# Ontogenetic *De Novo* Copy Number Variations (CNVs) as a Source of Genetic Individuality: Studies on Two Families with MZD Twins for Schizophrenia

# Sujit Maiti<sup>1</sup>, Kiran Halagur Bhoge Gowda Kumar<sup>1</sup>, Christina A. Castellani<sup>1</sup>, Richard O'Reilly<sup>2</sup>, Shiva M. Singh<sup>1,2</sup>\*

1 Molecular Genetics Unit, Department of Biology, The University of Western Ontario, London, Ontario, Canada, 2 Department of Psychiatry and London Health Sciences Centre, The University of Western Ontario, London, Ontario, Canada

# Abstract

Genetic individuality is the foundation of personalized medicine, yet its determinants are currently poorly understood. One issue is the difference between monozygotic twins that are assumed identical and have been extensively used in genetic studies for decades [1]. Here, we report genome-wide alterations in two nuclear families each with a pair of monozygotic twins discordant for schizophrenia evaluated by the Affymetrix 6.0 human SNP array. The data analysis includes characterization of copy number variations (CNVs) and single nucleotide polymorphism (SNPs). The results have identified genomic differences between twin pairs and a set of new provisional schizophrenia genes. Samples were found to have between 35 and 65 CNVs per individual. The majority of CNVs ( $\sim$ 80%) represented gains. In addition,  $\sim$ 10% of the CNVs were *de novo* (not present in parents), of these, 30% arose during parental meiosis and 70% arose during developmental mitosis. We also observed SNPs in the twins that were absent from both parents. These constituted 0.12% of all SNPs seen in the twins. In 65% of cases these SNPs arose during meiosis compared to 35% during mitosis. The developmental mitotic origin of most CNVs that may lead to MZ twin discordance may also cause tissue differences within individuals during a single pregnancy and generate a high frequency of mosaics in the population. The results argue for enduring genome-wide changes during cellular transmission, often ignored in most genetic analyses.

Citation: Maiti S, Kumar KHBG, Castellani CA, O'Reilly R, Singh SM (2011) Ontogenetic *De Novo* Copy Number Variations (CNVs) as a Source of Genetic Individuality: Studies on Two Families with MZD Twins for Schizophrenia. PLoS ONE 6(3): e17125. doi:10.1371/journal.pone.0017125

Editor: Branden Nelson, Seattle Children's Research Institute, United States of America

Received October 22, 2010; Accepted January 21, 2011; Published March 2, 2011

**Copyright:** © 2011 Maiti et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

**Funding:** Work was supported by the Canadian Institutes of Health Research (CIHR) http://www.cihr-irsc.gc.ca/ Grant number: R2258A15; Ontario Mental Health Foundation (OMHF) http://www.omhf.on.ca/ Grant number: R2258A14; and the Schizophrenia Society of Ontario (SSO) http://www.schizophrenia.on.ca/ Grant number: R2258A10. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

**Competing Interests:** The authors have declared that no competing interests exist.

\* E-mail: ssingh@uwo.ca

# Introduction

Genome-wide constancy and change underlies evolution and familial inheritance but remains ill-defined. An assessment of changes as the genome is passed on from one generation (meiosis) and developmental cycle (mitosis) to the next is needed. It directly contributes to the sum of genetic individuality. At present, these inquiries are difficult [2], and require the development of new quantitative methods to assess genome-wide changes and their significance. This report assesses two common measures of genomic variation: copy number variations and (CNVs) and single nucleotide polymorphism (SNPs) across a generation and between monozygotic twins in two exceptional families. The results offer novel insight into meiotic and mitotic sources of variation, which results in genetic individuality between MZ twins. This individuality may account for discordance in monozygotic twins for a variety of diseases including schizophrenia.

CNVs are structural variants that are both frequent and relevant and may range in size in humans from 1 Kb to several Mb [3]. Given their impact on physiology and function, CNVs have a major influence on evolution and gene expression and on normal and disease related variation [3]. CNVs include duplications and deletions leading to a departure from the classic view that all autosomal genes are present in two copies, with one allele inherited from each parent. The majority of CNVs are copy number polymorphisms (CNPs), existing in a frequency that is greater than 1% and transmitted across generations. However, a small proportion of CNVs are novel events. CNVs may account for a major fraction ( $\sim 12\%$ ) of the genome, but appear to concentrate in some genomic regions depending on the sequence features [4,5]. Unlike CNVs, SNPs are relatively small changes, usually involving replacement of a nucleotide with another. SNPs are common and distributed across the entire human genome. Individual SNPs mark a unique genomic location, and are usually neutral in nature. In other cases, they may change amino-acids, cause protein truncation or affect expression. They are easily detected, and have been extensively exploited in genetic analysis including the cloning of disease causing genes, individual identification and establishment of genetic relatedness.

Studies on these two genome-wide variations (SNPs and CNVs) have greatly enhanced our understanding of evolution and genetic individuality. They are also helping to elucidate the cause of genetic, and genomic disorders including schizophrenia [6]. A number of SNPs appear to be linked to this complex neuro-developmental disease, which has a heritability estimate of 80%. However, results of linkage studies have not been consistently reproducible [7,8].



Figure 1. Pedigree of two families with monozygotic twins discordant for schizophrenia. Members of the family one are indicated with (I-) and members of the family two are indicated with (II-). The designations included in this figure are followed in subsequent figures and tables.

doi:10.1371/journal.pone.0017125.g001

Individuals affected with schizophrenia (SCZ) have shown an elevated incidence of CNVs [9] and a few rare CNVs appear to have a major effect on the development of SCZ [10]. However, these CNVs account for only a small fraction of schizophrenia cases [11] and the challenge of identifying common genetic cause(s) of SCZ remains. The search for genes in SCZ currently relies on large number of patients and matched controls. The limited progress using these approaches emphasizes the need to pursue alternative approaches. Future studies may benefit from inclusion of two features. The first is a genome-wide comparison of the parents and their progeny affected by SCZ and the second is the assessment of genomes of monozygotic twins (that show  $\sim$ 52% discordance for SCZ) [12,13]. The current study reports genome-wide CNV and SNP results on two exceptional families that include monozygotic twins discordant for schizophrenia (Figure 1, Table 1).

### **Results and Discussion**

# Familial Distribution of CNVs

The number of CNVs per individual ranged from 35 to 65, with the exception of one individual who is described more fully later (Table 2). This is similar to the number of CNVs per subject reported from most other studies that have used Affymetrix 6.0 Human SNP arrays [14]. The range is also comparable with the number of CNVs found in Venter's genome (62) based on his complete genome sequence [15]. The exception in our study was the father in family 2 (II-1-1) who was found to harbour a rare chromosome 13q deletion containing 40 CNVs at a single genomic location. Although this finding is beyond the scope of this report, it is important to note that II-1-1 underwent chemotherapy treatment and that the samples utilized in this study were obtained towards the end of that treatment. Most CNVs identified were in the range of 100 to 200 Kb, consistent with the size distribution of CNVs reported in the literature [14]. The majority of CNVs observed (Table 3) were copy number gains (78.5%) and  $\sim 10\%$  of the CNVs identified are not listed in the Database of Genomic Variants (http://projects.tcag.ca/variation/ ) accessed on 8.2.2010. Further, the chromosomal distribution of CNVs was comparable across individuals with the exception of the father in family 2 who had consistently higher CNVs affecting most chromosomes (Table 4). Of the CNVs identified, >50 per cent overlapped RefSeq genes. The identified genes are frequently associated with metabolic pathways such as starch and sucrose metabolism as well as pathways involved in the metabolism of amino acids, for example, , phenylalanine, histidine and tyrosine (AMY2A,AMY1A,ALDH1L1,PSMC1). Structurally, >67% of the CNVs identified were flanked at both the 5' and 3' end or at just the 5' (>7%) or 3' (>8%) end with a set of common repeats, represented by short interspersed nucleotide elements (SINEs), long interspersed nucleotide elements (LINEs), long terminal repeats (LTRs) and low copy repeats (LCRs) near the breakpoints. The majority of the deletion breakpoints had 1-30 bp of microhomology, whereas a small fraction of deletion breakpoints contained inserted sequences. The co-occurrence of microhomology and inserted sequence suggests that both recombination and replication based mutational mechanisms are operational in CNV generation. Recent studies have identified short DNA motifs that both determine the location of meiotic crossover hotspots and are significantly enriched at the breakpoints of recurrent non-allelic homologous recombination (NAHR) syndromes [16]. We found evidence for this mechanism in a subset of the breakpoint events (data not shown). This was true for the de novo (Figure 2a) as well as inherited (Figure 2b) CNVs. Such sequences may represent genomic architecture that is prone to genome instability by a predisposition to genomic rearrangements via non-homologous end joining (NHEJ), template switching and/or non-allelic homologous recombination (NAHR).

# Familial vs de novo Origin of CNVs

A novel feature of the data included in this report is that we are able to classify observed CNVs into two groups based on their

| Family 1                   |                                       |        |                                                  |        | Family 2                                                                                   |        |                                              |                                                                       |
|----------------------------|---------------------------------------|--------|--------------------------------------------------|--------|--------------------------------------------------------------------------------------------|--------|----------------------------------------------|-----------------------------------------------------------------------|
|                            | I-1-1                                 | I-1-2  | I-2-1                                            | I-2-2  | II-1-1                                                                                     | II-1-2 | II-2-1                                       | II-2-2                                                                |
| Age (yr.) at<br>assessment | 82                                    | 74     | 53                                               | 53     | N/A                                                                                        | N/A    | 43                                           | 43                                                                    |
| Sex                        | Male                                  | Female | Female                                           | Female | Male                                                                                       | Female | Female                                       | Female                                                                |
| Declared Race              | Afro-American                         |        |                                                  |        | Caucasian                                                                                  |        |                                              |                                                                       |
| Psychiatric<br>features    | Compulsive<br>Personality<br>Disorder | N/A    | Schizophrenia,<br>Paranoid Type,<br>onset age 22 |        | Major depression and panic<br>disorder for 6 months after<br>cardiac surgery, onset age 73 | N/A    | Schizoaffective<br>Disorder, onset age<br>27 | Single episode of Majo<br>Depression, fully<br>remitted, onset age 18 |

#### Table 1. Demography and Clinical History.

Demography and Clinical History of monozygotic (MZ) twins discordant for Schizophrenia (SCZ). Family one is indicated with (I), family two is indicated with (II). N/A = Not Applicable.

doi:10.1371/journal.pone.0017125.t001

**Table 2.** Distribution of CNV among family members according to size.

| CNV Size        | Famil | у 1   |       |       | Family | y 2    |        |        |
|-----------------|-------|-------|-------|-------|--------|--------|--------|--------|
|                 | I-1-1 | I-1-2 | I-2-1 | I-2-2 | II-1-1 | II-1-2 | II-2-1 | II-2-2 |
| <=100 kb        | 0     | 0     | 0     | 0     | 2      | 0      | 0      | 1      |
| >100 to 200 kb  | 17    | 18    | 15    | 20    | 119    | 50     | 24     | 24     |
| >200 to 300 kb  | 11    | 6     | 4     | 10    | 25     | 6      | 13     | 9      |
| >300 to 400 kb  | 5     | 5     | 6     | 5     | 11     | 3      | 1      | 4      |
| >400 to 500 kb  | 2     | 0     | 2     | 2     | 6      | 1      | 1      | 2      |
| >500 to 1000 kb | 6     | 2     | 4     | 7     | 7      | 2      | 5      | 2      |
| >1 to 10 Mb     | 9     | 4     | 5     | 3     | 5      | 2      | 4      | 5      |
| >10 to 20 Mb    | 5     | 0     | 0     | 0     | 0      | 0      | 0      | 0      |
| >20 Mb          | 3     | 0     | 0     | 0     | 2      | 0      | 2      | 2      |
| Total           | 58    | 35    | 36    | 47    | 177    | 64     | 50     | 49     |

Numerical values in each cell of the table indicate how many CNVs of that particular size range were observed in that particular individual. doi:10.1371/journal.pone.0017125.t002

doi.10.137 1/journal.pone.0017 125.000

absence or presence in one of the parents. CNVs that were found in one or both twins and not seen in either parent, were classified as de novo. If a de novo CNV was present in both twins, it was considered to have originated during parental meiosis and when present in only one of the two twins, it was assumed to have originated in mitosis during development. This classification allowed us to identify 14 and 26 de novo CNVs in family 1 (Table 5) and family 2 (Table 6) respectively. The table includes genomic locations as well as individual specific break points which allow for the assessment of regions of overlap with the Database of Genomic Variants (Toronto, Ontario). Mitotic origin of CNVs was  $\sim 3$  times higher than CNVs generated during parental meiosis. Of the mitotic de novo CNVs identified two (loss at 14q32.11 as well as loss at 8q11.21) were specific to the schizophrenia patient in family 1 and one (gain at 19q13.41) was specific to the patient in family 2. Such results are novel in the literature. Further, it is enticing to ask the question, do the genes disturbed by CNVs contribute to the development of their disease symptoms? Although the answers to such questions are of paramount importance, the results available do not offer a direct

**Table 3.** Identity of copy number variants across individual family members.

| CNVs                       | Fami  | ly 1  |       |       | Famil  | y 2    |        |        |
|----------------------------|-------|-------|-------|-------|--------|--------|--------|--------|
|                            | I-1-1 | I-1-2 | I-2-1 | I-2-2 | II-1-1 | II-1-2 | II-2-1 | II-2-2 |
| No. of Loss                | 21    | 6     | 5     | 6     | 52     | 11     | 6      | 4      |
| No. of Gain                | 37    | 29    | 31    | 41    | 125    | 53     | 44     | 45     |
| Novel (absent in<br>DGV)   | 1     | 1     | 0     | 2     | 42     | 6      | 1      | 0      |
| Present in DGV             | 57    | 34    | 36    | 45    | 135    | 58     | 49     | 49     |
| Total (for the individual) | 58    | 35    | 36    | 47    | 177    | 64     | 50     | 49     |

Frequency of CNVs which are losses (deletion) or gains (duplication) and characterization as present or absent from The Database of Genomic Variants (DGV).

doi:10.1371/journal.pone.0017125.t003

#### Table 4. Chromosome wise distribution of CNV.

| Chr No. | Famil | у 1   |       |       | Family | 2      |        |        |
|---------|-------|-------|-------|-------|--------|--------|--------|--------|
|         | I-1-1 | I-1-2 | I-2-1 | I-2-2 | II-1-1 | II-1-2 | II-2-1 | II-2-2 |
| 1       | 4     | 2     | 2     | 2     | 11     | 2      | 6      | 6      |
| 2       | 4     | 2     | 5     | 5     | 11     | 2      | 2      | 3      |
| 3       | 1     | 4     | 2     | 3     | 7      | 4      | 4      | 2      |
| 4       | 4     | 3     | 2     | 4     | 8      | 1      | 3      | 2      |
| 5       | 0     | 0     | 0     | 0     | 12     | 0      | 2      | 1      |
| 6       | 0     | 0     | 0     | 0     | 10     | 2      | 0      | 0      |
| 7       | 2     | 6     | 3     | 4     | 10     | 5      | 3      | 4      |
| 8       | 1     | 0     | 3     | 3     | 7      | 3      | 3      | 3      |
| 9       | 1     | 1     | 2     | 3     | 4      | 4      | 3      | 4      |
| 10      | 2     | 1     | 1     | 1     | 3      | 5      | 1      | 1      |
| 11      | 3     | 1     | 2     | 1     | 5      | 1      | 2      | 2      |
| 12      | 0     | 1     | 0     | 1     | 4      | 3      | 0      | 1      |
| 13      | 0     | 0     | 0     | 0     | 40     | 1      | 1      | 0      |
| 14      | 4     | 6     | 3     | 5     | 4      | 6      | 5      | 3      |
| 15      | 4     | 3     | 1     | 3     | 2      | 6      | 6      | 8      |
| 16      | 2     | 1     | 2     | 3     | 9      | 1      | 1      | 1      |
| 17      | 4     | 1     | 2     | 3     | 8      | 2      | 2      | 1      |
| 18      | 0     | 0     | 0     | 0     | 1      | 0      | 0      | 1      |
| 19      | 0     | 1     | 0     | 0     | 7      | 3      | 2      | 1      |
| 20      | 0     | 0     | 0     | 0     | 0      | 0      | 0      | 1      |
| 21      | 1     | 2     | 2     | 3     | 2      | 3      | 2      | 1      |
| 22      | 3     | 0     | 3     | 2     | 3      | 1      | 1      | 1      |
| x       | 18    | 0     | 1     | 1     | 9      | 9      | 1      | 2      |
| Total   | 58    | 35    | 36    | 47    | 177    | 64     | 50     | 49     |

Chromosome specific distribution of *de novo* (present in twin(s) and not in parents) and *inherited* (present in at least one parent) CNVs in family 1 and family 2.

Chr. No = Chromosome number.

doi:10.1371/journal.pone.0017125.t004

assessment of such questions. Nonetheless, it is appropriate to entertain the discussion that the known features of these genes are or are not compatible with disturbances observed in schizophrenia, which is discussed below.

#### De novo CNVs and Schizophrenia

The genes overlapping disease specific de novo CNVs in family 1 included PSMC1 (proteasome 26S subunit, ATPase, 1) and C14orf102 (chromosome 14 open reading frame 102 gene) on 14q32.11 and KIAA0146 on 8q11.21. PSMC1 (MIM 602706) is an ATP-dependent protease [17] that may include protein ubiquitination in response to DNA damage [18]. It is composed of a 20S catalytic proteasome and 2 PA700 regulatory modules and contains an AAA (ATPases associated with diverse cellular activities) domain [17]. The human and mouse proteins are 99% identical [19] and may play a significant role in ubiquitinmediated proteasomal proteolysis in the molecular pathogenesis of neurological diseases such as spinocerebellar ataxia type 7 (SCA7). Also, several studies (for review, see [20,21]), have indicated that the genes related to ubiquitination are altered in the brains of patients with schizophrenia. Further, this CNV also affects another gene (C14orf102; chromosome 14 open reading frame 102) which is conserved across phyla and highly expressed in the brain





Figure 2. Distribution of repeat elements 1 kb upstream (5') and 1 kb downstream (3') of the *de novo* (2a) and *inherited* (2b) CNVs across eight individuals. These include LINE (blue), SINE (purple), LTR (yellow), Satellite (sky blue), simple repeats (black) and low complexity repeats (green) with numerical values on top of the bars representing percentage of that repeat. doi:10.1371/journal.pone.0017125.g002

(Affymetrix GNF Expression Atlas 2 Data). The other CNV affected in this patient of family 1 represents a loss at 8q11.21, that contains the still uncharacterized gene, *KIAA0146*, which is expressed in the brain, may contain a CAG repeat and is conserved in chimpanzee, dog, cow, mouse, rat, chicken, and zebra fish. It is a transcription factor with CCAAT enhancer binding protein (CEBP) function [22]. Further the gene is highly expressed in the brain and hippocampus that may implicate it in mental disorders (www.genecards.org). Although we cannot rule out a role for these three genes (*PSMC1, C14orf102* and *KIAA0146*) in schizophrenia, such conclusions would be premature. Only a follow up study will establish if any of the three genes directly contribute to the development of schizophrenia in the patient from

family 1. A similar analysis of CNVs in family 2 has identified a 109 kb gain at 19q13.41 that is specific to the schizophrenia patient in family 2. Translocations involving 19q13 are a frequent finding in follicular adenomas of the thyroid and may represent the most frequent type of structural aberration in human epithelial tumors [23]. The CNV identified in this region contains two genes; *DPRX1* and *ZNF331*. *DPRX1* (divergent-paired related homeobox) is a member of the *DPRX* homeobox gene family, contains a single conserved homeodomain and may function as a putative transcription factor. It may bind a promoter or enhancer sequence or interact with a DNA binding transcription factor and is involved in early embryonic development and cell differentiation [24]. The drosophila homologue of the *DPRX1* gene (dPrx5;

Table 5. de novo CNVs in Family 1.

| sl. No    | Location                              | Family 1  | 1         |                  |       |           |                    | Status | Meiosis | Mitosis | Novel | Genes (Overlapping or Nearby) | SD |
|-----------|---------------------------------------|-----------|-----------|------------------|-------|-----------|--------------------|--------|---------|---------|-------|-------------------------------|----|
|           |                                       | I-2-1     | Size (kb) | Breakpoints      | I-2-2 | Size (kb) | Breakpoints        |        |         |         |       |                               |    |
| -         | 1p36.13                               | Yes       | 112       | 1672408916835888 |       |           |                    | Gain   |         | Yes     |       | NBPF1, NBPF10                 | -  |
| 2         | 2p25.3                                | Yes       | 152       | 14072091559511   | Yes   | 152       | 14072091559511     | Gain   | Yes     |         |       | TPO                           | 0  |
| m         | 2p11.2                                | Yes       | 1147      | 8986233191008912 | Yes   | 1159      | 8985027991008912   | Loss   | Yes     |         |       |                               | 0  |
| 4         | 4q28.3                                |           |           |                  | Yes   | 191       | 132801221132992517 | Gain   |         | Yes     |       |                               | -  |
| 5         | 7q11.21                               | Yes       | 118       | 6470606664823721 | Yes   | 118       | 6470437764822216   | Loss   | Yes     |         |       |                               | -  |
| 9         | 8p23.1                                | Yes       | 126       | 78472897973253   |       |           |                    | Loss   |         | Yes     |       |                               |    |
| 7         | 8q11.1                                | Yes       | 336       | 4704560247381308 | Yes   | 250       | 4713138347381308   | Gain   | Yes     |         |       |                               | 0  |
| 8         | 8q11.21                               |           |           |                  | Yes   | 154       | 4817824248332398   | Loss   |         | Yes     | Yes   | KIAA0146                      | 0  |
| 6         | 9p11.2                                | Yes       | 569       | 4536138945929992 |       |           |                    | Gain   |         | Yes     |       | FAM27A                        | -  |
| 10        | 9p13.1                                |           |           |                  | Yes   | 141       | 3877748138918566   | Gain   |         | Yes     |       |                               | -  |
| 11        | 9q12                                  |           |           |                  | Yes   | 861       | 6541241566273526   | Gain   |         | Yes     |       |                               | -  |
| 12        | 12p13.31                              |           |           |                  | Yes   | 196       | 83033178499801     | Gain   |         | Yes     |       | CLEC6A                        | -  |
| 13        | 14q32.11                              |           |           |                  | Yes   | 103       | 8978013789883415   | Loss   |         | Yes     | Yes   | PSMC1, C14orf102              | 0  |
| 14        | 21q11.2                               |           |           |                  | Yes   | 119       | 1389113614009908   | Gain   |         | Yes     |       | ANKRD21, LOC441956            | -  |
| 15        | Xp11.23                               | Yes       | 149       | 4791789948066856 | Yes   | 149       | 4791789948066856   | Gain   | Yes     |         |       | SSX5, SSX1, SSX9              | 0  |
| doi:10.13 | doi:10.1371/journal.pone.0017125.t005 | .0017125. | +005      |                  |       |           |                    |        |         |         |       |                               |    |

doi:10.1371/journal.pone.0017125.t005

|   |                                     |                       |                    |                        |                    |                    |                  |              |                  |                  |                  |                    |                  | , FOXD4L2                              |                      |                  |                |                  |                  |                  |                         |                  |                  |                  |                  |                  |                    |
|---|-------------------------------------|-----------------------|--------------------|------------------------|--------------------|--------------------|------------------|--------------|------------------|------------------|------------------|--------------------|------------------|----------------------------------------|----------------------|------------------|----------------|------------------|------------------|------------------|-------------------------|------------------|------------------|------------------|------------------|------------------|--------------------|
|   | Novel Genes (Overlapping or Nearby) |                       | NOTCH2NL           |                        |                    |                    |                  | ZDHHC11      |                  |                  |                  | LOC441294, FAM139A | FAM86B1, DEFB130 | ANKRD20A2, ANKRD20A3, FOXD4L4, FOXD4L2 | ANKRD20A1, ANKRD20A3 |                  |                |                  | OR11H12, ACTBL1  |                  | OR4M2, OR4N4, LOC650137 | APBA2            | CHRFAM7A         |                  | ZNF331, DPRX     |                  | BAGE2, BAGE4, BAGE |
|   |                                     |                       |                    |                        |                    |                    |                  |              |                  |                  |                  |                    |                  |                                        |                      |                  |                |                  |                  |                  |                         |                  |                  |                  | Yes              |                  |                    |
|   | s Mitosis                           |                       | Yes                |                        | Yes                | Yes                | Yes              |              | Yes              | Yes              |                  | Yes                |                  |                                        | Yes                  |                  | Yes            | Yes              |                  | Yes              |                         | Yes              | Yes              | Yes              | Yes              | Yes              |                    |
|   | Status Meiosis                      |                       |                    | Yes                    |                    |                    |                  | Yes          |                  |                  | Yes              |                    | Yes              | Yes                                    |                      | Yes              |                |                  | Yes              |                  | Yes                     |                  |                  |                  |                  |                  | Yes                |
|   | Status                              |                       | Gain               | Loss                   | Gain               | Gain               | Gain             | Gain         | Gain             | Gain             | Gain             | Gain               | Gain             | Gain                                   | Gain                 | Gain             | Gain           | Gain             | Gain             | Gain             | Gain                    | Gain             | Gain             | Gain             | Gain             | Gain             | Gain               |
|   |                                     | Size (kb) Breakpoints | 143867807143987616 | 147353175147456930     | 241230453241349107 |                    |                  | 770367877436 |                  |                  | 6457932264704125 | 142956516143056637 | 1207170412291845 | 4224913244149779                       | 6741625467665974     | 6723922367378031 | 83109098499801 |                  | 1807211218672662 | 1827632918382609 | 1986458320085783        | 2680808327035216 |                  |                  |                  | 2814733128264860 | 975873013572586    |
|   |                                     | Size (kb)             | 120                | 104                    | 119                |                    |                  | 107          |                  |                  | 125              | 100                | 220              | 1901                                   | 250                  | 139              | 189            |                  | 601              | 106              | 221                     | 227              |                  |                  |                  | 118              | 3814               |
|   |                                     | II-2-2                | Yes                | Yes                    | Yes                |                    |                  | Yes          |                  |                  | Yes              | Yes                | Yes              | Yes                                    | Yes                  | Yes              | Yes            |                  | Yes              | Yes              | Yes                     | Yes              |                  |                  |                  | Yes              | Yes                |
| i |                                     | Size (kb) Breakpoints |                    | 147353175147456930 Yes |                    | 126958012127112518 | 4898610049285347 | 770367871743 | 3411938734269887 | 6176100861962936 | 6458831664704125 |                    | 1207170412291845 | 4146509444184864                       |                      | 6723922367505822 |                | 1813867618346383 | 1807211218672662 |                  | 1988276320085783        |                  | 2845285328563274 | 2212701222326425 | 5884765258957090 |                  | 1010654013586186   |
|   | 2                                   | Size (kb)             |                    | 104                    |                    | 155                | 299              | 101          | 151              | 202              | 116              |                    | 220              | 2720                                   |                      | 267              |                | 208              | 601              |                  | 203                     |                  | 110              | 199              | 109              |                  | 3480               |
|   | Family 2                            | II-2-1                |                    | Yes                    |                    | Yes                | Yes              | Yes          | Yes              | Yes              | Yes              |                    | Yes              | Yes                                    |                      | Yes              |                | Yes              | Yes              |                  | Yes                     |                  | Yes              | Yes              | Yes              |                  | Yes                |
|   | Location                            |                       | 1q21.1             | 1q21.1                 | 1q43               | 3q21.2             | 4p11             | 5p15.33      | 5p13.3           | 7q11.21          | 7q11.21          | 7q35               | 8p23.1           | 9p12                                   | 9q12                 | 11q13.2          | 12p13.31       | 13q11            | 14q11.1          | 15q11.1          | 15q11.2                 | 15q13.1          | 15q13.2          | 17p11.1          | 19q13.41         | 20q11.1          | 21p11.2            |
|   | SI. No                              |                       | -                  | 2                      | 3                  | 4                  | 5                | 6            | 7                | 8                | 6                | 10                 | 11               | 12                                     | 13                   | 14               | 15             | 16               | 17               | 18               | 19                      | 20               | 21               | 22               | 23               | 24               | 25                 |

-

-

0

0

-

-

-

- - - - 0 - 0 - 0

-

Table 6. de novo CNVs in Family 2.

ß

0

-

0 0

0

- -

Identity of *de novo* CNVs found in Family 1 (5a) and Family 2 (5b) and the gene regions (overlapping or nearby). *De novo* CNVs are defined as those that are present in either or both twins but not found in parents. SD displays the percentage of overlap with segmental duplications, 0' indicates no overlap between the CNV and segmental duplication and '1' indicates 90–100% overlap. The table includes genomic locations as well as twin specific breakpoints which allow for the assessment of regions of overlap with the Database of Genomic Variants (Toronto, Ontario). SI No. = Serial number. Novel indicates a CNV which is not present in The Database of Genomic Variants (DGV). doi:10.1371/journal.pone.0017125.t006

| I-1-1         Stacktool         Breakpoints         I-2         Stacktool         Preakpoints         I-2-1         Stacktool           1         1p36.33         Vas         0.7         21855         Yas         70         70           2         1q211         Vas         765         147303136         Vas         734         147311699         Yas         707           3         2p112         Vas         785         143003136         Yas         734         147311699         Yas         707           4         2p113         Yas         236         13259784         Yas         3259798         Yas         325           6         3p123         Yas         300         7559786         Yas         325           7         3q213         Yas         Yas         325         3259738         Yas         325           7         3q213         Yas         Yas         330         7559746         Yas         222           8         3q2133         Yas         Yas         133         133333         Yas         235           11         4q513         Yas         743         Yas         743         235                                                                                                                                                                                                                                                                                                                                | Location | on Family 1 | ۲ ا<br>۲ |                        |       |              |                        |       |          |                         |       |          |                        | Status | Novel | Genes<br>(Overlapping<br>or Nearby)                                                                                                           | SD |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|----------|------------------------|-------|--------------|------------------------|-------|----------|-------------------------|-------|----------|------------------------|--------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------|----|
| Ip36.3         Ves         Io7         S156         Yes         707           Iq21.1         Ves         75         143005055.         Yes         74         707.           2p11.2         Yes         33         8991/155         Yes         32         8991/474         Yes         325           2p11.3         Yes         338         891/155         Yes         32         8991/474         Yes         325           2p11.3         Yes         393.24935         Yes         32         8991/474         Yes         32           2p11.3         Yes         393.24935         Yes         32         8991/474         Yes         32           3p1.3         Yes         393.24935         Yes         32         8991/45         Yes         32           3q21.3         Yes         30         7397700         Yes         32         32           3q21.3         Yes         30         7999479         Yes         13         13936353           3q21.3         Yes         31         13198515         Yes         36         36           3q21.12         Yes         313         13936353         Yes         36                                                                                                                                                                                                                                                                                                                                    |          | 1-1-1       | Size(kb) | Breakpoints            | I-1-2 | Size<br>(kb) | Breakpoints            | I-2-1 | Size(kb) | Breakpoints             | I-2-2 | Size(kb) | Breakpoints            |        |       |                                                                                                                                               |    |
| 10211         Ves         745         14730136         Ves         734         14306553           20112         Yes         338         88917155         Yes         32895493         Yes         325           20113         Yes         338         88917155         Yes         32936978         Yes         325           20713         Yes         36         3759783         Yes         31359783         Yes         325           30123         Yes         306         7559783         Yes         325         3257710         Yes         325           30213         Yes         307         Yes         325         3259333         Yes         325           30413         Yes         367         Yes         325         3257710         Yes         325           30413         Yes         Yes         13196535         Yes         365         3657710         Yes         365           30413         Yes         4916         Yes         13196535         Yes         365           4015         Yes         496363         Yes         1902368         Yes         365           1011         Yes         323                                                                                                                                                                                                                                                                                                                                    | 1p36.3   |             | 167      | 51586<br>218557        |       |              |                        | Yes   | 707      | 51586<br>758644         | Yes   | 707      | 51586<br>758644        | Gain   |       | OR4F5, OR4F3,<br>OR4F16, OR4F29                                                                                                               | -  |
| Dell         Ves         388         88917155         Ves         388         910777         Yes         235           Dell           923-6935         Yes         932-6936         Yes         932-6936         Yes         932-6936         Yes         932-6936         Yes         910777         Yes         143           Jabla         Yes         Jabba         Jabba         Yes         Jabba         Yes         126         143           Jabla         Yes         Jabba         Jabba         Yes         Jabba         Yes         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126         126 <t< td=""><td>1q21.1</td><td></td><td>765</td><td>147303136<br/>148068045</td><td>Yes</td><td>734</td><td>147311699<br/>148045353</td><td></td><td></td><td></td><td>Yes</td><td>577</td><td>147381253<br/>147958358</td><td>Gain</td><td></td><td>PPIAL4, FCGR1A,<br/>HIST2H2BF</td><td>-</td></t<> | 1q21.1   |             | 765      | 147303136<br>148068045 | Yes   | 734          | 147311699<br>148045353 |       |          |                         | Yes   | 577      | 147381253<br>147958358 | Gain   |       | PPIAL4, FCGR1A,<br>HIST2H2BF                                                                                                                  | -  |
| 2p11.1         Yes         343         910,707         Yes         443           2q21.2         Yes         236         13239784         Yes         222           3p12.3         Yes         236         13239716         Yes         223           3p12.3         Yes         306         7557859         Yes         223           3p12.3         Yes         306         75577850         Yes         223           3q21.3         Yes         392         1308353         Yes         223           3q21.3         Yes         Yes         13168353         Yes         263           3q21.3         Yes         Yes         13168355         Yes         263           4p16.         Yes         436         13168355         Yes         263           4p11.5         Yes         43955         Yes         263         263           4p11.5         Yes         235         Yes         263         263           4p1.5         Yes         235         Yes         263         263           4p1.2         Yes         231         Yes         274         263           4p1.2         Yes                                                                                                                                                                                                                                                                                                                                                                    | 2p11.2   |             | 338      | 88917155<br>89254935   | Yes   | 322          | 88914734<br>89236978   | Yes   | 325      | 88917155<br>89242149    | Yes   | 327      | 88914734<br>89242149   | Gain   |       |                                                                                                                                               | -  |
| 2q12         Yes         32572824         Yes         3259786         Yes         225           3p13         Yes         30         7597080         Yes         32           3p13         Yes         30         7597080         Yes         32           3p13         Yes         36         7597080         Yes         32           3q12         Yes         Yes         13         1369333         Yes         180           3q13         Yes         Yes         Yes         190         13196353         Yes         40           4p10         Yes         43         Yes         Yes         190         40333         Yes         40           4p11         Yes         43         44054         Yes         191         40           4015         Yes         19124119         Yes         19124119         Yes         191         191           4015         Yes         19124119         Yes         191         191         191         191         191         191         191         191         191         191         191         191         191         191         191         191         191                                                                                                                                                                                                                                                                                                                                                   | 2p11.1   |             |          |                        | Yes   | 138          | 91017077<br>91154841   | Yes   | 143      | 91 01 7077<br>91 160399 | Yes   | 137      | 91017077<br>91154463   | Gain   |       |                                                                                                                                               | -  |
| JP123         Yes         360         75977850         Yes         325         3597210         Yes         126         35977510         Yes         182           3q212         .         .         .         Yes         12         125097156         Yes         182           3q213         .         .         Yes         Yes         12         12907156         Yes         166           3q213         .         .         Yes         Yes         190         13186533         Yes         166           4p162         Yes         343         .         Yes         190         3436511         Yes         343           4p11         Yes         343         .         Yes         19124119         Yes         343           4q352         Yes         191021363         Yes         191         Yes         343           7p111         Yes         231         19124119         Yes         191         Yes         315           7p112         Yes         231         19123419         Yes         191         Yes         315           7p1121         Yes         231         Yes         Yes         253                                                                                                                                                                                                                                                                                                                                           | 2q21.2   |             | 236      | 132597824<br>132833718 |       |              |                        | Yes   | 222      | 132597824<br>132819911  | Yes   | 222      | 132597824<br>132819911 | Gain   |       |                                                                                                                                               | -  |
| 3q1.2         (2500150)           3q21.3         (2500150)           3q21.3         (2500150)           3q21.3         (2500150)           3q1.3         (250150)           4p16.2         (2501150)           4p16.2         (260150)           4p16.3         (260160)           4p17         (26)         (240542)           4p18.3         (26)         (24054119)           4p11         (26)         (219021837)           4q35.2         (29)         (21902369)           4q35.3         (29)         (21021837)           7p11.1         (29)         (23123)           4q35.3         (29)         (21021837)           7p11.1         (29)         (217512)           7p11.1         (29)         (217758)           7p11.1         (29)         (217798)           7p11.1         (29)         (217798)           7p11.1         (29)         (217798)           7p11.1         (29)         (29079)           7p11.1         (29)         (217798)           7p11.1         (29)         (217798)           7p11.1         (29) <td>3p12.3</td> <td></td> <td>306</td> <td>75677859<br/>75984129</td> <td>Yes</td> <td>380</td> <td>75597086<br/>75977210</td> <td>Yes</td> <td>182</td> <td>75583442<br/>75764996</td> <td>Yes</td> <td>402</td> <td>75582277<br/>75984129</td> <td>Gain</td> <td></td> <td></td> <td>-</td>                                                                                                                             | 3p12.3   |             | 306      | 75677859<br>75984129   | Yes   | 380          | 75597086<br>75977210   | Yes   | 182      | 75583442<br>75764996    | Yes   | 402      | 75582277<br>75984129   | Gain   |       |                                                                                                                                               | -  |
| 3q13       Yes       Yes       Yes       16         4p162       Yes       40542       Yes       363         4p1       Yes       436       40542       Yes       363         4p1       Yes       436       40543       Yes       363         4p1       Yes       436       4849363       Yes       19       497         4p1       Yes       435       Yes       19124119       Yes       497         7p11.1       Yes       231       9124119       Yes       19124119       Yes       417         7p11.1       Yes       231       57733919       Yes       112       6147793       Yes       315         7p11.1       Yes       231       57733919       Yes       112       6147793       Yes       315         7p11.1       Yes       231       Yes       172       Yes       315       315         7p11.1       Yes       5773309       Yes       172       Yes       315       315         7p11.2       Yes       Yes       230       3153330       Yes       315       315         7p11.2       Yes       Yes       Yes                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3q21.2   |             |          |                        | Yes   | 132          | 126907150<br>127039328 |       |          |                         | Yes   | 185      | 126907150<br>127091652 | Gain   |       |                                                                                                                                               | -  |
| 4p162         Yes         7es         7es         7es         363           4p11         Yes         4989363         Yes         4925347         Yes         497           4p11         Yes         49885347         Yes         191258119         Yes         497           4q352         Yes         232         191021837         Yes         191254119         Yes         497           7p11.1         Yes         232         191021837         Yes         191254119         Yes         315           7p11.1         Yes         231         57533919         Yes         101         57741512         Yes         315           7q11.21         Yes         231         Yes         112         Yes         112         Yes         315           7q11.21         Yes         693         Yes         112         Yes         112         Yes         114           8p33.1         Yes         694         7209579         Yes         215         Yes         215           8p33.1         Yes         693         7209579         Yes         Yes         215           8p33.1         Yes         693         7209579 <td< td=""><td>3q21.3</td><td></td><td></td><td></td><td>Yes</td><td>170</td><td>131198515<br/>131368353</td><td>Yes</td><td>166</td><td>131213377<br/>131379054</td><td>Yes</td><td>176</td><td>131214431<br/>131389948</td><td>Gain</td><td></td><td></td><td>-</td></td<>                                                         | 3q21.3   |             |          |                        | Yes   | 170          | 131198515<br>131368353 | Yes   | 166      | 131213377<br>131379054  | Yes   | 176      | 131214431<br>131389948 | Gain   |       |                                                                                                                                               | -  |
| 4p1         Yes         436         4849363         Yes         497           4q35.2         Yes         23         191021837         Yes         1910234119         Yes         315           4q35.2         Yes         23         191021837         Yes         191254119         Yes         315           7p11.1         Yes         231         57533919         Yes         101         57741512         Yes         315           7p11.21         Yes         27         Yes         112         6135830         Yes         315           7q11.21         Yes         273330         Yes         125         64573380         Yes         215           7q11.21         Yes         6477958         Yes         215         Yes         215           7q11.21         Yes         693         733380         Yes         215         Yes         215           8p33.1         Yes         694         7209579         Yes         215         Yes         215           8p33.1         Yes         694         7209579         Yes         Yes         215           9q12         Yes         1091         Yes         1091                                                                                                                                                                                                                                                                                                                                   | 4p16.2   |             |          |                        | Yes   |              | 4040542<br>4236511     | Yes   | 363      | 3873500<br>4236511      | Yes   | 366      | 3870638<br>4236511     | Gain   |       |                                                                                                                                               | 0  |
| 4d35.2       Ves       232       191021837       Yes       191554119         7p11.1       Ves       231       57533939       Yes       191554119       Yes       315         7p11.1       Ves       231       57533939       Yes       101       57741512       Yes       315         7q11.21       Yes       231       Yes       112       6135830       Yes       315         7q11.21       Yes       Yes       253       64377958       Yes       415         7q11.21       Yes       64573380       Yes       215       415         8p33.1       Yes       64573380       Yes       215         8p33.1       Yes       64573380       Yes       215         912       Yes       7903560       Yes       64573380       Yes       215         912       Yes       1011       Yes       1061       Yes       1061       Yes       107         1001.1       Yes       103       Yes       105       4193430       Yes       104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4p11     | Yes         | 436      | 48849363<br>49285347   |       |              |                        | Yes   | 497      | 48788531<br>49285347    | Yes   | 497      | 48788531<br>49285347   | Gain   |       |                                                                                                                                               | -  |
| 7p11.1         Yes         231         5753323         Yes         101         57741512         Yes         315           7q11.21         7q11.21         1         61477958         61477958         61477958         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                   | 4q35.2   |             | 232      | 191021837<br>191254119 | Yes   | 195          | 191059369<br>191254119 |       |          |                         | Yes   | 223      | 191031042<br>191254119 | Gain   |       | FRG1, TUBB4Q,<br>FRG2, DUX4                                                                                                                   | 0  |
| 7q11.21     Yes     112     61365830       7q11.21     61477958     61477958       7q11.21     Yes     64573380     Yes       8p33.1     Yes     649733380     Yes     215       8p33.1     Yes     64973380     Yes     215       912     Yes     1011     Yes     105       1011.1     Yes     1932547     Yes     105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7p11.1   |             | 231      | 57523223<br>57753919   | Yes   | 101          | 57640100<br>57741512   | Yes   | 315      | 57640100<br>57954861    | Yes   | 117      | 57640100<br>57757406   | Gain   |       |                                                                                                                                               | -  |
| 7q11.21     Yes     253     64320173     Yes     415       8p33.1     Yes     694     7209579     Yes     215       912     Yes     7903560     Yes     691     68115006     Yes     1141       10q11.1     Yes     183     4197279     Yes     105     4193430     Yes     183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7q11.2   | -           |          |                        | Yes   | 112          | 61365830<br>61477958   |       |          |                         | Yes   | 111      | 61365830<br>61476918   | Gain   |       |                                                                                                                                               | 0  |
| Bp3.1         Yes         509579         Yes         215           7903560         7903560         7903560         1141         1141           9q12         Yes         690         68115006         Yes         1141           10q11.1         Yes         183         4197279         Yes         105         4193430         Yes         183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7q11.2   | -           |          |                        | Yes   | 253          | 64320173<br>64573380   | Yes   | 415      | 64204380<br>64619667    | Yes   | 385      | 64204380<br>64589253   | Loss   |       | ZNF92                                                                                                                                         | 0  |
| 9q12 Yes 690 68115006 Yes 1141<br>68805366<br>10q11.1 Yes 183 41972779 Yes 105 41934430 Yes 183<br>42155347 42155347                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8p23.1   |             | 694      | 7903560                |       |              |                        | Yes   | 215      | 7027251<br>7242508      | Yes   | 270      | 7021193<br>7291135     | Loss   |       | DEFB103A, DEFB103B,<br>SPAG11B, DEFB104B,<br>DEFB104A, DEFB106B,<br>DEFB106A, DEFB105B,<br>DEFB105A, DEFB107B,<br>DEFB107A, SPAG11A,<br>DEFB4 | 7  |
| 10q11.1 Yes 183 41972779 Yes 105 41934430 Yes 183<br>42155347 42155347                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9q12     |             |          |                        | Yes   | 069          | 68115006<br>68805366   | Yes   | 1141     | 68115006<br>69256300    | Yes   | 694      | 68115006<br>68809437   | Gain   |       | FOXD4L6, CBWD6,<br>ANKRD20A4, CCDC29                                                                                                          | -  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10q11.   |             | 183      | 41972779<br>42155347   | Yes   | 105          | 41934430<br>42039743   |       | 183      | 41972779<br>42155347    | Yes   | 239      | 41934430<br>42173117   | Gain   |       |                                                                                                                                               | -  |

| Location F | Family 1 |          |                        |      |              |                               |       |          |                        |       |          |                        | Status Novel | Genes<br>(Overlapping<br>el or Nearby)              | SD |
|------------|----------|----------|------------------------|------|--------------|-------------------------------|-------|----------|------------------------|-------|----------|------------------------|--------------|-----------------------------------------------------|----|
| _          | F1-1 Siz | Size(kb) | Breakpoints            | F1-2 | Size<br>(kb) | Breakpoints                   | I-2-1 | Size(kb) | Breakpoints            | I-2-2 | Size(kb) | Breakpoints            |              |                                                     |    |
| 11p15.4 Y  | Yes 175  | 75       | 3405799<br>3580813     | Yes  | 131          | 3430789<br>3561991            | Yes   | 139      | 3430789<br>3569305     | Yes   | 156      | 3406002<br>3561991     | Gain         |                                                     | -  |
| 11q13.2 Y  | Yes 227  | 27       | 67239223<br>67466368   |      |              |                               | Yes   | 193      | 67273413<br>67466368   |       |          |                        | Gain         |                                                     | -  |
| 14q11.1 Y  | Yes 13.  | 1322     | 18138794<br>19460382   | Yes  | 1103         | 18072112<br>19175240          | Yes   | 705      | 18072112<br>18776746   | Yes   | 705      | 18072112<br>18776746   | Gain         | OR1 1H1 2, ACTBL1,<br>OR4Q3, OR4M1,<br>OR4N2, OR4K5 | 0  |
| 14q32.33 Y | Yes 126  | 26       | 105265510<br>105391419 | Yes  | 167          | 105100670<br>105268160        | Yes   | 632      | 105190672<br>105822317 | Yes   | 181      | 105149735<br>105331052 | Gain         |                                                     | 0  |
| -          | Yes 156  | 56       | 105413825<br>105569826 | Yes  | 213          | 105289618<br>105502685        | Yes   | 178      | 105827891<br>106005581 | Yes   | 261      | 105341035<br>105601720 | Gain         |                                                     | 0  |
| -          | Yes 205  | 05       | 105612786<br>105818132 | Yes  | 279          | 105508896<br>105788389        |       |          |                        | Yes   | 280      | 105612786<br>105892769 | Gain         |                                                     | 0  |
| 15q11.1 Y  | Yes 471  | 71       | 18370252<br>18841457   | Yes  | 178          | 18522238<br>18700540          | Yes   | 1223     | 18845990<br>20068512   | Yes   | 562      | 18276329<br>18838423   | Gain         | LOC283755, POTE15,<br>OR4M2                         | -  |
|            | Yes 11   | 1177     | 18845990<br>20022565   | Yes  | 344          | 18845990<br>19189673          |       |          |                        | Yes   | 1078     | 18845990<br>19923712   | Gain         | OR4N4, LOC650137                                    | -  |
|            |          |          |                        | Yes  | 264          | 1 93 03 1 6 0<br>1 95 66 86 3 |       |          |                        |       |          |                        | Gain         |                                                     | -  |
| 15q11.2 Y  | Yes 189  | 68       | 22026287<br>22214843   |      |              |                               |       |          |                        | Yes   | 174      | 22026287<br>22200408   | Gain         |                                                     | -  |
| 16p11.2 Y  | Yes 12   | 1217     | 32303108<br>33520394   | Yes  | 1297         | 32538757<br>33836128          | Yes   | 1142     | 32538757<br>33680554   | Yes   | 249      | 32538757<br>32787273   | Gain         | LOC729355, TP53TG3                                  | -  |
|            |          |          |                        |      |              |                               |       |          |                        | Yes   | 752      | 32910319<br>33662480   | Gain         |                                                     | -  |
| 16p11.2 Y  | Yes 250  | 50       | 34374795<br>34624994   |      |              |                               | Yes   | 249      | 34375533<br>34624994   | Yes   | 249      | 34375533<br>34624994   | Gain         |                                                     | -  |
| 17p11.2 Y  | Yes 140  | 40       | 20559979<br>20700133   |      |              |                               |       |          |                        | Yes   | 164      | 20538867<br>20703365   | Gain         |                                                     | -  |
| 17q21.31 Y | Yes 229  | 29       | 41521621<br>41750183   |      |              |                               | Yes   | 123      | 41521621<br>41644356   | Yes   | 123      | 41521621<br>41644356   | Gain         | KIAA1267, LRRC37A                                   | 0  |
| 17q21.31 Y | Yes 351  | 51       | 41756820<br>42107467   | Yes  | 296          | 41811739<br>42107467          | Yes   | 392      | 41700624<br>42092926   | Yes   | 302      | 41700624<br>42002447   | Gain/Loss    | ARL17, LRRC37A2,<br>NSF                             | -  |
| 21p11.2    |          |          |                        | Yes  | 204          | 9758730<br>9962501            | Yes   | 204      | 9758730<br>9962501     | Yes   | 204      | 9758730<br>9962501     | Gain         | TPTE                                                | 0  |
| 21p11.1 Y  | Yes 34   | 3411     | 10106540<br>13517603   | Yes  | 3419         | 10106540<br>13525448          | Yes   | 3419     | 10106540<br>13525448   | Yes   | 3477     | 10106540<br>13583117   | Gain         | BAGE2, BAGE4, BAGE                                  | 2  |
| 22q11.1 Y  | Yes 339  | 39       | 14435171               |      |              |                               |       |          |                        |       | 000      |                        |              |                                                     |    |

| sı.<br>No | SI.<br>No Location Family 1           | Family     | -          |                                               |       |              |             |         |          |                                                                   |       |          |                      | Status | Genes<br>(Overlapping<br>Novel or Nearby) | SD |
|-----------|---------------------------------------|------------|------------|-----------------------------------------------|-------|--------------|-------------|---------|----------|-------------------------------------------------------------------|-------|----------|----------------------|--------|-------------------------------------------|----|
|           |                                       | 1-1-1      | Size(kb)   | Size<br>I-1-1 Size(kb) Breakpoints I-1-2 (kb) | I-1-2 | Size<br>(kb) | Breakpoints | I-2-1   | Size(kb) | Breakpoints I-2-1 Size(kb) Breakpoints I-2-2 Size(kb) Breakpoints | I-2-2 | Size(kb) | Breakpoints          |        |                                           |    |
| 32        | 32 22q11.21 Yes 124                   | Yes        | 124        | 20051708<br>20175282                          |       |              |             | Yes 136 | 136      | 20145854 Yes 136<br>20281562                                      | Yes   | 136      | 20145854<br>20281562 | Gain   | HIC2, UBE2L3                              | -  |
| 33        | 33 22q11.22 Yes 240                   | Yes        | 240        | 21292462<br>21532509                          |       |              |             | Yes 127 | 127      | 21327799<br>21454509                                              |       |          |                      | Gain   | GGTL4                                     | 0  |
| doi:      | doi:10.1371/journal.pone.0017125.t007 | al.pone.00 | 17125.t007 |                                               |       |              |             |         |          |                                                                   |       |          |                      |        |                                           |    |

Sources of Genomic Discordance between MZ Twins

Drosophila peroxiredoxin 5) confers protection against oxidative stress, apoptosis and also promotes longevity [25]. The next gene, ZNF331(zinc finger protein 331) affected by this CNV is also involved in DNA-dependent regulation of transcription as a transcriptional repressor [26]. Interestingly, it is one of the imprinted genes that exhibits monoallelic expression in a parentof-origin specific manner [27]. Imprinted genes are important for development and behaviour and disruption of their expression is associated with many human disorders [28]. In conclusion the three genes affected in the schizophrenia patient in family 1 (PSMC1, C14orf102, KIAA0146) and the two genes affected in the patient of family 2 (DPRX1 and ZNF331) could not be excluded from their potential involvement in the development of schizophrenia in the two patients. If applicable, the biological systems affected in the two patients is hypothesized to be different. The patient in family one is hypothesized to have a ubiquitin-mediated proteasomal proteolysis while the patient of family 2 could have errors in regulatory mechanisms affecting gene regulation. Such conclusions must remain hypothetical until proven by independent supporting evidence.

# De novo changes may lead to mosaicism

The genotypes generated by the Affymetrix 6.0 array have also allowed us to establish that  $\sim 0.12\%$  (1086 and 1022 in twin pair 1 and 2 respectively; 11 substitutions shared by both pairs) of the SNPs in the twins represented de novo substitutions, but unlike CNVs, (that primarily originated during ontogeny in mitosis) most (63-65%) originated during parental meiosis. These results suggest that DNA replication fidelity at the level of single base pairs (SNPs) vs replication forks (CNVs) is differentially exercised during meiosis and mitosis. The single base pairing is much more stringent in mitosis (evolved to produce identical daughter cells), compared to meiosis where errors can facilitate potentially beneficial variations. In contrast, CNVs which affect the phenotype may be advantageous when occurring during mitosis and selected for during development. Thus, cell type specific CNVs may play a role in growth and development, offering advantageous variability. This would mean that most individuals are mosaics [29]: a hypothesis that is difficult to assess and evaluate. It is likely that the ratio of mosaic cells may be maintained throughout the differentiated (ectoderm, mesoderm, endoderm, etc) tissues over the lifetime [30,31]; an exception being when other factors are directly influencing DNA stability. Such a mechanism may generate genomic differences and differential mosaicism in most or all individuals. If this is the case, it will complicate traditional genetic analysis that assumes stability of the genome with rare exceptions.

We have been able to establish genome-wide (CNVs and SNPs) discordance for MZ twin pairs. Also, given that the twins are discordant for schizophrenia, it is possible to assign provisional CNVs (and genes) as well as substitutions (SNPs) that may be associated with the disease status of the affected twins in family 1 and family 2 (Table 7,8). Similarly, we identified substitutions (SNPs) that were different between the affected and unaffected member of the two sets of twins including their distribution along the chromosomes, introns and exons and the predicted effect on the gene product. Identity of de novo CNVs found in Family 1 (Table 5) and Family 2 (Table 6) and the gene regions which they overlap was reported. De novo CNVs are defined as those that are present in either twin but not found in parents. In the tables, SD indicates the percentage of overlap between segmental duplications and the CNVs, '0' means there is no overlap between CNV and segmental duplication and '1' means 90-100% overlap.

Table 7. Cont.

| Holicolution         I.3-1 (Mo)         Holicolution         I.3-1 (Mo)         Holicolution           1         2         3         2         3         3         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 37         21857755132         6ain         0a4F5, 04473           16         1671862216883360         Yes         345         1671862217053435         Gain         NBPF1, NBPF10           172         10331691104038426         Yes         347         1671862217053435         Gain         NBPF1, NBPF10           172         10331691104038426         Yes         2172         120430714270333         Gain         MNPF1, MBPF10           171         1597038315980554         Yes         2172         120430714270353         Gain         MNTA, MNTA, MNTA, MNTA           171         15977360315980554         Yes         2172         120430715980555         Gain         MNTB, MMTA, MNTA           171         159773603         Yes         120         15977360315980555         Gain         MNTB, MNTA           171         159773013         Yes         120         159773603         Gain         MNTB, MNTA           1701         1810466113139946         Gain         MNTB, MNTA         MNTB, MNTA           1701         18114665113139463         Gain         Gain         Gain         Gain           1701         1814477554496         Gain         Gain         Gain         Gain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (6)         (6)         (6)         (6)         (6)         (8)         (6)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)         (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| U2         U3331691104058426         AM78, AM72, AM71           21725         121045307142710333         15         121045307142710333         Am78, AM715, AM71           21726         121045307142710333         15         121045307142710333         Am78, AM715, AM715, AM715, AM716, |
| 1125121043307142770353KedAdd116159780383159805554Kes104330714277035Ked116159780383159805554Kes159Ked1269101077912885505Kes897956191154463Gai1269101077912885505Kes223893756191154463Gai126758344275843060Kes2327353782413281991Gai126758344275843060Kes72383756313139564Gai126711194666131389948Kes735373213139564Gai126711194666131389948Kes735373213139564Gai126131194666131389948Kes736638423513139564Gai126711194666191326119Ves7365384235130Gai126191028337191236119Ves73753263Gai126191028337191236119Kes691637079112619102833719123611Kes6916370791121112455719123613Kes69177079112111245546523526Gai6917070112111245546523526Gai14077070470804312111245546523526Gai14057070470804312111245546523526Gai14057070470804412111245546523526Gai1405665235356Gai12111245546523526Gai1405665235356Gai1211 </td                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 11         159736033159896554         121         159775403159896554         158         1567345         1557343159896554         1557343159896554         1557343159896554         1557343159895501         1557343159895501         1557343159895501         1557343159895501         1557343159895501         1557343159895501         1557343159895501         1557343159895501         1557343159895501         1557343159895501         15613         156131598955         156131598955         156131598955         156131593956         156131593956         156131593956         156131593956         156131593956         156131593956         156131593956         156131593956         156131593956         156131593956         156131593956         156131593956         156131593956         156131593956         156131593956         156131593956         156131593956         156131593956         156131593956         156131593956         156131593956         156131593956         156131593956         156131593956         156131593956         156131513957         156131513957         156131513957         156131513957         156131513957         156131513957         156131513957         156131513957         156131513957         156131513957         15613151317         156133715563199         156131713112 <th< td=""></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 936         889266789661763         Yes         80147348936501         6ain           216         910170791285520         Yes         1275         8897956191154463         6ain           216         7558344275843060         Yes         13259782413281991         6ain           216         7558344275843060         Yes         7558344275764996         6ain           216         13119466913138948         Yes         755834275764996         6ain           216         1311946913138948         Yes         13119651513139768         6ain           216         1311946913138948         Yes         13119651513139768         6ain           216         1311946913138949         Yes         870638422503         6ain           216         13119651513139768         6ain         770746.           216         12615741251474         Yes         7807394           217         Yes         124157421256133         6ain           218         93547483948061         6ain         780746.           219         257639995572653         6ain         78075.           2101         820484839506110         6ain         78075.           2118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 368         910170791285520         Yes         897956191154463         610           260         7558343275843060         Yes         3259782413281991         610           260         7558343275843060         Yes         3259782413281964         610           210         101822746101927168          755834275764996         610           210         1311946693138948         Yes         199         1311935513137648         610           210         38706383138948         Yes         38706384225503         610         7701           210         1311946695175319         Yes         38706384225503         610         7701           210         191026895775319         Yes         139524513130748         611         7701           210         191026895775319         Yes         1397054513130748         611         7701           211         102102126141         Yes         124157421256134         610         770148           211         102102126141         Yes         124157421256134         610         770148           211         1021021261         Yes         124157421256136         610         770148           211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| No.         No.         No.         No.         No.           260         755334275843000         Ye         182         75533437584300         Gain         Gain           1018         101822746101925168          3:3         3:33339348         Ye         3:138515131319564         Gain         Gain           1019         131194669131393948         Ye         3:3763842257503         Gain         Gain         Gain           205         1311946691313139948         Ye         3:3763842257503         Gain         Gain           205         13119466913139948         Ye         19:0223519121054         Gain         Group1           205         131094695773919         Ye         19:0223519121054         Gain         Group1           205         1241574212614748         Ye         124157421251419         Gai         Gain           1180         576048995773012         Gain         Gain         Gain         FRGJ. FUBB40, FRGJ. FUBB40, FRGJ. FUBB40, FRGJ. FUBB40, FRGJ. FUBB40           1180         576048995773012         Gain         Gain         Gain         Gain           1180         5764486348603         Ye         1241574212551430         Gain         FRGJ. F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 200         7558344275843060         182         755834427564906 <b>Gin Gin</b> 101         101827746101925168          3 <b>Gin Gin Gin Gin</b> 115         11114660113139948         Yes         199         131198515131397648 <b>Gin Gin Gin</b> 205         38706384236511         Yes         37         3870638423503 <b>Gin CIO</b> P1           205         19102853719124119         Yes         157 <b>B Gin CIO</b> P1           205         1910285371551414         Yes         157 <b>B Gin CIO</b> P1           104         5760498057753019         Yes         157 <b>Gin CIO</b> P1           205         124157212551430 <b>Gin CIO</b> P1 <b>F F</b> 21015         353547483948053         Yes         1241574212551430 <b>Gin F F</b> 21016         415574212614748         Yes         1241574212551430 <b>Gin F F F F F F F F</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 102         101822746101925168         A         A         Gain         GAI2, GAI, GAI, GAI           131         38706384336511         Yes         379         38706384336511         Yes         379         38706384336511         Yes         370         38706384336511         Yes         38706384336511         Yes         3870638432651         Gain         OTOP1           226         191028537191254119         Yes         158         191025245191210542         Gain         OTOP1           149         5760498957753919         Yes         153         5759739957720623         Gain         FRG1, TUB84Q,           133         3935474839488053         Yes         133         5759739957720623         Gain         FRG1, TUB84Q,           133         3935474839488053         Yes         133         575043957730623         Gain         FRG1, TUB84Q,           133         3935474839488053         Yes         1241574212551430         Gain         FRG2, DUX44           133         3935474839488053         Yes         1241574212551430         Gain         FRG2, DUX44           134         4241574212551430         Gain         FRG2, DUX44         FRG2, DUX44           1318         435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 19513119466013138948113119466013138948CainCOPI20638706384236511Ye38706384227503GainOTOPI205191028537191254119Ye158191052245191210542GainFRG1, TUBB40,1405760498957753919Ye1235759739957720623GainFRG1, TUBB40,131395347483948053Ye1235759739957720623GainFRG1, TUBB40,133395347483948053Ye1235759739957720623GainFRG1, TUBB40,133395347483948053Ye1233953474839506110LOSFRG1, TUBB40,133395347483948053Ye1233953474839506110LOSFRG1, TUBB40,133395347483948053Ye1243953474839506110LOSFRG1, TUBB40,1306807654466273526Ye125395474839506110LOSFOXD416, CBWD6,11806807654466273526Ye12987157421251143GainFOXD416, CBWD6,11806807654469256300Ye1096811500669213671GainFOXD416, CBWD6,11806807654469256300Ye1096811500669213671GainFOXD416, CBWD6,11806807654469256300Ye109681150069213671GainFOXD416, CBWD6,11806807654469256300Ye21021080469213671GainFOXD416, CBWD6,11806807654469258303Ye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 366         38706384236511         Yes         3870638423651         Yes         387063842375391         Yes         387063842375391         Yes         19102853719123113         Gain         FRG1.TUBB4G,           1246         5760498957753919         Yes         123         5759739257750623         Gain         FRG1.TUBB4G,           139         5760498957753919         Yes         123         5759739206         Gain         FRG1.TUBB4G,           130         575043839488053         Yes         123         575973916         Gain         FRG1.TUBB4G,           133         3935474839488053         Yes         123         575973926         Gain         FRG1.TUBB4G,           133         3935474839488053         Yes         123         5759739265         Gain         FRG1.TUBB4G,           131         3935474839488053         Yes         12415721251430         Gain         FAM27A, FAM27A,           1310         6807654466273526         Yes         12415721251430         Gain         FAM27A, FAM27A,           1310         6807654466273526         Yes         1241501251430         Gain         FAM27A, FAM27A,           1180         6807654466273526         Yes         1241604213117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 226         191028537191254119         Yes         158         191052245191210542         Gain         FRG1, TUBB40, FRG2, DUX4           149         5760498957753919         Yes         153         684079857750623         Gain         FRG2, DUX4           133         393547483948053         Yes         133         575939957720623         Gain         FAM27A           133         393547483948053         Yes         153         3935474839506110         Gain         FAM27A           133         393547483948053         Yes         153         3935474839506110         Gain         FAM27A, FAM75A7           1305         6807654466273526         Yes         1051         3935474839506110         Gain         FAM27A, FAM75A7           1180         6807654469256300         Yes         1051         801500669213671         Gain         FAM27A, FAM75A7           1180         6807654469256300         Yes         1051         81500669213671         Gain         FAM27A, FAM75A7           1180         6807654469256300         Yes         1051         6811500669213671         Gain         FOXD416, CBW06, FOXD44, FOXD54           1180         68076544602334         Gain         FAM27A, FAM75A7         FOXD416                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Yes         15         68407986995298         Gain           149         576049895773919         Yes         123         575973012         575973905720623         Gain           133         3935474839488053         Yes         136         1241574212614748         Yes         136         1241574212614748         Gain           133         3935474839488053         Yes         157         3935474839506110         Loss         FAM27A           1180         6807654460253526         Yes         1051         4525875460273526         Gain         FAM27A, FAM75A7           1180         6807654460256300         Yes         1051         6811500669213671         Gain         FOXD416, CBWD6, ANKRD20A4, ANKRD20                                                                                                                                                                                                                                                                                                                                    |
| 149         576049805773919         Yes         123         5759739057720623         Gain           199         1241574212614748         Yes         136         1241574212614748         Fand           133         3935474839488053         Yes         136         1241574212551430         Gain           21015         4525875466273526         Yes         151         3935474839506110         Loss           21016         4525875466273526         Yes         1016         4525875466273526         Gain         FAM27A, FAM75A7           11800         6807654469256300         Yes         1016         6811500669213671         Gain         FOXP4L6, CBWD6, ANG76A7           1180         6807654469256300         Yes         1019         6811500669213671         Gain         FOXP4L6, CBWD6, ANG76A7           1180         6807654469256300         Yes         1019         68114042173117         Gain         FOXP4L6, CBWD6, CDC29           105         4193443042173117         Gain         FOXP4L6, CBWD6, CDC29         CDC29           205         33760783580813         Yes         13307893561991         Gain           2105         4193443042173117         Gain         Loss         CDC29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 199         1241574212614748         Yes         136         1241574212551430         Gain         Gain           133         3935474839488053         Yes         151         3935474839506110         Loss           21015         4525875466273526         Yes         21015         4525875466273526         Gain         FAM27A, FAM75A7           1180         6807654469256300         Yes         1099         6811500669213671         Gain         FOXD4L6, CBWD6, AURCEDA4, AURCEDA4, AURCEDA4, AURCEDA4           1180         6807654469256300         Yes         1099         6811500669213671         Gain         FOXD4L6, CBWD6, AURCEDA4, AURCEDA4           1180         6807654469256300         Yes         1099         6811500669213671         Gain         FOXD4L6, CBWD6, AURCEDA4, AURCEDA4           105         4193443042039743         Yes         239         4193443042039743         Gain           105         4193443042039743         Yes         239         4193443042173117         Gain           105         4193443042039743         Yes         239         4193443042173117         Gain           105         31760783580813         Yes         239         4193443042173117         Gain           105<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 133         393547483948053         Yes         151         3955476         Kos           21015         4525875466273526         Yes         21015         4525875466273526         Gain         FAM27A, FAM75A           1180         6807654469256300         Yes         1099         6811500669213671         Gain         FAM27A, FAM75A           1180         6807654469256300         Yes         1099         6811500669213671         Gain         FOXD4L6, CBW06, ANG8A           1180         6807654469256300         Yes         1099         6811500669213671         Gain         FOXD4L6, CBW06, ANG8A           105         4193443042039743         Yes         239         4193443042173117         Gain         CCDC29           205         33760783580813         Yes         133         34307893561991         Gain         CCDC29           205         33760783580813         Yes         133         34307893561991         Gain         CCDC29           205         31760783580813         Yes         133         34307893561991         Gain           205         2162581321787161         Yes         216         2162         AN68         AN68           217         21625813217871                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 21015         4525875466273526         Yes         21015         4525875466273526         Eain         FAM27A, FAM75A7           1180         6807654469256300         Yes         109         6811500669213671         Gain         FOXD4L6, CBWD6, ANG76A           1180         6807654469256300         Yes         109         6811500669213671         Gain         FOXD4L6, CBWD6, ANG76A           105         4193443042039743         Yes         239         4193443042173117         Gain         CCDC29           205         33760783580813         Yes         131         34307893561991         Gain         CCDC29           205         33760783580813         Yes         131         34307893561991         Gain         CCDC29           205         2162581321787161           ANKRD20A4         CCDC29           205         2162581321787161           AS         AS           205         2162581321787161           Loss         AS           217         216258132105601397         Yes          AS         AS           218         105190672105601397         Yes         AS         AS           21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1180         6807654469256300         Yes         109         6811500669213671         Gain         FOXD4L6, CBWD6,<br>ANKRD20A4,<br>CCDC29           105         4193443042039743         Yes         239         4193443042173117         Gain         CCDC29           205         33760783580813         Yes         131         34307893561991         Gain         CCDC29           205         33760783580813         Yes         131         34307893561991         Gain         CCDC29           205         23760783580813         Yes         131         34307893561991         Gain         Conception           205         2162581321787161         1         A         Loss         Loss         Conception           205         2160469822030660         Yes         131         05265510105601397         Gain         Loss           216         105190672105601397         Yes         105265510105601397         Gain         Loss           215         105190672105801397         Yes         105265510105601397         Gain         Monte           216         105190672105701397         Yes         1055040496105822317         Gain         Monte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Gain         Calin           105         4193443042039743         Yes         239         4193443042039743         Gain           205         33760783580813         Yes         131         34307893561991         Gain           172         2162581321787161         1         34307893561991         Gain           226         2180469822030660         1         A         Loss           411         105190672105601397         Yes         105265510105601397         Gain           150         105638133105788389         Yes         1056404961058022317         Gain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 105         4193443042039743         Yes         239         4193443042173117         Gain           205         33760783580813         Yes         131         34307893561991         Gain           172         2162581321787161         1         24307893561991         Gain           226         2180469822030660         1         2         Loss           411         105190672105601397         Yes         336         105255510105601397         Gain           150         105638133105788389         Yes         105640496105822317         Gain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 205         33760783580813         Yes         131         34307893561991         Gain           172         2162581321787161         Loss         Loss           226         2180469822030660         336         105265510105601397         Yes           411         105190672105788389         Yes         105265510105601397         Gain           150         105638133105788338         Yes         105640496105822317         Gain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 172     2162581321787161     Loss       226     2180469822030660     Loss       411     105190672105601397     Yes     336     105265510105601397     Gain       150     105638133105788389     Yes     182     105640496105822317     Gain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 226         2180469822030660         Loss           411         105190672105601397         Yes         336         105265510105601397         Gain           150         105638133105788389         Yes         182         105640496105822317         Gain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 411 105190672105601397 Yes 336 105265510105601397 Gain<br>150 105638133105788389 Yes 182 105640496105822317 Gain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 150 105638133105788389 Yes 182 105640496105822317 Gain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| sı.<br>No | Location | Family 2 | N            |                  |                     |              |                  |        |                     |                  |       |                     |                  | Status Novel | (Overlapping<br>I or Nearby)                    | SD   |
|-----------|----------|----------|--------------|------------------|---------------------|--------------|------------------|--------|---------------------|------------------|-------|---------------------|------------------|--------------|-------------------------------------------------|------|
|           |          |          | Size<br>(kb) | Breakpoints      | Size<br>II-1-2 (kb) | Size<br>(kb) | Breakpoints      | II-2-1 | Size<br>II-2-1 (kb) | Breakpoints      | II-2- | Size<br>II-2-2 (kb) | Breakpoints      |              |                                                 |      |
|           |          |          |              |                  | Yes                 | 1067         | 1886180819928521 | Yes    | 572                 | 1885002919422452 | Yes   | 344                 | 1884599019189673 | Gain         | OR4M2, OR4N4,<br>LOC650137                      | -    |
|           |          |          |              |                  |                     |              |                  |        |                     |                  | Yes   | 624                 | 1920708819835514 | Gain         |                                                 | -    |
| 26        | 15q25.3  |          |              |                  | Yes                 | 161          | 8352479183685356 | Yes    | 228                 | 8352479183752853 | Yes   | 228                 | 8352479183752450 | Gain         | AKAP12                                          | 0    |
| 27        | 15q25.3  |          |              |                  | Yes                 | 123          | 8378450783907801 | Yes    | 157                 | 8378450783941483 | Yes   | 159                 | 8379025983949305 | Gain         | AKAP13                                          | 0    |
| 28        | 16p11.2  | Yes      | 118          | 3188265832000323 |                     |              |                  | Yes    | 1131                | 3253173533662480 | Yes   | 1377                | 3230310833680554 | Gain         | LOC729355,<br>TP53TG3                           | -    |
|           |          | Yes      | 294          | 3208827532382422 |                     |              |                  |        |                     |                  |       |                     |                  | Gain         |                                                 | -    |
|           |          | Yes      | 185          | 3253875732723310 |                     |              |                  |        |                     |                  |       |                     |                  | Gain         |                                                 | -    |
|           |          | Yes      | 474          | 3296214733436245 |                     |              |                  |        |                     |                  |       |                     |                  | Gain         |                                                 | -    |
|           |          | Yes      | 211          | 3345147633662480 |                     |              |                  |        |                     |                  |       |                     |                  | Gain         |                                                 | -    |
| 29        | 17q21.31 | Yes      | 586          | 4152162142107467 | Yes                 | 198          | 4152162141719935 | Yes    | 586                 | 4152162142107467 | Yes   | 407                 | 4170062442107467 | Gain         | KIAA1267, LRRC37A, 1<br>ARL17, LRRC37A2,<br>NSF | A, 1 |
| 30        | 18p11.21 | Yes      | 1545         | 1526248616807594 |                     |              |                  |        |                     |                  | Yes   | 130                 | 1521864715348836 | Gain         | ROCK1                                           | -    |
| 31        | 19q13.31 | Yes      | 116          | 4799125748107552 |                     |              |                  | Yes    | 133                 | 4799125748123857 | Yes   | 235                 | 4798621848221228 | Loss         | PSG1, PSG6,<br>PSG7, PSG11                      | -    |
| 32        | 21p11.2  | Yes      | 204          | 97587309962501   | Yes                 | 204          | 97587309962501   | Yes    | 204                 | 97587309962501   |       |                     |                  | Gain         | TPTE                                            | 0    |
| 33        | 22q11.22 | Yes      | 148          | 2130012721448190 |                     |              |                  | Yes    | 200                 | 2129832421498767 | Yes   | 178                 | 2129832421476564 | Gain         | GGTL4                                           | 0    |
| 34        | Xp11.23  | Yes      | 112          | 4791789948029446 | Yes                 | 269          | 4791789948186708 | Yes    | 184                 | 4791789948102337 | Yes   | 257                 | 4793522548192383 | Gain         | SSX5, SSX1,<br>SSX9, SSX3                       | -    |
| 35        | Xq13.1   | Yes      | 185          | 7186937572054837 |                     |              |                  |        |                     |                  | Yes   | 185                 | 7186937572054837 | Gain Yes     | DMRTC1                                          | -    |

We also analyzed genes that overlapped de novo CNVs (gains and losses) in order to assess their potential effect on physiology and function starting with GO ontology annotation (http://www. geneontology.org). Interestingly, the majority of genes belonged to transcription, DNA replication, transport, and cell signalling pathways, including 'binding' or 'catalytic' functions. A number of these genes are expressed in the brain, some with potential to affect neurophysiology, neurodevelopment and function and a set of them are known to show altered expression in schizophrenia (www.schizophreniaforum.org). Also of significance is the observation that the FAM19A5 protein encoded by the FAM19A5 gene (22q13.32) belongs to the TAFA protein family which are predominantly expressed in the brain, and are postulated to function as brain-specific chemokines or neurokines, that act as regulators of immune and nervous cells [32]. This finding adds to the existing speculation about the role of the Major Histocompatability Loci (MHC) and infection in SCZ. Functional analysis of this gene and upstream regulatory elements for characteristic patterns of nucleosome occupancy changes associated with enhancers could vield novel insights into the role of this gene in psychiatric disorders. IPA analysis of gene networks of CNVs and SNPs converged on cell cycle, cellular growth and proliferation. Genes involved in genetic disorders such as hematological disease, immunological, inflammatory and developmental disorders were overrepresented. These results support the hypothesis that schizophrenia is a "developmental disorder" at the molecular level. Interestingly, a recent co-expression network analysis of microarray-based brain gene expression data revealed perturbations in developmental processes in schizophrenia [33]. However, given that these results are based on only two twin pairs, and schizophrenia is highly heterogeneous, the results on disease causations cannot be generalized. Also, we have offered other explanations for twin discordance that may involve epigenetic changes [34].

It is not surprising that genomic studies have begun to use monozygotic twins. In fact a number of them have identified copy number variations [35] and epigenetic [36-38] differences between them; an exception to these results is a recent study by Baranzini et al [39]. They studied three pairs of monozygotic twins discordant for Multiple Sclerosis (MS) and found no difference that could account for the disease causation. The results may be viewed as not surprising for a number of reasons. First, MS is known to have significant environmental components including sunlight and viruses, among others, [40] and the concordance rate in monozygotic twins is only  $\sim 30\%$ . Second, they assessed the CD4+ lymphocytes only that may or may not represent the causative cell type. Also, they sequenced the genome of CD4+ cells from a single pair corresponding to 21.7 and 22.5-fold coverage representing 99.6% and 99.5% of the NCBI human reference genome, which may or may not be effective. Only additional genomic and epigenomic studies on MZ twins will offer insights into the dynamics of genomic stability and change, that forms the focus of this report.

In summary, the present study adds to the recent effort in human genetics to define the phenomenon of constancy and change using inheritance and origin of genome-wide CNVs and SNPs. The results demonstrate that CNVs often result from mitosis during early development facilitated by flanking repeats. They may lead to CNV differences among different tissue and make most individuals mosaics. The described approach expands the search for disease related genetic changes, indicates the time of their occurrence and begins to interrogate the mechanisms involved.

# **Materials and Methods**

This research was approved by the Committee on Research Involving Human Subjects at the University of Western Ontario. The families and patients were identified, recruited and clinically assessed by Dr. Richard O'Reilly (Psychiatrist) and all participants (Figure 1) gave informed consent and provided blood and buccal cells for this research. All subjects were interviewed using the Structured Clinical Interview for DSM IV and the SCID II (for personality disorders) and their medical records collected and reviewed. Diagnoses and demographic information are listed in Table 1. DNA was extracted from the collected white blood cells using the perfect pure DNA blood kit (5prime.com) following the manufacturer's protocol. Subsequent microarray analysis was performed using the Affymetrix Genome-Wide Human SNP Array 6.0 at the London Regional Genomics Centre (LRGC) following manufacturer's protocol and stringent quality control measures. Briefly, 5 µg of genomic DNA was labelled and hybridized to Affymetrix SNP 6.0 arrays. CNVs called by both Affymetrix Genotyping Console 4.0 and Partek® Genotyping Suite<sup>TM</sup> software suites were retained for analysis. In both cases, the CNVs were identified by continuity of markers on a segment. Two CNVs that overlapped by >50% in the two methods of data analysis were given the same identity. Every measure was undertaken to avoid inclusion of false positives including correction for segmental duplications. We found evidence of CNVs associated with segmental duplications which agrees with previous studies [41]. The CNVs identified were further assessed by comparison to the Database of Genomic Variants (http:// projects.tcag.ca/variation/) and annotated with gene symbols by importing the annotation file from the UCSC genome browser (NCBI36/hg 18). A CNV that was present in both members of the twin pair and not in either of their two parents was considered to be meiotic *de novo* (originated during gamete formation), while a CNV that was present in one of the two twins and not present in either parent was considered to be mitotic de novo (originated during development). Further, a CNV present in the SCZ affected twin only (as compared to the two parents and unaffected member of the pair or the database) was classified as "provisional de novo CNV" for this disease. Novel CNVs discovered in this study were validated for predicted CNVs by Real Time PCR analysis with an internal control (RNAseP gene) using TaqMan detection chemistry and the ABI Prism 7300 Sequence Detection System (Applied Biosystems, http://www.appliedbiosystems.org). The copy number of the test locus in each case was defined as  $2T^{-\Delta\Delta C}$  where  $\Delta CT$  is the difference in threshold cycle number for the test and reference loci.

Additional CNV analysis focused on two aspects. The first deals with identification of putative repeat elements in the flanking regions of CNVs; within a 1 kb region upstream and downstream of the CNV breakpoint which could promote breakage, deletion and duplication. The identification of repeat elements was carried out using repeat masker (http://www.repeatmasker.org/). Secondly, a probable mechanism associated with sequence-specific susceptibility to CNVs was queried. This data was used to test models related to the origin of CNVs. Previously reported candidates for CNV mechanisms include Non-Allelic Homologous Recombination (NAHR), Non-Homologous End Joining (NHEJ), Fork Stalling and Template Switching (FoSTeS) and Microhomology-Mediated Break-Induced Replication (MMBIR) [42]. The second line of investigation involved functional characterization of genes by matching of the identified genes with the Schizophrenia Gene Database (http://www.schizophreniaforum.org/res/ sczgene/default.asp) as well as their assessment by GO ontology

The use of Affymetrix 6.0 Human SNP array also allowed us to assess the transmission of a total of 909622 SNPs that are contained on the array. It allowed us to identify SNPs in the twins that were not present in either of the two parents; considered to be *de novo*. The origin of the *de novo* SNPs was assumed to be parental meiosis if both twins carried the novel nucleotide. In contrast, the origin of the *de novo* SNPs was assumed to be somatic development (mitosis) if only one of the two twins carried the novel nucleotide. We were able to assign novel substitutions to different categories

# References

- 1. Fisher RA (1919) The Genesis of Twins. Genetics 4: 489-499.
- 2. Venter JC (2010) Multiple personal genomes await. Nature 464: 676-677.
- Lee C, Scherer SW (2010) The clinical context of copy number variation in the human genome. Expert Rev Mol Med 12: e8.
- Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, et al. (2004) Detection of large-scale variation in the human genome. Nat Genet 36: 949–951.
- Sebat J, Lakshmi B, Troge J, Alexander J, Young J, et al. (2004) Large-scale copy number polymorphism in the human genome. Science 305: 525–528.
- Stankiewicz P, Lupski JR (2010) Structural variation in the human genome and its role in disease. Annu Rev Med 61: 437–455.
- Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, et al. (2008) Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 320: 539–543.
- Need AC, Ge D, Weale ME, Maia J, Feng S, et al. (2009) A genome-wide investigation of SNPs and CNVs in schizophrenia. PLoS Genet 5: e1000373.
   Singh SM Castellani CA O'Reilly RL (2000) Conv number variation showers
- Singh SM, Castellani CA, O'Reilly RL (2009) Copy number variation showers in schizophrenia: an emerging hypothesis. Mol Psychiatry 14: 356–358.
- Grozeva D, Kirov G, Ivanov D, Jones IR, Jones L, et al. (2010) Rare copy number variants: a point of rarity in genetic risk for bipolar disorder and schizophrenia. Arch Gen Psychiatry 67: 318–327.
- Kirov G (2010) The role of copy number variation in schizophrenia. Expert Rev Neurother 10: 25–32.
- Gottesman II, Bertelsen A (1989) Confirming unexpressed genotypes for schizophrenia. Risks in the offspring of Fischer's Danish identical and fraternal discordant twins. Arch Gen Psychiatry 46: 867–872.
- McGuffin P, Asherson P, Owen M, Farmer A (1994) The strength of the genetic effect. Is there room for an environmental influence in the aetiology of schizophrenia? Br J Psychiatry 164: 593–599.
- Ku CŠ, Pawitan Y, Sim X, Ong RT, Seielstad M, et al. (2010) Genomic copy number variations in three Southeast Asian populations. Hum Mutat 31: 851–857.
- Levy S, Sutton G, Ng PC, Feuk L, Halpern AL, et al. (2007) The diploid genome sequence of an individual human. PLoS Biol 5: e254.
- Myers S, Freeman C, Auton A, Donnelly P, McVean G (2008) A common sequence motif associated with recombination hot spots and genome instability in humans. Nat Genet 40: 1124–1129.
- Tanahashi N, Suzuki M, Fujiwara T, Takahashi E, Shimbara N, et al. (1998) Chromosomal localization and immunological analysis of a family of human 26S proteasomal ATPases. Biochem Biophys Res Commun 243: 229–232.
- Huen MS, Chen J (2008) The DNA damage response pathways: at the crossroad of protein modifications. Cell Res 18: 8–16.
- Hoyle J, Fisher EM (1996) Genomic organization and mapping of the mouse P26s4 ATPase gene: a member of the remarkably conserved AAA gene family. Genomics 31: 115–118.
- Konradi C (2005) Gene expression microarray studies in polygenic psychiatric disorders: applications and data analysis. Brain Res Brain Res Rev 50: 142–155.
   Mirnics K, Levitt P, Lewis DA (2006) Critical appraisal of DNA microarrays in
- Minics K, Levit F, Lewis DA (2006) Critical appraisal of DNA interoarrays in psychiatric genomics. Biol Psychiatry 60: 163–176.
- Lee YW, Eum SY, Chen KC, Hennig B, Toborek M (2004) Gene expression profile in interleukin-4-stimulated human vascular endothelial cells. Mol Med 10: 19–27.
- Belge G, Roque L, Soares J, Bruckmann S, Thode B, et al. (1998) Cytogenetic investigations of 340 thyroid hyperplasias and adenomas revealing correlations between cytogenetic findings and histology. Cancer Genet Cytogenet 101: 42–48.

including their potential effect on the gene and gene product, as well as pathways that may be affected.

## Acknowledgments

We thank members of the two families who participated in this research.

# **Author Contributions**

Conceived and designed the experiments: SS RO. Performed the experiments: SM KHBGK CC. Analyzed the data: SM CC. Contributed reagents/materials/analysis tools: RO SS. Wrote the paper: SS.

- Booth HA, Holland PW (2007) Annotation, nomenclature and evolution of four novel homeobox genes expressed in the human germ line. Gene 387: 7–14.
- Michalak K, Orr WC, Radyuk SN (2008) Drosophila peroxiredoxin 5 is the second gene in a dicistronic operon. Biochem Biophys Res Commun 368: 273–278.
- Wu H, Zhang S, Qiu W, Zhang G, Xia Q, et al. (2001) Isolation, characterization, and mapping of a novel human KRAB zinc finger protein encoding gene ZNF463. Biochim Biophys Acta 1518: 190–193.
- Daclemans C, Ritchie ME, Smits G, Abu-Amero S, Sudbery IM, et al. (2010) High-throughput analysis of candidate imprinted genes and allele-specific gene expression in the human term placenta. BMC Genet 11: 25.
- Meiboom M, Murua EH, Pentimalli F, Fusco A, Belge G, et al. (2003) A 3.4-kbp transcript of ZNF331 is solely expressed in follicular thyroid adenomas. Cytogenet Genome Res 101: 113–117.
- Piotrowski A, Bruder CE, Andersson R, Diaz dS, Menzel U, et al. (2008) Somatic mosaicism for copy number variation in differentiated human tissues. Hum Mutat 29: 1118–1124.
- Mkrtchyan H, Gross M, Hinreiner S, Polytiko A, Manvelyan M, et al. (2010) Early embryonic chromosome instability results in stable mosaic pattern in human tissues. PLoS One 5: e9591.
- Vanneste E, Voet T, Le Caignec C, Ampe M, Konings P, et al. (2009) Chromosome instability is common in human cleavage-stage embryos. Nat Med 15: 577–583.
- Schwartz M (2010) The emergence of a new science of the mind: immunology benefits the mind. Mol Psychiatry 15: 337–338.
- Torkamani A, Dean B, Schork NJ, Thomas EA (2010) Coexpression network analysis of neural tissue reveals perturbations in developmental processes in schizophrenia. Genome Res 20: 403–412.
- Singh SM, O'Reilly R (2009) (Epi)genomics and neurodevelopment in schizophrenia: monozygotic twins discordant for schizophrenia augment the search for disease-related (epi)genomic alterations. Genome 52: 8–19.
- Bruder CE, Piotrowski A, Gijsbers AA, Andersson R, Erickson S, et al. (2008) Phenotypically concordant and discordant monozygotic twins display different DNA copy-number-variation profiles. Am J Hum Genet 82: 763–771.
- Ollikainen M, Smith KR, Joo EJ, Ng HK, Andronikos R, et al. (2010) DNA methylation analysis of multiple tissues from newborn twins reveals both genetic and intrauterine components to variation in the human neonatal epigenome. Hum Mol Genet.
- Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, et al. (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A 102: 10604–10609.
- Kaminsky ZA, Tang T, Wang SC, Ptak C, Oh GH, et al. (2009) DNA methylation profiles in monozygotic and dizygotic twins. Nat Genet 41: 240–245.
- Baranzini SE, Mudge J, van Velkinburgh JC, Khankhanian P, Khrebtukova I, et al. (2010) Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis. Nature 464: 1351–1356.
- Milo R, Kahana E (2010) Multiple sclerosis: geoepidemiology, genetics and the environment. Autoimmun Rev 9: A387–A394.
- Hastings PJ, Lupski JR, Rosenberg SM, Ira G (2009) Mechanisms of change in gene copy number. Nat Rev Genet 10: 551–564.
- 42. Zhang F, Khajavi M, Connolly AM, Towne CF, Batish SD, et al. (2009) The DNA replication FoSTeS/MMBIR mechanism can generate genomic, genic and exonic complex rearrangements in humans. Nat Genet 41: 849–853.