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Abstract: In this study, we explored the potential beneficial effects of green tea extract (GTE) in a
pathogenic Escherichia coli (F18:LT:STa:Stx2e)-induced colitis model. The GTE was standardized with
catechin and epigallocatechin-3-gallate content using chromatography analysis. Ten consecutive
days of GTE (500 and 1000 mg/kg) oral administration was followed by 3 days of a pathogenic
E. coli challenge (1 × 109 CFU/mL). In vitro antibacterial analysis showed that GTE successfully
inhibited the growth of pathogenic E. coli, demonstrating over a 3-fold reduction under time- and
concentration-dependent conditions. The in vivo antibacterial effect of GTE was confirmed, with an
inhibition rate of approximately 90% when compared to that of the E. coli alone group. GTE treatment
improved pathogenic E. coli-induced intestinal injury with well-preserved epithelial linings and villi.
In addition, the increased expression of annexin A1 in GTE-treated jejunum tissue was detected,
which was accompanied by suppressed inflammation-related signal expression, including TNFA,
COX-2, and iNOS. Moreover, proliferation-related signals such as PCNA, CD44, and Ki-67 were
enhanced in the GTE group compared to those in the E. coli alone group. Taken together, these results
indicate that GTE has an antibacterial activity against pathogenic E. coli and ameliorates pathogenic
E. coli-induced intestinal damage by modulating inflammation and epithelial cell proliferation.
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1. Introduction

Escherichia coli (E. coli) is normally found in intestinal flora and typically colonizes the
gastrointestinal tract. As a nonpathogenic microbiota, E. coli participates in the biotransfor-
mation of xenobiotics and the synthesis of organic molecules [1]. However, E. coli presents
special pathogenic factors that were reported to cause a wide spectrum of infectious dis-
eases [2]. E. coli is a common cause of diarrheal disease worldwide and it is estimated that
200 million people are affected by it every day. Moreover, increased antibiotic resistance in
E. coli contributes to morbidity, mortality, and has significant impacts on the health and
social implications associated with infection [3].

Previous studies categorized pathogenic E. coli by its pathotype, and, among the
groups, enteropathogenic E. coli, enterohemorrhagic E. coli, and enterotoxigenic E. coli
(ETEC) were reported to cause disease in both humans and animals using many of the
common virulence factors [4]. Pathogenic E. coli adhere to specific host cells with adhesins,
also called fimbriae, to colonize and secrete various toxins such as the Shiga toxin (Stx),
as well as heat-labile (LT) and heat-stable (ST) toxins to compromise cell function [5].
Pathogenic E. coli-induced colonic damage is accompanied with intense inflammation [6].
In addition to endotoxins, lipopolysaccharides (LPS) and flagella in E. coli trigger a potent
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inflammatory cytokine cascade and stimulate annexin A1 (Anex1) expression, which is an
anti-inflammatory protein that inhibits inflammatory cell transmigration and phospholi-
pase A2 activation [4,7].

Currently, it is not uncommon to report bacteria with existing antibiotic resistance,
which have become a global threat, and pathogenic E. coli are also known to exhibit such
resistance [8]. In this regard, the discovery of novel therapeutic approaches and the use
of natural antimicrobial compounds is regarded as a potential alternative to reduce the
overuse of antibiotics and the emergence of antibiotic resistance [9].

The tea plant, Camellia sinensis, is one of the major sources gaining considerable
attention because of its safety and therapeutic potential. In the last decade, numerous
studies recognized polyphenol components from C. sinensis as active ingredients and
explored possible defensive activities against diverse pathogens, including fungi, viruses,
and bacteria [8,10,11]. Polyphenols consist of two general classes: flavonoids and phenolic
acid, and catechin. The latter, which belongs to the flavonoid class, is a major constituent
of C. sinensis. Among the catechins, (-)-epigallocatechin-3-gallate (EGCG) is the most
abundant catechin (approximately 60%) found in C. sinensis [11]. Previous studies revealed
the antimicrobial activity of various catechin compounds against various pathogens, and
the antimicrobial activity of epicatechin and EGCG was reported more than other catechin
compounds (Table 1). In addition, apart from the antibacterial activity of catechins, catechin
compounds were reported to exert anti-inflammatory effects by inhibiting the Toll-like
receptor 4/nuclear factor κB signaling pathway and inflammatory cytokines [12,13]. In this
study, the preventive effect of standardized catechin-rich green tea extract (GTE) against
wild-type pathogenic E. coli-induced colitis was explored by evaluating the antibacterial
and anti-inflammatory activity of GTE.

Table 1. Antimicrobial effect of catechin compounds from green tea.

Compound Pathogens Signals (Marker) References

Epigallocatechin

Escherichia coli; Escherichia
coli O157:H7; Escherichia

coli; Pseudomonas
aeruginosa; Escherichia coli

ATP and potassium pool; Verotoxin;
Cellular defense protein;

Antibacterial Susceptibility;
Antibacterial Susceptibility

[14–18]

Epicatechin

Escherichia coli; Escherichia
coli O157:H7; Escherichia

coli; Pseudomonas
aeruginosa; Escherichia coli;

Gram-positive bacteria;
Aggregatibacter

actinomycetemcomitans

ATP and potassium pool; Verotoxin;
Cellular defense protein;

Antibacterial Susceptibility;
Antibacterial Susceptibility; Bacterial

membrane; Leukotoxin activity

[14–20]

Gallocatechin
gallate

Escherichia coli O157:H7;
Escherichia coli;

Pseudomonas aeruginosa

Verotoxin;
Cellular defense protein;

Antibacterial Susceptibility
[15–17]

Catechin Escherichia coli O157:H7 Verotoxin [15]

Epigallocatechin
gallate

Escherichia coli;
Pseudomonas aeruginosa;

Escherichia coli;
Gram-positive bacteria;

Escherichia coli; Bacillus
subtilis; E. coli MG1655;
Pseudomonas fluorescens;

Staphylococcus aureus

Cellular defense protein;
Antibacterial Susceptibility;

Antibacterial Susceptibility; Bacterial
membrane; H2O2; Cell surface

proteins; Hfq protein;
Extra-cytoplasmic function sigma

factor, Histidine kinase;
Membrane transport

[16–19,21–25]

Epicatechin
gallate

Escherichia coli O157:H7;
Escherichia coli;

Pseudomonas aeruginosa;
Escherichia coli; Escherichia
coli; Staphylococcus aureus

Vero toxin; Cellular defense protein;
Antibacterial Susceptibility; H2O2;

β-lactam resistance
[15–18,21,26]
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2. Results
2.1. Catechin Content in the GTE

In the present study, a high-performance liquid chromatography–ultraviolet (HPLC–
UV) analytical method was established and applied to determine the levels of epigallocate-
chin, catechin, and EGCG in the GTE for quality control (Figure 1). Serial concentrations of
all standard compounds were analyzed to obtain the standard curves. The linear range
for all compounds was set at 1–100 µg/mL, with r2 = 0.999. The limits of detection and
quantification for all compounds were 0.3 and 1 µg/mL, respectively. The three analytes
were fully separated within 20 min. A representative HPLC chromatogram is shown in
Figure 1. The retention times for epigallocatechin, catechin, and EGCG were approximately
14.1, 15.5, and 16.9 min, respectively. The GTE contained 7% epigallocatechin, 36% catechin,
and 22% EGCG.

2.2. Antibacterial Effect of GTE against Pathogenic E. coli

The antibacterial effect of GTE against pathogenic E. coli was assessed using the
microdilution and agar plate spreading method. The growth of pathogenic E. coli on
ChromoSelect selective agar was confirmed before analysis. The minimum inhibitory
concentration of GTE against pathogenic E coli. was 40 mg/mL, which prevented the visible
growth of bacteria. In addition, the reduction in pathogenic E coli. after GTE treatment
was evaluated and the results were expressed as log colony forming units (CFU)/mL
(Figure 2). After GTE treatment for different times, the bacterial count of pathogenic E. coli
decreased in a time- and concentration-dependent manner. Moreover, at a high concentration
(>60 mg/mL), an over 3-log reduction was observed in the CFU value when compared to
that of the control group.
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Figure 2. Streaked pathogenic Escherichia coli on selective agar, and antibacterial analysis. (A) ChormoSelect agar plate.
(B) Nutrient agar plate. (C) Bacterial count.

2.3. Effect of GTE on Pathogenic E. coli-Induced Intestinal Injury

The mice were challenged with pathogenic E. coli after 10 days of GTE administra-
tion. After three oral bacterial challenges, the body weight of challenged mice gradually
decreased and that of the E. coli alone group showed the lowest body weight, which was
approximately 9% less than that of the normal control group (Figure 3). Although the
GTE-treated groups were also found to have decreased body weight after the bacterial
challenge, the decrease was relatively small when compared to the E. coli alone group.

Moreover, GTE administration suppressed the bacterial count in the intestine. The
bacterial count was performed in the rectum tissue, and the total E. coli count was examined
using selective agar. Ten consecutive days of GTE treatment suppressed bacterial counts
in the intestine in a dose-dependent manner. The CFU values were reduced by 26% and
94% in the low- and high-dose groups, respectively, when compared to those in the E. coli
alone group.
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2.4. Effect of GTE on Pathogenic E. coli-Induced Alterations in the Jejunum

The beneficial antibacterial effect of GTE was also supported by the histopathological
findings (Figure 4). The normal control group mice showed well-preserved villi with intact
mucosal lining and a crypt layer in the jejunum tissue. In contrast, the E. coli-challenged
groups showed a relatively shortened villi length with slight hyperplastic changes in the
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crypt, and this pathological change was improved by GTE treatment. The villi height/crypt
depth ratio significantly increased after high-dose GTE treatment.

2.5. Effect of GTE on Annexin A1 Expression in Pathogenic E. coli-Challenged Mice Intestine

The protein levels of Anex1 and ALX/FPRL-1 were confirmed by Western blot analysis
(Figure 5A). The E. coli challenge group showed low basal levels of Anex1 expression.
However, GTE treatment enhanced Anex1 expression by approximately 1.5–2 times that
of the E. coli alone group after 500 and 1000 mg/kg GTE treatment, respectively. GTE-
induced Anex1 expression was also confirmed by immunohistochemical (IHC) evaluation
(Figure 5B). The GTE-treated group showed restored and localized Anex1 expression in the
lamina propria. The expression of ALX/FPRL-1 was relatively stable and unchanged in all
experimental groups.

2.6. Effect of GTE on Inflammation and Proliferation-Related Signal Expression

The effect of GTE on E. coli-induced inflammatory signals was explored by assessing
the tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), and inducible nitric ox-
ide synthase (iNOS) expression (Figure 6A). As expected, the E. coli challenge evidently
enhanced the inflammation-related signals, and TNF-α was the most affected among the
tested signal proteins. E. coli-induced, inflammation-related signal proteins were signifi-
cantly suppressed in the GTE-treated group. Reduced inflammation-related signals were
also detected in the COX-2 IHC evaluation (Figure 6B). E. coli challenge markedly increased
COX-2 expression in the villus lining and lamina propria of the jejunum. However, this
upregulated COX-2 expression was resolved in the GTE-treated group when compared to
that in the E. coli alone group.
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To explore the effect of GTE on proliferation, the expression of PCNA and CD44 was
assessed (Figure 7A). Decreased proliferation-related protein expression was observed in
the pathogenic E. coli alone group. In contrast, the GTE-treated group showed an enhanced
protein expression with an increased amount of CD44.
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Moreover, as shown in the IHC assessment, the decreased expression of Ki-67 after
pathogenic E. coli challenge was improved in the GTE-treated group, which showed a
positive stained area in the simple columnar epithelium (Figure 7B).

3. Discussion

There is a growing interest in the bioactivities of phytochemicals, and polyphenols are
one of the most studied and widely distributed groups of bioactive molecules. In this study,
we described the biological effects of standardized GTE administration against pathogenic
E. coli-induced colitis in mice.

The catechins from green tea are incorporated into the bacterial cell membrane, dis-
rupting bacterial membrane barrier activity, and EGCG can effectively form hydrogen
bonds with the lipids in bacterial cell membranes [27,28]. The present GTE successfully
inhibited the growth of pathogenic E. coli in a concentration- and time-dependent manner.
Moreover, incubation with 60 mg/mL GTE resulted in a more than 3-fold reduction, which
indicates the strong bactericidal effect of GTE. The effective GTE concentration obtained in
this study seems to be relatively higher than that obtained from the antibacterial study with
chemical compounds. However, this might be due to the characteristics of natural com-
pound crude extract, which contains relatively low active ingredient levels in comparison
to the pure chemical substance, and the nature of isolated microbes, which have a high in-
cidence of drug resistance. Moreover, although the exact comparison of tea extract potency
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is difficult due to the difference in extract preparation and the method employed, many
studies reported MIC values of over 100 mg/mL with GTE against isolated E. coli [29,30].
In this study the MIC value of GTE against pathogenic E. coli was 40 mg/mL.

The intestinal epithelium forms a selective barrier that plays an important role in
regulating mucosal homeostasis against various stimuli [31]. Following injury, the in-
testinal epithelium and immune cells activate the repair process to maintain membrane
homeostasis, which is highly regulated by protein and lipid mediators such as Anex1 [32].
Anex1 is a glucocorticoid-induced protein that inhibits phospholipase A2 activity, thereby
suppressing eicosanoid synthesis and inflammatory processes [33]. Several studies fo-
cused on the anti-inflammatory effect of Anex1 in the treatment of various inflammatory
bowel diseases and revealed its therapeutic potency through suppressed inflammatory
signals [34,35]. Previously, Babbin et al. [36] reported that aggravated intestinal damage
in an Anex1 knockout mouse model was followed by suppressed ALX/FPRL-1 under
dextran sulfate sodium-induced colitis conditions, which suggests the importance of Anex1
in modulating intestinal inflammation and mucosal injury. Furthermore, Anex1 is rec-
ognized as a pro-resolving mediator that facilitates the resolution of inflammation and
mucosal wound repair [37,38]. The increased Anex1 expression, present in the GTE-treated
group, might suppress the inflammatory process and improve E. coli-induced intestinal
injury. Consistent with previous studies, the Anex1 expression observed in this study
markedly increased in the GTE-treated group; therefore, increased Anex1 expression was
accompanied by suppressed inflammation-related signal expression levels, including those
of TNF-α, COX-2, and iNOS, which participated in the initiation and prolongation of
inflammatory processes [39].

The virotype of the present E. coli was F18:LT:STa:Stx2e, which contains various types
of toxins. In this study, we expected bloody stools after an E. coli challenge; however,
the infected group showed significant weight loss with diarrhea rather than hemorrhagic
diarrhea. Given previous studies, which used different species of isolated pathogenic E. coli
in mice, the present absence of hemorrhagic diarrhea may be attributed to the inoculation
condition or duration rather than the origin of the pathogenic E. coli [40,41].

A previous study by Chang et al. [20] reported that catechin inhibits enterotoxin
binding to cholesterol, which is an essential initial step in causing intestinal injury through
altering the secondary structure of LT subunit. The effect of catechin on LT might, at least
in part, participate in the amelioration of pathogenic E. coli-induced pathological changes
in the intestine. The main sites of colonization differ between ETEC and enterohemorrhagic
E. coli, which are the upper jejunum and colon, respectively [42,43]. Shorter villi and deeper
crypts in the jejunum are a typical phenotype of ETEC, which indicates aggravated intesti-
nal absorption and secretion [44]. In this study, GTE treatment ameliorated pathogenic
E. coli-derived histopathological alterations, with improved villi height and crypt depth.
Moreover, increased proliferation-related protein expressions, such as those in PCNA and
CD44, were enhanced in the GTE groups, which were further supported by restored Ki-67
expression in the damaged area, as evidenced by the IHC study. Intestinal epithelium
homeostasis is maintained by the continuous and rapid replacement of differentiated cells
by replication or cell transition [45]. The upregulated proliferation-related proteins might
contribute to the improved intestinal structures in the GTE-treated group.

The present study demonstrated the prophylactic effect of GTE against pathogenic
E. coli-induced intestinal damage. However, our study design has some limitations. The
present GTE was not administered during the E. coli challenge period as it was judged
as more suitable for evaluating the effect of GTE in preventing intestinal damage caused
by pathogenic E. coli. However, this might hinder the clear demonstration of comprehen-
sive antimicrobial effects of GTE and result in a poor bacterial reduction in the present
GTE-treated mice. Therefore, further study with extended GTE administration periods
after E. coli infection are required to fully determine antimicrobial activity of GTE in the
body system.
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4. Materials and Methods
4.1. GTE Preparation

Dried green tea was purchased from Dajayeon (Sacheon, Korea). Green tea leaves
were ground to a powder, and the powder was extracted with 70% ethanol. For ethanol
extraction, the powder (1.2 kg) was soaked in ethanol (12 L) and incubated for 24 h at room
temperature. The extraction was repeated three times, and the upper layer was filtered and
concentrated using a rotary evaporator at 40 ◦C (Heidolph, Schwabach, Germany). After
evaporation, the extract was freeze-dried with HyperCOOL 3110 (Hanil Scientific Inc.,
Seoul, Korea), and the extraction yield was 32.26%.

4.2. HPLC Analysis

Standard compounds, catechin, epigallocatechin, and EGCG (>95% purity) were
purchased from Sigma-Aldrich (St. Louis, MO, USA). The quantitative analysis of com-
ponents in the GTE was performed using an HPLC coupled with an ultraviolet detector
(1260 Infinity II LC System, Agilent, Palo Alto, CA, USA), and the peaks were confirmed
in comparison with the reference standard peaks, in terms of the retention time and con-
sistency. Chromatographic separation was achieved using a Hypersil BDS-C18 column
(5 µm, 150 × 4.6 mm) (Thermo Fisher Scientific, Leicester, UK). The mobile phase consisted
of 0.1% trifluoroacetic acid (TFA) in distilled water (A) and 0.1% TFA acetonitrile (B),
and the gradient conditions were as follows: 0–1 min (100–0% A), 1–15 min (100–72% A),
15–17 min (72–72% A), and 17–30 min (72–100% A) at a flow rate of 0.45 mL/min. The
injection volume was 5 µL, and the wavelength was set to 280 nm.

4.3. Antibacterial Activity Assessment

Pathogenic E. coli (KVCC-BA0001423), which had the F18:LT:STa:Stx2e virotype, was
obtained from the National Veterinary Research and Quarantine Service (Gimcheon, Korea)
and cultured in nutrient broth. The minimum inhibitory concentration was determined by
using standard microdilution technique with some modifications (Clinical and Laboratory
Standards Institute, 2012). Pathogenic E. coli (5 × 105 CFU/mL) was incubated with serial
concentration of GTE at 38 ◦C for 24 h. The MIC was set at lowest concentration where
the visible growth of bacteria was inhibited. The bacterial colony reduction after GTE
treatment was confirmed by the broth microdilution method in 96-well cell culture plates.
In brief, 1 × 108 CFU/mL pathogenic E. coli were incubated with a serial concentration of
GTE containing nutrient broth at 38 ◦C. After different incubation times (19, 24, and 31 h),
bacterial counts were determined by agar spreading. Countable serial 10-fold dilutions
were prepared and 100 µL of each dilution was spread on m-TEC ChromoSelect selective
agar (Sigma Aldrich) plates, and CFU were counted after overnight incubation at 38 ◦C.
The antibacterial effect of GTE was assessed by a CFU log reduction in the GTE-treated
sample, in comparison with the CFU value from the untreated positive control sample.

4.4. Animal Study

Five-week-old male Balb/c mice (18–20 g, n = 24, Orient Bio Inc., Seungnam, Korea)
were housed under standard conditions (temperature, 22 ± 3 ◦C; humidity, 23 ± 5%; 12 h
light/dark cycles) with standard laboratory chow and water provided ad libitum. All
mice were acclimated for 1 week before the experiments. Animal care and experimental
procedures were performed according to the guidelines of the Animal Care and Use
Committee of Chungnam National University (202003A-CNU-042).

Mice were randomly divided into four groups: control, pathogenic E. coli alone, low-
dose GTE, and high-dose GTE groups (6 mice/group). During the first 10 days, 500 and
1000 mg/kg GTE was administered by oral gavage to the low-dose and high-dose GTE
groups, respectively, and phosphate-buffered saline was administered as a vehicle control.
On day 9, all mice received streptomycin (20 mg/kg) to eradicate normal gut bacterial flora.
After 24 h of fasting, the freshly prepared pathogenic E. coli (KVCC-BA0001423, 100 µL,
1 × 109 CFU/mL) was administered orally to the pathogenic E. coli alone, low-dose GTE,
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and high-dose GTE groups for three consecutive days. All mice were sacrificed on the third
day, after the last treatment, with carbon dioxide, and the jejunum tissue was harvested
for Western blot and histopathological analysis. The colon tissue was collected in sterile
saline, and the bacterial count was determined by spreading each dilution on ChromoSelect
selective agar.

4.5. Histopathological Analyses

Formalin-fixed jejunum tissues were dehydrated and embedded in paraffin. Paraffin
sections (4 µm) were processed and stained with hematoxylin and eosin. The morphological
characteristics were observed under a light microscope (Leica, Wetzlar, Germany) at a
magnification of 200×. For histopathologic scoring, all slides were scanned using a digital
slide scanner (MoticEasyScan Pro, Motic, Xiamen, China). The height and depth of villi and
crypts were measured in 10 randomly selected microscopic fields using the Motic Digital
Slide Assistant software (version 1.0.7.61, Motic) and the ratio between the lengths of the
two structures was calculated [46].

4.6. Western Blot Analysis

The frozen intestine tissue was homogenized (1:9, w/v) with Lysis buffer (Sigma-Aldrich)
containing a protease inhibitor cocktail (Sigma-Aldrich) and a phosphatase inhibitor cock-
tail (Sigma-Aldrich), and centrifuged at 12,000× g at 4 ◦C for 20 min to isolate the cellular
proteins in the supernatant. To investigate protein expression related to apoptotic changes,
we performed Western blotting according to a previous study [47]. After blocking with
bovine serum albumin blocking buffer, membranes were incubated with various primary
antibodies, such as anti-Annexin A1 (Anex1, 1:1000, Abcam, Cambridge, MA, USA), anti-
formylpeptide receptor-like 1 (ALX/FPRL-1, 1:1000, Abcam), anti-inducible nitric oxide
synthase (iNOS, 1:1000, Abcam), anti-cyclooxygenase 2 (COX-2, 1:1000, Abcam), anti-
TNF-α (1:1000, Abcam), anti-proliferating cell nuclear antigen (PCNA; 1:1000, Abcam),
anti-CD44 (1:1000, Abcam), and β-actin (1:1000, Abcam). After washing and adjusting the
secondary antibody according to the manufacturer’s protocol, quantitative analysis of each
protein band was performed using ChemiDoc (Bio-Rad Laboratories, Hercules, CA, USA).

4.7. IHC Analysis

After deparaffinization and dehydration, the sections were treated with 0.5% Triton
X-100 solution for 30 min at room temperature. After serial washing, endogenous peroxi-
dase quenching, and blocking, the sections were incubated overnight with the following
primary antibodies: anti-Anex1 (1:200, Abcam), ALX/FPRL-1 (1:200, Abcam), anti-COX-2
(1:200, Abcam), and anti-Ki-67 (1:200, Abcam). The VECTASTAIN Elite ABC kit (Vector
Laboratories, Burlingame, CA, USA) and 3,3′-diaminobenzidine (DAB) were used for color
development. After counter-hematoxylin staining, all sections were randomly evaluated
under a light microscope (Nikon Eclipse 80; Nikon Corporation, Tokyo, Japan).

4.8. Statistical Analyses

Data are shown as mean ± standard deviation (SD). Means of more than two groups
were analyzed via one-way analysis of variance followed by Dunnett’s multiple compar-
isons test. Statistical analyses comparing the treatment groups to the vehicle control group
were performed using an unpaired t-test (GraphPad Software, Inc., La Jolla, CA, USA).
Statistical differences were considered significant at p < 0.05.

5. Conclusions

In the present study, GTE was found to have an antibacterial activity against the
wild-type pathogenic E. coli and ameliorated pathogenic E. coli-induced intestinal damage
by modulating inflammation and epithelial cell proliferation. Further mechanistic studies
are required to reveal the exact correlation between green tea catechins and Anex1 in
pathogenic E. coli infections.
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