8–10].

Epigenetic modifications of the human genome have been shown to be important at all stages
of carcinogenesis and progression [11], particularly dysregulation in methylation has been shown to
have promising potential as a marker for cancer aggressiveness [12]. The DNA methylation variant
5-hydroxymethylcytosine (5hmC) plays an important role in epigenetic reprogramming and regulation
of tissue-specific gene expression [13,14]. In the first large-scale study of 5hmC immunoreactivity in
PCa patients, we have previously shown that high immunoreactivity of 5hmC is a significant adverse
predictor of biochemical failure (BF) following radical prostatectomy (RP) in patients with ERG
negative PCas [15,16]. Thus, the combination of 5hmC level and ERG protein expression might hold
predictive value as biomarkers for PCa aggressiveness [15,16]. However, to facilitate implementation
in the clinic the results need to be validated.

In the present study, we aimed to investigate the generalizability of the previously reported
predictive value of 5hmC level in combination with ERG expression by adding another large-scale
consecutive RP cohort from another institution. Our results indicate that 5hmC level can predict BF
following RP for PCa in patients with ERG negative tumors, which is consistent with previous results.

2. Results

This study included 592 patients who underwent RP for PCa (Figure 1). Pre- and postoperative
clinicopathological parameters are outlined in Table 1. The median PSA was 10.6 µg/L (interquartile
range: 7.1–16.0). A total of 66.3% had pT2 PCa and 87.5% of patients had RP Gleason score (GS) ≤7.
The median follow-up time following RP was 10 years (95% CI: 9.5–10.2).
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Immunohistochemical (IHC) analysis of tumor tissue showed that 246 (41.6%) patients had a low
5hmC level while 346 (58.4 %) patients had a high 5hmC level. Furthermore, 238 (40.2%) were ERG
negative and 354 (59.8%) were ERG positive. We found a significant association between 5hmC level
and lower age at RP (p = 0.003), lower clinical tumor-stage (p = 0.03), lower biopsy GS (p = 0.05), lower
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RP GS (p = 0.001) and positive ERG expression (p < 0.0001). In contrast, no association between 5hmC
level and preoperative PSA (p = 0.7), pathological tumor-stage (p = 0.5) and surgical margin status
(p = 0.8) was found (Table 1).

Table 1. Baseline characteristics of the study cohort.

Baseline Characteristic of the Study
Cohort

Study Population
n = 592

5hmC Low
n = 246

5hmC High
n = 346 p-Value

Age at baseline, years, median (IQR) 63.2 (59.5–67.0) 64.1 (60.3–67.7) 62.5 (59.0–66.6) 0.003 *

PSA, µg/L, median (IQR) 10.6 (7.1–16.0) 10.9 (7.2–16.1) 10.6 (7.1–16.0) 0.7 *

Clinical T-stage 0.03 **
cT1 161 (27.2%) 53 (21.5%) 108 (31.3%)
cT2 423 (71.6%) 190 (77.2%) 233 (67.5%)
cT3 7 (1.2%) 3 (1.2%) 4 (1.2%)

Missing 1 0 1

Biopsy Gleason score 0.05 **
≤6 361 (69.4%) 133 (63.6%) 228 (73.3%)
7 125 (24.0%) 58 (27.8%) 67 (21.5%)

8–10 34 (6.5%) 18 (8.6%) 16 (5.1%)
Missing 72 37 35

Pathological T-stage 0.5 **
pT2 392 (66.3%) 167 (67.9%) 225 (65.2%)

pT3-4 199 (33.7%) 79 (32.1%) 120 (34.8%)
Missing 1 0 1

Radical prostatectomy Gleason score 0.001 **
≤6 202 (34.1%) 64 (26.0%) 138 (39.9%)
7 316 (53.4%) 141 (57.3%) 175 (50.6%)

8–10 74 (12.5%) 41 (16.7%) 33 (9.5%)

Margin status 0.8 **
R− 329 (56.0%) 135 (55.3%) 194 (56.6%)
R+ 258 (44.0%) 109 (44.7%) 149 (43.4%)

Missing 5 2 3

ERG <0.0001 **
Negative 238 (40.2%) 141 (57.3%) 97 (28.0%)
Positive 354 (59.8%) 105 (42.7%) 249 (72.0%)

Abbreviations: IQR: inter quartile range; PSA: prostate specific antigen. * Mann-Whitney U test, ** χ2-test.

Biochemical Failure

The 10-year cumulative incidence of BF was 47.1% (95% CI: 42.8–51.4). There was no association
between 5hmC level or ERG expression and time to BF (p = 0.2 and p = 1.0, respectively) (Supplementary
Figure S1). Moreover, no association between 5hmC level and time to BF was found when stratifying
for ERG expression (p = 0.09) (Figure 2A). However, in ERG negative patients, the 10-year cumulative
incidence of BF was 42.4% (95% CI: 33.6–51.2) in the 5hmC low group compared to 55.4% (95% CI:
45.2–65.6) in the 5hmC high group (p = 0.01) (Figure 2B). In contrast, no association between 5hmC
level and time to BF was found in ERG positive patients (p = 0.6) (Figure 2C).
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Figure 2. The cumulative incidence of biochemical failure (BF) following radical prostatectomy (RP). 
Competing events are death without BF. Patients are stratified according to (A) biomarker status and 
5hmC level for (B) ERG negative and (C) ERG positive, respectively. The p-values for Gray’s test are 
added. 

Figure 2. The cumulative incidence of biochemical failure (BF) following radical prostatectomy (RP).
Competing events are death without BF. Patients are stratified according to (A) biomarker status and
5hmC level for (B) ERG negative and (C) ERG positive, respectively. The p-values for Gray’s test
are added.



Int. J. Mol. Sci. 2019, 20, 1025 5 of 12

In multiple cause-specific Cox regression analyses high 5hmC level was an independent predictor
of BF following RP in patients with ERG negative tumors (HR: 1.8; 95% CI: 1.2–2.7; p = 0.003) (Table 2A),
whereas 5hmC level did not have a predictive value in terms of BF in patients with ERG positive
tumors (Table 2B). The sensitivity and specificity of the models with and without 5hmC for predicting
BF are presented in the receiver operating characteristic (ROC) plot for ERG negative (Figure 3A) and
ERG positive (Figure 3B) tumors. The areas under the curve (AUC) value for the model without 5hmC
was 79.2% which increased to 80.3% with the addition of 5hmC level in the model for ERG negative
tumors. There was no difference in the AUC for the models with and without 5hmC level of BF for
ERG positive tumors.

Table 2. Uni- and multivariate cause-specific Cox regression of biochemical failure.

A: For patients with ERG negative tumors

For Patients with ERG
Negative Tumors Univariate analysis Multivariate analysis

HR (95% CI) p-value HR (95% CI) p-value

5hmC
Low REF REF
High 1.6 (1.1–2.4) 0.01 1.8 (1.2–2.7) 0.003

Age at RP
For 5-yr difference 1.0 (0.9–1.2) 0.7 1.0 (0.9–1.2) 0.8

PSA
For 2-fold difference 1.7 (1.4–2.2) <0.0001 1.4 (1.1–1.8) 0.002

Pathological T-stage
pT2 REF REF

pT3-4 3.1 (2.1–4.5) <0.0001 1.9 (1.2–2.8) 0.004

RP Gleason score
≤6 REF REF
7 2.5 (1.4–4.5) 0.003 2.2 (1.2–4.0) 0.01

8–10 5.4 (2.8–10.2) <0.0001 4.6 (2.3–9.0) <0.0001

Margin status
R− REF REF
R+ 2.1 (1.5–3.1) <0.0001 1.5 (1.0–2.3) 0.04

B: For patients with ERG positive tumors

For Patients with ERG
Positive Tumors Univariate analysis Multivariate analysis

HR (95% CI) P-value HR (95% CI) P-value

5hmC
Low REF REF
High 0.9 (0.7–1.3) 0.6 1.0 (0.7–1.4) 0.9

Age at RP
For 5-yr difference 1.1 (0.9–1.3) 0.3 0.9 (0.8–1.1) 0.5

PSA
For 2-fold difference 1.7 (1.4–2.1) <0.0001 1.4 (1.2–1.7) 0.0002

Pathological T-stage
pT2 REF REF

pT3-4 3.0 (2.2–4.1) <0.0001 1.9 (1.3–2.7) 0.0003

RP Gleason score
≤6 REF REF
7 2.9 (2.0–4.2) <0.0001 2.0 (1.4–3.0) 0.0004

8–10 5.7 (3.3–9.7) <0.0001 3.6 (2.0–6.4) <0.0001

Margin status
R− REF REF
R+ 2.4 (1.7–3.3) <0.0001 1.6 (1.1–2.2) 0.007

Abbreviations: CI: Confidence interval; HR: hazard ratio; PSA: prostate specific antigen; REF: reference; RP:
radical prostatectomy.
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Figure 3. Receiver operating characteristic (ROC) curves for the multivariate cause-specific Cox
regression model with and without 5hmC level for predicting biochemical failure of (A) ERG negative
and (B) ERG positive patients. Area under the receiver operating characteristic curve (AUC) are added.

3. Discussion

Treatment of PCa with RP is intended to be curative, but a long-term follow-up indicates that
approximately 40% will experience BF and 15% will progress to a metastatic disease [17,18]. Several
nomograms have been established to estimate the risk of progression [1–3], but all lack accuracy.
Therefore, new tools, including the identification of novel biomarkers for more precise prognostication
of PCa aggressiveness, are essential.

Epigenetic modifications regulate gene expression by either DNA methylation, histone
modifications or microRNA. Changes in epigenetic modifications may result in inaccurate activation
or inhibition of signaling pathways leading to the development of cancer [11]. It is well established
that PCa has a low number of somatic gene mutations [19]. Consequently, epigenetic alterations
are considered hallmarks for PCa development and progression [20,21]. Particularly, dysregulation
in DNA methylation has shown to be important in the initiation and progression of cancer [11,22].
DNA methylation at the 5 position of cytosine (5mC) is important for various biological as well as
pathological processes [11]. 5mC can be converted to 5hmC by the ten-eleven translocation (TET)
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family of DNA hydroxylases [13]. Several studies have indicated that changes in DNA methylation
may reflect PCa aggressiveness [16,21,23,24]. Furthermore, 5hmC has previously been associated with
several cancer types [12,25,26] including PCa [14–16,25–27], but so far the only study that analyzed the
association between 5hmC level in tumor tissue and PCa aggressiveness was our previous study [15,16].

Since the combination of 5hmC level and ERG expression was found to be associated with BF
following RP for PCa, we aimed to validate the biomarkers in the present study by including another
RP cohort (cohort B) and extending the follow-up by three years in the original cohort (cohort A). In the
present study, we found that 5hmC level was associated with RP GS and ERG expression. Furthermore,
consistent with our previous results, we confirmed that a high 5hmC level predicted BF in patients
with ERG negative tumors [15,16]. Thus, our findings suggest that 5hmC level is predictive of BF in
patients with ERG negative tumors, including 5hmC level in the predictive model only increased the
AUC by 0.7%.

Two small-scale studies have previously shown that 5hmC level was reduced in prostate tumor
tissue when compared to normal prostate tissue [25,26]. Haffner MC et al. analyzed 30 PCa tissue
samples and found that 5hmC immunoreactivity was not associated with tumor grade and stage [25].
In accordance, we did not find an association between 5hmC level and pathological tumor-stage, but
in contrast, we demonstrated a significant negative association between 5hmC level and RP GS. This
difference from other studies might be a consequence of power. A high 5hmC level has previously
been shown to be associated with a poor outcome in patients with acute myeloid leukemia [28]. In
contrast to that, a low 5hmC level has been found to be associated with a poor outcome in various
cancers including breast cancer [29], malignant melanoma [30], non-small cell lung cancer [31], renal
cell carcinoma [32] and cervical squamous cell cancer [33]. When including the results of the present
study it seemed reasonable to suggest that different mechanisms are at play in different types of cancer.
An explanation could be that different phenotypic effects of epigenetic regulation are influenced by
the global level of specific DNA methylations and their genomic distribution in the different cell types,
as well as by specific patterns of genomic aberrations in cancer types.

We previously demonstrated that the presence of ERG can predict progression of early and
low-risk PCa [34]. In contrast, ERG expression does not seem to add any predictive information
regarding the risk of BF following RP [35], which is consistent with our results. However, in line with
previous studies, we demonstrated that ERG status can be used to distinguish between different PCa
molecular subtypes [8–10]. Moreover, our results contribute to the perception that ERG stratification is
important in predicting PCa outcome and when investigating new biomarkers for PCa aggressiveness.

Despite enormous research activity, no IHC based tissue biomarker is routinely used in the daily
clinical practice of handling PCa patients. One likely explanation is the lack of validation studies,
which are needed to verify the accuracy of the biomarker [36]. Another issue is the missing consensus
regarding the selection of antibodies and standardization of the IHC technique. Finally, scoring of the
IHC staining is done semi-quantitatively, and known to be associated with inter- and intra-observer
variation, which may limit its reproducibility [37]. As our previous study was the first large-scale
investigation of 5hmC immunoreactivity in combination with ERG in PCa, it is a strength of the present
study that it seeks to validate our results in another study population, as the addition of a cohort from
another institution increases the generalizability of the results across study populations. Furthermore,
it is a strength that we used the same antibody and the same protocol for the IHC staining, and that
the scoring of 5hmC immunoreactivity was done in accordance with our first study. Although the
scoring of the IHC staining was done by different observers for the two cohorts, the observer of cohort
B had thorough instructions from one of the observers of cohort A. Since inter-observer agreement
was high in our first publication [15], we assessed that one observer for cohort B would be sufficient.
Moreover, the study cohorts were two consecutive series of men who underwent RP with curative
intent and long-term follow-up, and few lost-to-follow-up. Finally, even though the cohorts were
historical, the indication for RP has not changed through the study period and the RP GS was updated
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according to the International Society of Urological Pathology (ISUP) 2005 Gleason grading system for
both cohorts [38].

Our study has some limitations, besides those related to its retrospective nature. First, only a small
fraction of the tumor tissue from the RP specimen was evaluated for 5hmC level and ERG expression,
and the fact that PCa is known to have intratumoral heterogeneity can hamper the reliability of the
biomarker status. Second, even though GS 3 + 4 and GS 4 + 3 are generally accepted as two different
risk groups, we analyzed them as a single group because we did not have access to primary and
secondary Gleason grade for all the patients. Third, we used BF as an endpoint, acknowledging that
BF is only a surrogate endpoint for PCa aggressiveness. Whether 5hmC in combination with ERG can
predict a more clinically relevant endpoint, such as metastasis and PCa specific death, needs to be
investigated. Finally, we used antibodies from two different companies to analyze ERG expression
in the two cohorts, but as the antibodies are from the same clone EPR3864 we expect that they bind
equally. Furthermore, investigation of ERG protein expression by the antibody clone, EPR3868, has
previously shown to be specific for ERG gene fusion status [39–41].

Based on our findings it can be hypothesized that 5hmC level in combination with ERG status can
be used to select patients who would benefit more from a closer follow-up and/or early adjuvant or
salvage therapy. Furthermore, it can be speculated whether the combination of 5hmC level and ERG
expression can be used to select the most eligible low-risk PCa patients for an initial observational
strategy. Logically, further research, including more patients and other outcomes, is needed to
determine the true predictive as well as prognostic value of 5hmC in PCa.

4. Materials and Methods

4.1. Patient Cohort

The study included two historical consecutive RP cohorts from two independent urological
departments at university hospitals in Denmark (Copenhagen & Aarhus). We used tissue microarrays
(TMAs) generated from formalin-fixed paraffin-embedded RP specimens from both tumor and
normal prostate tissue. The cohort included 552 men who underwent RP from 1998 until 2009 at the
Department of Urology, Aarhus University Hospital, Aarhus, Denmark (cohort A), and 336 men who
underwent RP from 2002 until 2005, at the Department of Urology, Copenhagen University Hospital,
Rigshospitalet, Copenhagen, Denmark (cohort B) (Figure 1). Production of the TMAs and collection of
the clinicopathological data has previously been described in detail [15,42]. The study was approved
by the Danish National Committee on Health Research Ethics (Journal no.: 2000-0299, 28 March 2017
and H-6-2014-111, 6 February 2015) and The Danish Data Protection Agency (file#2013-41-2041 and
file#2006-1-6256).

Clinical and pathological information were collected from patient records. The RP GS was
reclassified according to the ISUP 2005 Gleason grading system [38]. BF was defined as PSA ≥
0.2 ng/mL. Survival was specified using the Danish Central Person Registry that is updated daily.
Patients were excluded if neoadjuvant endocrine treatment was administrated, length of follow-up
was less than 3 months, BF occurred within the first 3 months following RP, or if malignant tissue was
not present in the TMA (Figure 1).

4.2. Immunohistochemistry

Freshly cut sections of each TMA block were used for IHC staining for 5hmC (1:1000 dilution;
anti-5hmC 39769 Rabbit Polyclonal antibody, Active Motif, Carlsbad, CA, USA) and ERG (cohort A:
anti-ERG clone EPR3864 Rabbit Monoclonal Antibody, Epitomics, Burlingame, CA, USA, and cohort
B: anti-ERG clone EPR3864 Rabbit Monoclonal Antibody, Roche Ventana, Indianapolis, IL, USA), as
previously described in detail [15,42]. A separate hematoxylin & eosin (HE) stained section was used
for validation of the presence of cancer in each core.
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Whole field inspection of 5hmC and ERG immunoreactivity for each TMA core was done by
two independent observers for cohort A (SHS, SH) [15] and one observer (GK) for cohort B. For each
TMA core, nuclear 5hmC immunoreactivity in malignant prostate epithelial cells was evaluated and
scored for the predominant intensity and categorized as 0 = negative, 1 = moderate or 2 = strong
(Figure 4) [15]. As each patient had multiple cores, and a mean 5hmC score (∑ intensity for each
core/number of cores) was calculated for each patient. Patients with a mean 5hmC score ≤1 were
classified as having a low 5hmC level and patients with a mean 5hmC score >1 were classified as
having a high 5hmC level. Nuclear ERG immunoreactivity in malignant prostate epithelial cells was
evaluated and scored as negative if all cores were negative, and positive if any of the cores were
positive [15,42]. The assessment of the biomarkers was blinded to study end-points.
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4.3. Statistics

Association of 5hmC expression in tumor tissue and clinicopathological variables was analyzed
using the χ2-test for categorical variables and the Mann-Whitney U test for continuous variables. The
median time of follow-up was calculated using the reverse Kaplan-Meier method [43]. Follow-up was
calculated until April 2018 for cohort A and July 2017 for cohort B.

Cumulative incidences of BF were analyzed using the Aalen-Johansen method for competing
risks. Death before BF was treated as a competing event. Gray’s test was used to assess differences
in the cumulative incidence of BF between biomarker subgroups [44]. Uni- and multivariate
cause-specific Cox proportional hazard regression models were performed for risk of BF, with results
presented as hazard ratios (HR) and a 95% confidence interval (CI). The analysis included age at
RP, log2-transformed PSA, pT-stage, RP GS, surgical margin status, ERG expression and 5hmC level.
The overall ability of the models to predict BF was analyzed using the ROC curve, generated for the
multivariate cause-specific Cox regression models with and without 5hmC level, and quantified using
the AUC.

All tests were two-sided and p < 0.05 was considered as statistically significant. All statistical
analyses were performed using SPSS (software version 22; IBM) or R (R Development Core Team,
Vienna, Austria).

5. Conclusions

In conclusion, we found that a high 5hmC level was associated with BF in patients with ERG
negative PCa, while 5hmC level did not have a significant predictive value in ERG positive PCa. Our
findings suggest that 5hmC level in combination with ERG status holds potential as a biomarker for
PCa aggressiveness.
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