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a b s t r a c t

Medium-chain fatty acids and their derivatives are natural ingredients that support immunological
functions in animals. The effects of glycerol monolaurate (GML) on intestinal innate immunity and
associated molecular mechanisms were investigated using a chicken embryo model. Sixty-four Arbor
Acres broiler embryos were randomly allocated into four groups. On embryonic day 17.5, the broiler
embryos were administered with 9 mg of GML, which was followed by a 12-h incubation period and a
12-h challenge with 32 mg of lipopolysaccharide (LPS). On embryonic day 18.5, the jejunum and ileum
were harvested. Results indicated that GML reversed the LPS-induced decline in villus height and
upregulated the expression of mucin 2 (P < 0.05). GML decreased LPS-induced malondialdehyde pro-
duction and boosted antioxidant enzyme activity (P < 0.05). GML alleviated LPS-stimulated intestinal
secretion of interleukin (IL)-1b, IL-6, and tumor necrosis factor-a (TNF-a) (P < 0.05). GML also normalized
LPS-induced changes in the gene expression of Toll-like receptor 4, nuclear factor kappa-B p65 (NF-kB
p65), cyclooxygenase-2, NOD-like receptor protein 3, IL-18, zonula occludens 1, and occludin (P < 0.05).
GML enhanced as well the expression of AMP-activated protein kinase a1 and claudin 1 (P < 0.05). In
conclusion, GML improved intestinal morphology and antioxidant status by alleviating inflammatory
responses and modulating NF-kB signaling in LPS-challenged broiler embryos.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).
1. Introduction

Enteric infections are a constant challenge for the poultry in-
dustry and a major cause of economic losses owing to reduced feed
efficiency and increased mortality following the ban on the use of
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antibiotic growth promoters (AGP) (Abd El-Hack et al., 2022).
Medium-chain fatty acids and their derivatives as natural alterna-
tives to AGP are gaining attention for controlling enteric diseases of
broilers in the post-antibiotic era (Kumar et al., 2021, 2022). The use
of medium-chain fatty acids such as caprylic, capric, and lauric
acids shows potent effects against necrotic enteritis and benefits
the integrity and homeostasis of intestinal health in broilers
(Gomez-Osorio et al., 2021). Glycerol monolaurate (GML) is a
naturally occurring 12-carbon monoester comprising lauric acid
and glycerol that is found in coconut oil, palmetto, and human
breast milk (Luo et al., 2022). GML possesses antimicrobial, anti-
inflammatory, and immunomodulatory activities and is thus
extensively used to inhibit potential bacterial pathogens. GML
resistance has not been found in any susceptible microorganisms,
and GML has been shown to inhibit bacterial peritonitis and viral
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vaginal inflammation (Fosdick et al., 2021; Manohar et al., 2013;
Valentini et al., 2020). Dietary GML is one of the most promising
feed additives for poultry, livestock, and aquaculture because of its
great potential to improve intestinal health (Fortuoso et al., 2019;
Ren et al., 2020; Wang et al., 2021).

Gram-negative bacterial lipopolysaccharide (LPS) is the main
cause of intestinal injury through the increased production of
chemokines and cytokines (Deng et al., 2019). LPS reportedly in-
duces innate immune responses in chick embryos at embryonic age
day 18 (E 18), similar to findings in mature individuals
(Bavananthasivam et al., 2019). Owing to its ease of manipulation,
chicken embryo is an attractive model in various fields, such as
immunology, drug testing, genetics, and cell biology (Serralbo et al.,
2020). Chicken embryos also have a low abundance of intestinal
microflora. To exclude any possible interference mediated by host
microflora, an LPS stimulation model of chicken embryos was
established in the present study. This model may resemble the
vertical transmission of gram-negative pathogens such as Escher-
ichia coli from breeders to broilers.

Our previous study has shown that dietary GML improves the
intestinal health of broilers and ameliorates LPS-induced immune
stress and intestinal injury by suppressing inflammation and
regulating the intestinal microbiota (Kong et al., 2021, 2022). In the
present study, the direct effects and molecular mechanisms of GML
on intestinal health were further investigated using an embryonic
model to avoid the confounding effects of diet, intestinal micro-
biota, and experimental heterogeneity. We aimed to evaluate the
protective effects of GML on the inflammatory response, intestinal
barrier function, and oxidative stress in the jejunum and ileum of
broiler embryos subjected to the LPS challenge.

2. Materials and methods

2.1. Animal ethics

All animal-care procedures were reviewed and approved by the
Ethics Committee of Shandong Agricultural University (approval
No. SDAUA-2022-50).

2.2. Eggs, experimental design, and in ovo injection

A total of 100 fertile eggs (Arbor Acres) with similar weights
were purchased on the day they were laid. All embryonated eggs
were incubated at 37.8 �C and a relative humidity of 60% in an
automatic incubator. At E 16, the eggs (n ¼ 64) were candled and
randomly allocated into four groups for in ovo injection (denoted as
the CON, LPS, GML, and GML þ LPS groups) with 16 eggs per group.
GML (SigmaeAldrich Inc., St. Louis, MO, USA) was dissolved in
dimethyl sulfoxide (DMSO) (Aladdin Biochemical Technology Co.,
Ltd., Shanghai, China) as described by Sivinski et al. (2020). The
experimental design is shown in Fig. 1. At E 17.5, eggs in the GML
Fig. 1. Experimental design. In ovo injection of 9 mg of GML at embryonic day 17.5 (E
17.5) and incubation for 12 h, followed by a challenge with 32 mg of LPS for 12 h at E 18.
GML ¼ glycerol monolaurate; LPS ¼ lipopolysaccharide.

298
and GML þ LPS groups were injected with 50 mL of DMSO con-
taining 9 mg of GML, and those in the CON and LPS groups received
an equivalent injection of DMSO. At E 18, eggs in the LPS and
GML þ LPS groups were injected with 50 mL of saline containing
32 mg of LPS (L2880, SigmaeAldrich Inc., St. Louis, MO, USA), and
equivalent volumes of saline were injected into the CON and GML
groups as vehicle controls for LPS. The injection volume and dilu-
ents were selected according to Khaligh et al. (2018).

The in ovo injection procedure was performed as previously
described (Uni et al., 2005). In a typical procedure, the eggs were
removed from the incubator at E 17.5. A hole with a diameter of
approximately 1 mm was drilled into the air chamber end after
sterilization with 75% alcohol. Then, 50 mL of the solution was
injected with a 21-gauge needle into the amniotic fluid. All
injected solutions were freshly prepared on the day of injection
and heated to 37 �C. The hole was sealed with melted paraffin
after the injection, and the eggs were placed back into the
incubator.

2.3. Sample collection

Eggs were removed from the incubator and opened for sampling
at E 18.5. Intestinal segments of two chicken embryos were com-
bined as one sample, and at least six samples were analyzed for
each treatment. Approximately 1 cm segments were collected from
the midway of the jejunum and ileum and immediately immersed
in 4% paraformaldehyde for histological examinations. A section of
themid-jejunum andmid-ileum (approximately 2 cm)was excised,
rapidly frozen in liquid nitrogen, and stored at �80 �C for further
analysis.

2.4. Determination of inflammatory parameters

Tissues of the jejunum and ileum were homogenized with
phosphate-buffered saline at a weight (g)-to-volume (mL) ratio
of 1:9. The supernatant was collected to determine the levels of
intestinal interleukin (IL)-1b, IL-6, and tumor necrosis factor-a
(TNF-a) by using enzyme-linked immunosorbent assay kits
(MLBIO Co., Shanghai, China). All analysis procedures were
performed in strict accordance with the manufacturer's in-
structions. The final results were normalized to the protein
concentration of each sample.

2.5. Morphology analysis

After being fixed in a 4% paraformaldehyde solution for 24 h, the
jejunum and ileum segments were dehydrated and embedded in
paraffin. The paraffin-coated tissue was cut into 4 mm-thick sec-
tions, fixed on slides, and stained with hematoxylin and eosin. Ten
randomly selected fields from each section were acquired at 200�
magnification with an Eclipse 80i Nikon microscope (Nikon Inc.,
Tokyo, Japan). The average of 10 values from individual embryos
was used for statistical analysis.

2.6. Oxidative status assay

The malondialdehyde (MDA) levels, total antioxidant capacity
(T-AOC), and catalase (CAT) activities in the jejunum and ileum
were measured using commercial assay kits (intraassay coefficients
of variation < 5%; interassay coefficients of variation < 8%) ac-
cording to the manufacturer's protocols (Nanjing Jiancheng
Biotechnology Institute, Nanjing, China). The final results were
normalized to the protein concentration in the homogenized su-
pernatant of each sample.
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2.7. RNA isolation and real-time quantitative PCR

Approximately 50 mg of jejunum and ileum tissues were
homogenized in 500 mL of RNA-Easy Isolation Reagent (Vazyme
Biotech, Nanjing, China), and total RNA was isolated according to
the manufacturer's instructions. Following the removal of
genomic DNA with gDNA Eraser, 1 mg of total RNA was reverse
transcribed using an RNA reverse-transcription kit (AG11728,
Accurate Biotechnology Co., Ltd., Hunan, China). A real-time PCR
system was used (QuanStudio 5, Applied Biosystems, Foster City,
CA, USA) for quantitative PCR with TB Green Premix Ex Taq
(RR820A, Takara Bio Inc., Dalian, China). The primer sequences
are shown in Table 1. For each pair of primers, amplification ef-
ficiency was verified using a standard curve, and the specificity
was checked with a melt curve. The PCR amplification conditions
included the following: predenaturation at 95 �C for 10 s, fol-
lowed by 40 cycles of denaturation at 95 �C for 5 s, and
annealing at 60 �C for 34 s. All samples were analyzed in trip-
licate. The relative expression of each target gene was calculated
with the 2�DDCt method after normalization against the expres-
sion of peptidylprolyl isomerase A.

2.8. Statistical analysis

All data analyses were conducted with SPSS software (IBM SPSS
Statistics 27.0, Armonk, NY, USA), and the results are presented as
the mean ± SEM. Two-way ANOVA was performed to evaluate the
main factor effects and interactions of the GML and LPS challenge.
Significant variations between the treatments were compared us-
ing Tukey's multiple comparisons. Differences were considered
significantly different at P < 0.05.

3. Results

3.1. Intestinal morphology and mucin 2 (MUC2) expression

Hematoxylin and eosin staining was performed to observe the
effects of GML on the intestinal morphology of challenged embryos
Table 1
Primer sequences used for real-time quantitative PCR.

Gene Accession number

MUC2 NM_001318434.1

TLR4 NM_001030693.1

NF-kB p65 NM_001396038.1

AMPKa1 NM_001039603.1

COX-2 NM_001167718.1

NLRP3 XM_040700804.1

IL-18 NM_204608.2

ZO-1 XM_015278981.2

OCLN NM_205128.1

CLDN1 NM_001013611.2

PPIA NM_001166326.2

MUC2 ¼ mucin 2; TLR4 ¼ Toll-like receptor 4; NF-kB p65 ¼ nuclear factor kappa-B
2 ¼ cyclooxygenase-2; NLRP3 ¼ NOD-like receptor protein 3; IL-18 ¼ interleukin 18; ZO-
isomerase A.
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(Fig. 2A and B). Significant interactions were observed between
GML and LPS groups in the intestinal villus height of chicken em-
bryos (P < 0.05) (Fig. 2C and D). LPS decreased the villus height of
the jejunum and ileum in embryos (P < 0.05). Conversely, GML
significantly increased the villus height of the small intestine in
normal and challenged embryos (P < 0.05), suggesting a protective
effect on intestinal morphology. Moreover, GML-treated embryos
had higher jejunalMUC2 expression than those in the CON and LPS
groups (P ¼ 0.004) (Fig. 2E).
3.2. Antioxidant status

The oxidative status of the jejunum and ileum is shown in Fig. 3.
Significant interactions occurred between GML and LPS groups in
MDA levels (P ¼ 0.003) and T-AOC (P ¼ 0.044) of the jejunum.
Increased MDA levels and decreased T-AOC activity were observed
in the jejunum of challenged embryos compared with control
embryos (P < 0.05) (Fig. 3A and B). However, embryos in the
GML þ LPS group exhibited decreased MDA levels and upregulated
T-AOC activity in the jejunum compared with those in the LPS
group (P < 0.05) (Fig. 3A and B). No significant differences were
observed in MDA levels, T-AOC, or CAT activity in the ileum
(P > 0.05) (Fig. 3DeF).
3.3. Inflammatory cytokine production

The effects of the experimental treatments on cytokine levels
are shown in Fig. 4. Significant interactions were observed be-
tween GML and LPS groups in the intestinal cytokines of embryos
(P < 0.05). LPS challenge increased the levels of jejunal IL-1b and
TNF-a (P < 0.05). GML significantly reversed the LPS-induced
production of these proinflammatory cytokines in the jejunum
(Fig. 4A and C). In the ileum, GML injection significantly reduced
the levels of ileal IL-6 and TNF-a in challenged embryos
(P < 0.05) (Fig. 4E and F). Moreover, GML significantly decreased
the contents of jejunal IL-6 (P ¼ 0.004) and ileal IL-1b (P ¼ 0.034)
(Fig. 4B and D).
Primer sequence (50/30) Product size, bp

AGGAATGGGCTGCAAGAGAC 77
GTGACATCAGGGCACACAGA
AGGCACCTGAGCTTTTCCTC 96
TACCAACGTGAGGTTGAGCC
CAGCCCATCTATGACAACCG 152
TCAGCCCAGAAACGAACCTC
TGGCATTTGGGGATACGGAG 130
GATTCTTCCGTCGAACACGC
TGTCCTTTCACTGCTTTCCAT 84
TTCCATTGCTGTGTTTGAGGT
GCTCCTTGCGTGCTCTAAGACC 150
TTGTGCTTCCAGATGCCGTCAG
AGATGATGAGCTGGAATGCGATGC 97
ATCTGGACGAACCACAAGCAACTG
CTTCAGGTGTTTCTCTTCCTCCTCTC 131
CTGTGGTTTCATGGCTGGATC
TCATCGCCTCCATCGTCTAC 142
TCTTACTGCGCGTCTTCTGG
CTGATTGCTTCCAACCAG 140
CAGGTCAAACAGAGGTACAAG
CCTGCTTCCACCGGATCAT 64
CCGTTGTGGCGCGTAAA

p65; AMPKa1 ¼ adenosine monophosphate-activated protein kinase a1; COX-
1 ¼ zonula occludens 1; OCLN ¼ occludin; CLDN1 ¼ claudin 1; PPIA ¼ peptidylprolyl



Fig. 2. Effects of in ovo injection of GML on the intestinal barrier. (A) H&E staining of the jejunum. (B) H&E staining of the ileum. Magnification, 200�; scale bar, 200 mm. Villus
height in the (C) jejunum and (D) ileum. Gene-expression levels of MUC2 in the (E) jejunum and (F) ileum. GML ¼ glycerol monolaurate; LPS ¼ lipopolysaccharide;
H&E ¼ hematoxylin and eosin; MUC2 ¼ mucin 2. aeb Means with no common superscripts differ significantly (P < 0.05). Means are based on 6 replicates per treatment with 2
chicken embryos per replicate.

L. Kong, Y. Cai, X. Pan et al. Animal Nutrition 15 (2023) 297e306
3.4. Gene expression in the jejunum and ileum

As shown in Fig. 5, the interaction between GML and LPS notably
affected the gene expression of Toll-like receptor 4 (TLR4)
(P ¼ 0.003), nuclear factor kappa-B p65 (NF-kB p65) (P ¼ 0.006),
cyclooxygenase-2 (COX-2) (P ¼ 0.010), NOD-like receptor protein 3
(NLRP3) (P ¼ 0.013), IL-18 (P ¼ 0.001), and occludin (OCLN)
(P ¼ 0.002) in the jejunum of chicken embryos. Embryos treated
with LPS had higher jejunal TLR4, NF-kB p65, COX-2, NLRP3, and IL-
18 gene expression than control embryos (P < 0.05). However,
embryos in the GML þ LPS group exhibited significantly down-
regulated jejunal TLR4, NF-kB p65, COX-2, NLRP3, and IL-18
expression levels compared with those in the LPS group (P < 0.05).
The LPS challenge downregulated the expression of jejunal OCLN
compared with that in the CON group (P < 0.01). The down-
regulation of this gene was reversed by GML (P < 0.05). Moreover, a
significant main effect of GML was observed in the gene expression
of adenosine monophosphate-activated protein kinase a1
(AMPKa1) (P ¼ 0.004) and claudin 1 (CLDN1) (P < 0.001). GML
significantly increased AMPKa1 and CLDN1 expression in the
jejunum of embryos (P < 0.05).
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Significant interactions were observed between the GML and
LPS groups in the gene expression of TLR4 (P ¼ 0.026), NF-kB p65
(P ¼ 0.012), and AMPKa1 (P ¼ 0.043) in the ileum of embryos
(Fig. 6). GML significantly increased AMPKa1 expression in chal-
lenged embryos and prevented the LPS-induced increase in TLR4
and NF-kB p65 expression (P < 0.05). Notably, the significant main
effect of GML was that it affected the gene expression of ileal COX-2
(P¼ 0.002), IL-18 (P¼ 0.037), zonula occludens 1 (ZO-1) (P¼ 0.008),
and CLDN1 (P ¼ 0.004).

4. Discussion

Since the ban on AGP in animal feed, intestinal inflammation
and compromised mucosal barriers have become major problems
in intensive poultry production (Ducatelle et al., 2018). The
immunomodulation of innate immunity is a promising alternative
to antibiotics to reduce the inflammatory effects of infections and
enhance host defense against microbial infections (Lillehoj and Lee,
2012). GML, a dietary immunomodulator, improves the intestinal
health of poultry and has thus been suggested as an alternative to
AGP (Amer et al., 2021; Liu et al., 2020). However, few studies have



Fig. 3. Effects of in ovo injection of GML on oxidative status in LPS-challenged embryos. MDA levels, T-AOC, and CAT activity in the (AeC) jejunum and (DeF) ileum. GML ¼ glycerol
monolaurate; LPS ¼ lipopolysaccharide; MDA ¼ malondialdehyde; T-AOC ¼ total antioxidant capacity; CAT ¼ catalase. aeb Means with no common superscripts differ significantly
(P < 0.05). Means are based on 6 replicates per treatment with 2 chicken embryos per replicate.
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examined the mechanisms underlying the specific immunomodu-
latory effects of GML on broilers. Accordingly, the present study
investigated the effects and associated mechanisms of GML on
innate immunity in a broiler embryo model.

LPS has been demonstrated to induce innate immune responses
in E 18 broiler embryos, including the induction of proin-
flammatory cytokine expression in multiple organs
(Bavananthasivam et al., 2019). This finding was reflected in the
current work by the increased levels of IL-1b, IL-6, and TNF-a in the
jejunum and ileum of LPS-challenged embryos, similar to the out-
comes of previous research (Bhanja et al., 2015). Multiple studies
have demonstrated the immunoregulatory properties of GML. Li
et al. (2009) found that the secretion of macrophage inflamma-
tory protein 3a and IL-8 is alleviated by GML, which significantly
inhibits mucosal signal transduction and the innate immune
response. Human milk samples rich in GML inhibit superantigen
and bacterial-induced IL-8 production in vitro (Schlievert et al.,
2019). In our study, GML normalized the production of IL-1b, IL-6,
and TNF-a in the intestines of challenged embryos. These proin-
flammatory cytokines are considered markers of intestinal
inflammation (Xie et al., 2021), suggesting that GML alleviated the
LPS-induced inflammatory response in the jejunum and ileum.

Inflammation and oxidative stress are intricately related
pathophysiological processes (Biswas, 2016). MDA is considered a
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biomarker of oxidative stress (Pirinccioglu et al., 2010). Herein, we
found that the LPS challenge increased the MDA level, indicating
that oxidative stress occurred in challenged embryos. Oxidative
stress depends on the balance between pro- and antioxidant
factors (Adesso et al., 2018). Thus, the antioxidant response is a
pivotal factor in controlling oxidative stress. LPS reportedly de-
creases the activities of antioxidant enzymes such as T-AOC and
CAT, leading to oxidative stress in birds (Zheng et al., 2020).
However, dietary GML alleviates LPS-induced oxidative stress by
maintaining the delicate equilibrium between oxidants and an-
tioxidants (Liu et al., 2021). In the present study, GML prevented
oxidative stress in challenged embryos, as evidenced by the
decreased MDA level and increased activities of T-AOC. Oxidative
stress is intimately connected with inflammation (Kowalczyk
et al., 2016). A vicious cycle occurs when inflammation provokes
oxidative stress, which in turn boosts inflammation (Soomro,
2019). Thus, the GML-mediated improvements in oxidative sta-
tus may be associated with anti-inflammatory effects on LPS-
challenged embryos.

A healthy intestinal morphology directly affects nutrient
metabolism, disease resistance, and the immune response of the
host (Jha et al., 2019). Intestinal morphology plays an essential
role in nutrient absorption and provides a protective barrier,
which can be reflected by villus height (Xie et al., 2021). GML



Fig. 4. Effects of in ovo injection of GML on the secretion of cytokines by LPS-challenged embryos. The levels of IL-1b, IL-6, and TNF-a in the (AeC) jejunum and (DeF) ileum.
GML ¼ glycerol monolaurate; LPS ¼ lipopolysaccharide; IL ¼ interleukin; TNF-a ¼ tumor necrosis factor-a. aeb Means with no common superscripts differ significantly (P < 0.05).
Means are based on 6 replicates per treatment with 2 chicken embryos per replicate.
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enhances immune status and intestinal histomorphology in
broilers (Amer et al., 2021). Our previous study has demonstrated
that dietary GML attenuates the adverse effects of LPS on intes-
tinal morphology in broilers (Kong et al., 2022). The present re-
sults indicated that GML rescued the LPS-induced decrease in
villus height in the jejunum and ileum of embryos, which was
beneficial to the recovery of intestinal function. A crucial part of
the intestinal barrier is the mucus layer, which predominantly
comprises the mucin glycoprotein MUC2 (Melo-Gonz�alez et al.,
2018). GML upregulated the expression of MUC2 in challenged
and nonchallenged embryos, indicating enhanced intestinal-
barrier function. Improvements in intestinal oxidative stress and
the inflammatory response are associated with the recovery of
intestinal barrier function (Lu and Wang, 2021). Thus, GML-
mediated improvements in intestinal innate immunity and anti-
oxidant status may further promote the recovery of intestinal
barrier function in LPS-challenged embryos.

The NF-kB signaling pathway is known to play a crucial role in
modulating the immune system and inflammatory responses. This
pathway is activated by TLR4 signaling and can subsequently
cause the secretion of proinflammatory cytokines (Cario et al.,
2000). NF-kB is a master regulator of the inflammatory response
and participates in the condition-dependent selective regulation
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of the expression of specific target genes, including proin-
flammatory cytokines (such as TNF-a, IL-1b, IL-6, and IL-12),
proinflammatory enzymes (COX-2), and chemokines (Rius-P�erez
et al., 2019). The current work revealed the stimulatory effect of
LPS on TLR4 and NF-kB expression in embryos, consistent with
findings in poultry in vitro and in vivo (Surai et al., 2021).
Conversely, GML reversed the LPS-induced upregulation of TLR4,
NF-kB, and COX-2 expression in the jejunum. These findings
indicated that GML attenuated LPS-induced inflammatory re-
sponses by suppressing NF-kB transcription. The LPS-induced
activation of NF-kB increases the expression of cytokine pre-
cursors and is a crucial initial step in activating the NLRP3
inflammasome (Ren et al., 2020). Activation of the NLRP3
inflammasome leads to the maturation and secretion of IL-1b and
IL-18, which amplifies the inflammatory cascade and exacerbates
the release of inflammatory cytokines (Huang et al., 2020). Our
results showed that LPS exposure increased NLRP3 and IL-18
expression, and these effects were significantly reversed by GML
pretreatment. Although NF-kB is upstream of NLRP3, NLRP3
overexpression reportedly leads to the activation of NF-kB
signaling (Peng et al., 2020). Thus, the modulatory effect of GML
on NLRP3 may contribute to the alleviation of inflammatory re-
sponses and NF-kB activation in challenged embryos. GML further



Fig. 5. Effects of in ovo injection of GML on the gene-expression levels of TLR4, NF-kB p65, COX-2, NLRP3, IL-18, AMPKa1, ZO-1, OCLN, and CLDN1 in the jejunum. GML ¼ glycerol
monolaurate; LPS ¼ lipopolysaccharide; TLR4 ¼ Toll-like receptor 4; NF-kB p65 ¼ nuclear factor kappa-B p65; COX-2 ¼ cyclooxygenase-2; NLRP3 ¼ NOD-like receptor protein 3; IL-
18 ¼ interleukin 18; AMPKa1 ¼ adenosine monophosphate-activated protein kinase a1; ZO-1 ¼ zonula occludens 1; OCLN ¼ occludin; CLDN1 ¼ claudin 1. aeb Means with no
common superscripts differ significantly (P < 0.05). Means are based on 6 replicates per treatment with 2 chicken embryos per replicate.
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enhanced the expression of AMPKa1 in the jejunum and ileum of
challenged embryos. AMPK is commonly linked to the NF-kB
pathway and controls inflammation (Liu et al., 2016). Activated
AMPK negatively regulates the nuclear translocation of NF-kB and
further alleviates inflammatory responses triggered by LPS (Qing
et al., 2019; Salminen et al., 2011). Collectively, GML may
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attenuate NF-kB signaling through multiple pathways, alleviate
the production of proinflammatory cytokines and enzymes, and
inhibit inflammatory responses in the intestines of LPS-
challenged embryos.

LPS can reduce the expression of tight-junction proteins by
triggering proinflammatory cytokines (Toejing et al., 2020).



Fig. 6. Effects of in ovo injection of GML on the gene-expression levels of TLR4, NF-kB p65, COX-2, NLRP3, IL-18, AMPKa1, ZO-1, OCLN, and CLDN1 in the ileum. GML ¼ glycerol
monolaurate; LPS ¼ lipopolysaccharide; TLR4 ¼ Toll-like receptor 4; NF-kB p65 ¼ nuclear factor kappa-B p65; COX-2 ¼ cyclooxygenase-2; NLRP3 ¼ NOD-like receptor protein 3; IL-
18 ¼ interleukin 18; AMPKa1 ¼ adenosine monophosphate-activated protein kinase a1; ZO-1 ¼ zonula occludens 1; OCLN ¼ occludin; CLDN1 ¼ claudin 1. aeb Means with no
common superscripts differ significantly (P < 0.05). Means are based on 6 replicates per treatment with 2 chicken embryos per replicate.
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Reduced expression of tight-junction proteins increases intestinal
permeability and disrupts intestinal-barrier integrity (Chleilat et al.,
2020). In the present study, the decreased expression of ZO-1 in
challenged embryos indicated an LPS-induced impairment in the
intestinal barrier. However, GML enhanced jejunal OCLN expression
in challenged embryos and reversed the LPS-induced down-
regulation of ileal ZO-1 expression. Defective intestinal tight junc-
tions have been implicated in intestinal inflammation (Al-Sadi
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et al., 2008). Herein, the alleviation of inflammatory responses by
GML attenuated the destruction of tight-junction proteins, thereby
protecting intestinal barrier integrity in challenged embryos. The
attenuated activation of NF-kB has also been demonstrated to be
associated with improvedmucosal permeability, mucin expression,
and barrier function (Ariyadi et al., 2014). Thus, the GML-mediated
suppression of NF-kB signaling may protect against LPS-induced
intestinal-barrier disruption.
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5. Conclusion

The results of this study confirmed the immunomodulatory
properties of GML in a broiler embryo model. GML improved in-
testinal morphology and antioxidant status by suppressing intes-
tinal inflammatory responses and modulating NF-kB signaling in
LPS-challenged broiler embryos.
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