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Abstract: A facile, single-step, [4+2] Diels–Alder cycloaddition reaction for the surface functionaliza-
tion of single-walled carbon nanotubes (SWNTs) with end-capped polystyrene chains is presented.
The thermal cycloaddition reaction took place at high temperature (~230 ◦C) without any catalyst
between the sp2 network of carbon nanotubes, which acted as dienophile, and the diphenylethy-
lene cyclobutene (DPE-CB) terminal group of the polystyrene chain. Anionic polymerization was
employed for the synthesis of the polystyrene macromolecule, and successful and quantitative
end-capping reaction with the DPE-CB molecule was confirmed by matrix-assisted laser desorp-
tion/ionization time of flight mass spectroscopy. Thermogravimetric analysis revealed the wt % of
the grafted macromolecule on the CNT surface as well as the grafting density of the polymer chains
on the SWNTs (0.027 chains nm−2). Direct evidence for the surface functionalization and the presence
of thin polystyrene film was obtained by transmission electron microscopy (TEM) and by atomic
force microscopy (AFM).

Keywords: single-walled carbon nanotubes; [4+2] Diels–Alder cycloaddition; surface functionaliza-
tion; anionic polymerization

1. Introduction

Carbon nanotubes (CNTs) are promising nanomaterials due to their extraordinary elec-
tronic, and mechanic properties [1,2]. The combination of their high surface area with the
strong van der Waals attractive interactions, due to the hexagonal sp2 carbon network, forces
CNTs to create aggregated bundles. To realize their potential, efficient and homogeneous dis-
persion of CNTs in solvents and polymers is required. Homogeneous dispersion of carbon
nanotubes in polymer matrices is important to develop ultrahigh strength nanocomposites
that would have an efficient load transfer and a good interfacial adhesion between the CNTs
and the polymer [3–5]. In general, debundling of carbon nanotubes is accomplished through
functionalization of CNTs using organic compounds. Over the past few years, great effort
has been devoted to covalent and non-covalent functionalization of CNTs. Small molecules
as well as macromolecules have been employed for this purpose using a rich variety of
different strategies.

The non-covalent polymer functionalization strategy generally involves the interac-
tion of electron rich macromolecules with π–π interactions of carbon nanotubes. Ionic
interactions as well as CH–π or OH–π interactions are also possible [6]. On the other hand,
covalent grafting of polymers involves two different strategies, “grafting to” [7–10] and
“grafting from” or surface-initiated polymerization methodology [11–13]. Several surface
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covalent functionalization strategies also involve direct addition reaction to the sp2 carbon
of the CNTs with (i) nitrenes [14], (ii) diazonium salts [15], (iii) carbenes [16], (iv) azome-
thine ylides [17], (v) free radicals [18], (vi) fluorine [19], (vii) 1,3 dipolar cycloaddition [20],
(viii) bromomalonates [21], and oxidation reactions [22,23]. All the above methodologies
require demanding reaction conditions, and multiple steps are necessary to functionalize
the carbon nanotubes.

Experimental [24–31] as well as theoretical studies [32] in recent years have shown
that the Diels–Alder (DA) reaction is a powerful tool for the covalent functionalization of
carbon nanotubes [33]. From the theoretical point of view [32], it has been shown that DA
reaction can occur between the dienenophile CNTs and conjugated dienes. Specifically, it
was predicted that the DA cycloaddition of o-quinodimethane on the sidewalls of SWNTs
was favored due to the aromatic stabilization of the transition state and the product. Our
group studied the reaction of several substituted benzocyclobutenes with the sp2 network
of multi-walled carbon nanotubes [34]. We reported that the extent of functionalization can
be controlled by the temperature, the mode of addition of the benzocyclobutene derivative,
the reaction time, and whether the reaction takes place in bulk vs. solution. A number
of initiators based on benzocyclobutene were synthesized by our group and used for the
surface-initiated polymerizations after the initiators were covalently attached on the CNT
surface through the Diels–Alder thermal cycloaddition [35–40]. Benzocyclobutene deriva-
tives were also used for the intramolecular [41,42] and the intermolecular crosslinking
reactions for the synthesis of polymer nanoparticles [43].

Herein, we report a facile, single-step covalent strategy for the surface functionaliza-
tion of SWNTs. A well-defined polystyrene chain with a diphenylethylene cyclobutene
end-group was synthesized by anionic polymerization and grafted to the side CNT walls
through a thermal [4+2] Diels–Alder cycloaddition reaction in the absence of any catalyst.
The structural integrity of the SWNTs was retained, and the reaction did not require any
surface pre-modification of the CNTs.

2. Materials and Methods
2.1. Materials

All chemicals were purchased from Sigma Aldrich, Athens, Greece. The SWNTs (length
1 µm to 3 µm and diameter 1–1.2 nm, 93% purity, Carbon Nanotechnologies, TX) were
prepared through the HiPco method and purified by multistage oxidation in moisture air at
225, 325, and 425 ◦C for 2 h, as reported elsewhere [44]. Single-walled carbon nanotubes
(SWCNTs) had approximately 1 mol.% carboxylic acid groups with respect to the carbon
atoms of the SWNTs, as determined by titration, X-ray photoelectron spectroscopy (XPS),
and prompt-gamma methods. SWNTs were vacuum dried in the oven at 200 ◦C overnight
before being used for surface functionalization. All solvents and monomers were purified
according to well-known procedures [45,46]. Dimethylformamide (DMF) was distilled
over NaOH. Other solvents such as ethyl acetate, diethyl ether, and hexane were used as
received. The 4-bromobenzocyclobutene was distilled under vacuum and stored under N2.
sec-butyllithium (s-BuLi), synthesized by the reaction of sec-butyl chloride and lithium metal,
was used as the polymerization initiator. The concentration of s-BuLi was determined using
standard styrene polymerization under a high vacuum and the measured number average
molecular weight of the obtained polystyrene at 100% conversion. The detailed synthesis of
diphenylethylene cyclobutene (DPE-CB) is reported elsewhere [30], and 1H NMR spectrum
is in the supporting information (Figure S1).

2.2. Physical and Analytical Methods

Size exclusion chromatography (SEC) was used to determine molecular weights and
molecular weight distributions (Mw/Mn) of the polymer samples with respect to polystyrene
standards. The unit was equipped with an isotactic pump (Knauer K-501), UV detector
(Knauer UV-K2501), and RI detector (Knauer RI-K2301). Polymer samples were analyzed
using Polymer Standard Service (PSS, Germany) 1 × 100 Å and 1 × liner SDV 5 µm gel
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columns (60 cm) set or with Polymer Laboratories 2 × mixed-BSDV gel columns (30 cm).
THF was used as the mobile phase at a flow rate of 1 mL min−1 at 30 ◦C. PSS WinGPC
software was used to acquire and analyze the chromatograms. In some cases, SEC was
performed on an SEC-LS system consisting of an RI detector (Polymer Laboratories), light
scattering 15◦ and 90◦ (Precision Detectors, λ = 685 nm, 30 Mw), and viscosity (Viscotec)
detectors. 1H-NMR (400 MHz) spectrum was recorded on a Brucker AC-400 spectrometer.

Matrix-assisted laser desorption-ionization mass spectra (MALDI-TOF MS) were
recorded on a Bruker Autoflex II mass spectrometer (Bruker Daltonics, Billerica, MA, USA)
equipped with a nitrogen laser operated at 337 nm, a frequency of 25 Hz, and an acceleration
voltage of 20 kV. Trans-2-[3-(4-tert-Butylphenyl)-2-methyl-2-propenylidene]malononitrile
(DCTB) (>99%, Fluka) was used as the matrix and silver trifluoroacetate (AgTFA) as the
cationizing agent. Solutions of DCTB (20 mg/mL), the analyte (10 mg/mL), and the AgTFA
(10 mg/mL) were prepared in THF and then mixed in a 10:2:1 ratio. A volume of 0.5 µL
was applied to the target via the dried droplet method. Mass spectra were collected in
reflectron mode, and the instrument was externally calibrated with polystyrene standards.

Thermogravimetric analysis was performed using a TA Q50 analyzer in air and N2
atmosphere at a heating rate of 10 ◦C/min.

FT-IR spectra were recorded using a Bio-Red Win-IR Pro instrument with a resolution
of 2 cm−1. KBr was used to prepare sample pellets.

Raman spectra were measured with a Renishaw Invia Raman spectrometer equipped
with an integral microscope (Leica DM 2500 M) and a Peltier cooled charged-coupled
detector. The 785 (or 514) nm radiation from a 500 mW diode laser was used as excitation
source, operated at 25 mW in order to avoid thermal effects. The excitation was performed
through a 50× objective lens, and Raman scattering was detected in a backscattering geom-
etry (180◦). The spectral resolution using an 1800 grooves/mm grating was approximately
2 cm−1. Spectra were recorded over the range of 100–2000 cm−1 for 10–12 acquisitions
(with 20 s/acquisition) and averaged. The spectra were smoothed with a 7 points adjacent
averaging smooth function.

Atomic force microscopy (AFM) images were acquired in air, under ambient conditions,
using an Asylum Research MFP-3D™ microscope operated in the tapping (non-contact)
mode. Silicon probes (Olympus) with tip radius of 10 nm, spring constant of 42 N/m, and
resonance frequency 300 kHz were used for imaging. The scan rate was varied between 0.6
and 1 Hz. The scan lines and the scan points were varied between 256 and 512. Typical sample
preparation for the AFM imaging involved dispersion of carbon nanotubes in chloroform (at
concentrations of 0.5 mg CNTs or less per ml of solvent), spin-coating on silicon substrates,
and subsequent drying for 2 h at ambient conditions. The diameters of pristine or grafted
CNTs were determined using AFM height measurements and section analysis.

Transmission electron microscopy (TEM) samples were prepared by dropping an
~5 µL solution (SWNTs-g-PS in chloroform) on a freshly glow discharged carbon film
supported by a 600 mesh copper grid (Electron Microscopy Sciences, Hatfield, PA, USA).
A JEOL 200CX electron microscope (JEOL Ltd., Tokyo, Japan), operated at 200 kV in the
bright field mode, was used to examine the samples.

2.3. Synthesis of Diphenylethylene-Cyclobutene End-Capped Polystyrene, 1.

The anionic polymerization of styrene (S) was performed in benzene using standard all-
glass high-vacuum techniques, Scheme 1. In a typical reaction, the required amount of S (4 g)
was mixed with known amount of s-BuLi (9.3 × 10−4 mol) in benzene at room temperature
under high vacuum. Immediately, an orange color developed, indicating the formation
of the propagating anion of PS−Li+. The polymerization was allowed to proceed for 20 h
at 25 ◦C. A small aliquot was taken and terminated with methanol for molecular weight
characterization before the introduction of an appropriate amount of DPE-CB (3 times excess
compared to the living PS-Li+, 2.8 × 10−3 mol) for the end-capping reaction (with or without
THF). Immediately after mixing of the excess DPE-CB with the “living” PS−Li+, the solution
color changed to dark red. The reaction was allowed to proceed for a few hours at 25 ◦C and
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was terminated with methanol (0.5 mL) under vacuum. The reactor was opened, and the
polymer was recovered by precipitation in excess methanol. The end-capped polystyrene
was dried under vacuum at 40 ◦C for 24 h. The yield was 96% (3.85 g). As shown in Figure 1,
all samples exhibited narrow molecular weight distributions.
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2.4. Synthesis of SWNTs-g-PS

In a typical experiment, 20 mg of pristine SWNTs were dispersed in 10 mL of dibenzyl
ether in a glass tube and placed in an ultrasonic bath. After dispersing the solution, the
glass tube was introduced in a silicone oil bath at ~230 ◦C with vigorous stirring under
nitrogen atmosphere and left to thermostat for 10 min. A polymer solution, 500 mg in 10 mL
of benzyl ether, was added drop-wise into the hot dispersion of SWNTs using a peristaltic
pump at a rate of 10 mL/h. After the addition, the mixture was left for 40 more min at the
oil bath. In order to be sure that the polystyrene was covalently grafted and not physisorbed
on the surface of CNTs, the polymer/CNTs solution after the completion of the grafting
reaction was filtered through a Teflon membrane (0.2 µm pore) and washed with copious
amount of THF. The washing was repeated (three times/500 mL each time) until the filtrate
showed no weight change by thermogravimetric analysis (Scheme 1).

3. Results and Discussion

The end-capping reaction of “living” PS−Li+ with the three-fold mol excess of PDE-CB
molecule took place in a benzene solution with and without (~1 mL) THF. The orange
color of the “living” PS−Li+ solution changed instantaneously upon the addition of the
excess of DPE-CB to dark red, which was initial evidence of the successful reaction. This
reaction was previously thoroughly studied by our group, where seven DPE-CB molecules
were introduced at precise positions along a polystyrene chain [47]. The size exclusion
chromatography eluogram revealed a monomodal, symmetric, low molecular weight
distribution peak after the end-capping reaction without any byproducts.

The quantitative functionalization of PSLi with DPE-CB was confirmed by MALDI-
TOF MS, as shown in Figure 2. The MALDI-TOF MS spectrum of the PS sample before the
reaction with the DPE-CB revealed a single distribution, which was attributed to unfunc-
tionalized PS (PS-H) where the observed mass of m/z 4228.1 was in good agreement with
the calculated average mass of 4228.1 Da for [C4H9(C8H8)39H·Ag]+. After the end-capping
reaction with DPE-CB, the molecular weight of the product shifted to higher molecular
weight, which was consistent with the addition of DPE-CB unit (calculated average mass
207.3 Da). In the case of PS-(DPE-CB), one distribution was observed, and the peak ob-
served at 4433.8 was in good agreement with the calculated average mass of 4434.2 Da for
[C4H9(C8H8)39C16H15·Ag]+. The same shift was observed when PSLi reacted with PS-DPE-
CB in the presence of THF. For each sample, the difference between the peaks corresponded
to the mass of one styrene repeat unit.
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The 1H NMR spectrum of the DPE-CB end-capped polystyrene in Figure 3 revealed the
absence of vinyl protons (5.2–5.8 ppm) and the presence of aliphatic (1.0–2.2 ppm), aromatic
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(6.2–7.4 ppm), and cyclobutene protons (3.0–3.2 ppm), which was additional evidence for
the successful end-capping reaction of the “living” PS chains with the DPE-CB molecule.
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The chemical functionalization of the SWNTs with the DPE-CB end-capped PS took
place in a solution of dibenzyl ether, a good solvent for PS with high boiling temperature,
which is critical for the [4+2] Diels–Alder thermal cycloaddition reaction between the
dienophile SWNTs and the benzocyclobutene derivative. Benzocyclobutene is a category of
dienes that can take part in a Diels–Alder reaction with the sp2 carbons of an aromatic system
through an o-quinodimethane intermediate [48]. The strained ring of the benzocyclobutene
is susceptible to thermal ring opening to form o-quinodimethane, which can undergo [4+2]
Diels–Alder cycloaddition exclusively to 6–6 bonds of fused aromatic rings [48].

Our group studied the reaction of several substituted benzocyclobutenes with the sp2

network of multi-walled carbon nanotubes. We reported that the extent of functionalization
can be controlled by the temperature, by the mode of addition of the benzocyclobutene
derivative, by the reaction time, and by whether the reaction takes place in bulk vs. solu-
tion [34]. For the surface functionalization of the SWNTs with the PS-(DPE-CB), the reaction
took place in dibenzyl ether solution at 230 ◦C for 100 min in total, while the addition of
the PS solution to the CNTs dispersion lasted for ten minutes. Thermogravimetric analysis
was performed in order to estimate the wt % of grafted polystyrene on the side walls of
CNTs and the grafting density of the polymer chain (Figure 4). The grafting density (σ1)
in mol g−1 was calculated based on the %weight of the grafted polymer at T(700◦C), the
molecular weight Mn of the grafted macromolecule, and by assuming that the remaining
samples were constituted purely of carbon. Based on the above procedure, the grafting den-
sity (σ2) in chains nm−2 was calculated according to the polymer chain molecular weight
Mn and the theoretical specific surface of the SWNTs (1315 m2 g−1) [49]. In summary, the
different grafting densities are given by the equations below, σ1 = 0.06 mmol g−1 and σ2 =
0.027 chains nm−2.

σ1 =
%wt·polymer

Mn · %wt·remaining carbon sample
(mol/g) (1)

σ2 =
σ1NA

1315

(
chain/m2

)
(2)
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Figure 4. Thermogravimetric analysis under nitrogen atmosphere employing a heating rate of
10 ◦C/min of pristine SWNTs and SWNTs-g-PS.

Adsorption peaks at 3060 and 3026 cm−1 due to aromatic C-H stretching vibrations
and two peaks at 2928 cm−1 and 2858 cm−1 corresponding to asymmetric and symmetric
stretching of methylene groups –CH2 are depicted at the FT-IR spectrum of the PS-g-
SWNTs in Figure 5. The three characteristic adsorption peaks at 1635, 1492, and 1452 cm−1

due to aromatic C=C stretching vibration modes were more obvious compared to the
spectrum of pristine SWNTs. Additionally, the peaks at 680–750 cm−1 corresponded to
the nonaromatic structure of the sample due to the backbone of the PS chain. The peak at
3300 cm−1 corresponded to the O-H stretching vibration mode due to the carboxyl groups
present at the open tips and at the defect sites at the surface of the CNTs.
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Raman spectroscopy has, for more than two decades, been an exceedingly powerful
tool to reveal the exceptional electronic and phonon properties of single-walled carbon
nanotubes [50]. The Raman spectrum of SWCNTs mainly consisted of three characteristic
peaks. In more detail, the first characteristic (radial breathing mode, RBM) peak was in
the area between 100 and 400 cm−1 and was related to the tube diameter and length. A
second peak between 1500 and 1600 cm−1 was related to the tangential G-mode of graphite,
which occurred at 1582 cm−1. In SWNTs, this peak originated from breaking the symmetry
of the tangential vibration when the graphene sheet was rolled into a tube consisting of
two components. One located at around 1590 cm−1 (G+) was due to vibration of carbon
atoms along the nanotube axis and was sensitive to charge transfer from dopant additions
to SWNTs. Another at around 1570 cm−1 (G−) was assigned to a vibration of carbon atoms
along the circumferential direction of SWNTs. The last characteristic peak around 1350 cm−1,
the disorder-induced D-mode, was attributed to a double resonant Raman scattering pro-
cess involving a defect or disorder in CNTs, such as amorphous carbon, vacancies, and
heteroatoms [51]. The RBMs showed changes after grafting of PS where more peaks were
present in the area between 100–400 cm−1 after the functionalization reaction. These peaks
were attributed to metallic and semiconducting SWNTs, and the presence of more peaks
was indirect evidence of CNTs debundling due to polymer functionalization, as reported
elsewhere [52]. The structural integrity of the surface grafted MWNTs was confirmed by
Raman spectroscopy, which showed both the disorder (D) and the tangential (T) bands
at 1334 and 1590 cm−1, respectively. A slight increase in the peak ratio of ID/IT = 0.16
of the functionalized as compared to the pristine SWNTs (ID/IT = 0.13) was attributed to
enhanced attachment of PS chains through the Diels–Alder thermal cycloaddition (Figure 6).
The increase in the disorder mode band corresponded to the conversion of the hybridiza-
tion of the C atoms on the nanotubes from sp2 to sp3, which indicated covalent side-wall
functionalization.
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The direct evidence for the presence of grafted PS on the SWNTs was obtained from
TEM and AFM images, as it can be seen in Figures 7 and 8, respectively. A dilute solution
of SWNTs-g-PS in chloroform was drop-coated onto a carbon coated copper grid, and
the thin film was visualized with TEM. A typical TEM image of SWNTs-g-PS showed
amorphous coating on the surface of SWNTs in selected regions (Figure 7). Certain areas
of the SWNT surfaces were observed to have no polymer coverage, indicating a non-
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uniformity of the polymer grafting. The surface of SWNTs was covered with the PS layer
inhomogeneously, which suggested a non-uniform grafting of PS chains around the surface
of carbon nanotubes.
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Figure 7. TEM images of SWNTs-g-PS.
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Figure 8. Atomic force microscopy (AFM) image of SWNTs-g-PS.

Atomic force microscopy was performed to visualize the grafted polystyrene chains on
the surface of SWNTs. Usually, large CNT bundles were observed before functionalization,
however, the PS functionalized SWNTs existed in small aggregates, and even individual
SWNTs were observed by AFM. The average height of the pristine SWNTs ranged from
0.8 to 1.5 nm. As shown in Figure 8, the height profile demonstrated the existence of an
individual single walled carbon nanotube. It is also clear from the figure that the nanotubes
maintained their length (>1 µm), since they did not suffer any surface pre-modification
reaction prior to the “grafting to” functionalization. An increase up to ~3 nm of the height
profiles of the AFM images taken after the surface functionalization of SWNTs with the
polystyrene polymer chains was revealed. This increase could be attributed either to
enhanced polymer grafting efficiency or to the existence of small aggregates.
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The SWNTs-g-PS exhibited good solubility in common PS organic solvents such as
tetrahydrofuran and chloroform, where no precipitation appeared from the homogeneous
dispersion even after one week at room temperature (Figure 9).
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walls in a dibenzyl ether solution at 230 ◦C in the absence of any catalyst and without any
previous modification of the SWNT surface. The quantitative end group functionalization
of the polystyrene chains was confirmed by MALDI TOF mass and 1H NMR spectroscopies.
TEM and AFM microscopy revealed the presence of an inhomogeneous thin film on the
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