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Abstract

Motivation: CNValidator assesses the quality of somatic copy-number calls based on coherency of

haplotypes across multiple samples from the same individual. It is applicable to any copy-number

calling algorithm, which makes calls independently for each sample. This test is useful in assessing

the accuracy of copy-number calls, as well as choosing among alternative copy-number algorithms

or tuning parameter values.

Results: On a dataset of somatic samples from individuals with Barrett’s Esophagus, CNValidator

provided feedback on the correctness of sample ploidy calls and also detected data quality issues.

Availability and implementation: CNValidator is available on GitHub at https://github.com/kuhner

lab/CNValidator.

Contact: mkkuhner@uw.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Studies of somatic variation within organisms, particularly in neo-

plasia and cancers, often require inference of somatic changes in

copy number. Such inference can be based on SNP array data using

programs such as ASCAT (Van Loo et al., 2010) or ABSOLUTE

(Carter et al., 2012), or on sequencing data using programs such as

ascatNgs (Raine et al., 2016). If copy-number inference is inaccur-

ate, downstream conclusions may be incorrect.

We present the haplotype coherency test, which leverages infor-

mation from multiple samples from the same patient to estimate the

accuracy of inferred allele-specific copy-number calls. This test

assumes that cross-sample haplotype coherency was not considered

in the calls, which is true for most copy-number calling algorithms.

The test is illustrated in Figure 1. An individual’s germline is

assumed to have two haplotypes (A and B) distinguished by the

alleles present at heterozygous sites. We assume that as part of copy-

number calling, the genome has been divided into segments of pre-

sumed constant copy number, and each segment has been assigned

counts of the A and B haplotypes.

If a somatic event has generated a segment with more copies of

one haplotype than the other (such as a single-copy gain or loss) we

will term it ‘unbalanced’. An unbalanced region identifies which

alleles are present on each haplotype: the allele frequencies of alleles

on the more frequent haplotype will be shifted upwards, and those

on the less frequent haplotype will be shifted downward. In contrast,

in a ‘balanced’ segment (equal numbers of A and B haplotypes, such

as a normal diploid), the pattern of allele frequencies will be due to

noise and will not reflect the underlying haplotypes.

Thus, we expect that if a calling algorithm assigns an unbalanced

call to a segment, the haplotypes indicated by the pattern of allele

frequencies should match those in other samples where the segment

is also unbalanced. If the haplotypes do not match, the call is likely

wrong. Conversely, if a calling algorithm assigns a balanced call, the

haplotypes should not match those in other samples. If the haplo-

types do match, the call is likely wrong. Only the balanced/unbal-

anced status of the call is verified, not the exact call made: a miscall

such as 2A/2B for 1A/1B cannot be detected.

The test is implemented by identifying heterozygous positions in

the germline using a control sample. Only segments which span at

least 10 germline heterozygous positions can be used. Each position

is then scored as being above or below 0.5 in each somatic sample.

For each segment, two samples are considered to agree on the under-

lying haplotypes when 95% or more of their heterozygous positions
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vary in the same direction—i.e. when an allele is high in one sample,

it is high in the other, indicating that the same haplotype is prepon-

derant in both samples. They also agree when 95% or more of the

heterozygous positions vary in opposite directions, indicating that

the A haplotype is preponderant in one sample and the B haplotype

in the other. (For the rationale behind these cutoffs see

Supplementary Methods.)

If no two samples agree on the haplotypes, no validation of the

segment is possible. If 2þ samples agree, the true haplotypes are

considered to be established, and the call made for each sample can

now be evaluated. An unbalanced call which agrees with the estab-

lished haplotypes is a true positive (TP), and one which disagrees is

a false positive (FP). A balanced call which disagrees with the estab-

lished haplotypes is a true negative (TN) and one which agrees is a

false negative (TN). The accuracy of each sample’s calls overall is

calculated as (TPþTN)/(TPþTNþFPþFN). This can be scored ei-

ther by segment count or segment length: CNValidator implements

both methods. Segments without established haplotypes or lacking

10þ germline heterozygous positions are annotated as unknown

and omitted from calculation of accuracy.

CNValidator requires B-allele frequencies from array or sequenc-

ing data (though we have practical experience only with array data),

and segments and copy-number calls from a copy-number algo-

rithm. It uses simple input formats which can be easily prepared

from a variety of file formats. It produces overall reports on the ac-

curacy of each sample, and detailed reports covering each segment.

It can be run either to validate a single copy-number algorithm, or

to compare two or more algorithms or sets of algorithm parameters;

in the latter case, it evaluates the union of segments called by all of

the tested algorithms. It is written in Python 2 and is available under

the MIT License.

2 Application

We developed this algorithm to validate calling on a mixture of

Illumina 1.0 and 2.5 M SNP array data for 3–30 samples per indi-

vidual from 210 individuals with Barrett’s Esophagus (BE) from the

Seattle BE Study (Li et al., 2014 and additional unpublished data).

We performed segmentation with a customized version of copynum-

ber (Nilsen et al., 2012) and copy-number calling with a customized

version of ASCAT (Martinez et al., 2018; Van Loo et al., 2010) (see

Supplementary Material). For each sample, ASCAT was used to find

the best ploidy estimate below 2.80 (‘low-ploidy’) and the best esti-

mate 2.80 and above (‘high-ploidy’). Our goals were to validate

copy-number calling overall and also to determine which ploidy

baseline was preferable for each sample. We report only on the 1654

samples for which ASCAT found solutions for both baselines and at

least one segment was validatable, and omit eight patients who ei-

ther lacked solutions in either category, or had no validatable seg-

ments due to lack of copy-number variation.

For most samples (932/1654) both baselines had accuracy over

90%, reflecting the difficulty of distinguishing a cleanly genome-

doubled sample from a diploid one (Supplementary Fig. S1).

However, for 402 samples one solution was clearly preferable (260

low- and 142 high-ploidy). For example, sample 1005-24 100 had a

low-ploidy accuracy of 33% and high-ploidy of 96%. Examination

of individual calls showed many segments with inferred fractional

copy number that would round to a balanced call with a low-ploidy

baseline, but to an unbalanced call with a high-ploidy baseline; the

coherency test strongly favored the unbalanced calls and thus the as-

signment of a high-ploidy baseline for this sample.

Accuracy was below 90% for both baselines for 320 samples.

This may indicate high subclonality or noisy data. One striking case

was patient 572. External evidence suggested high-ploidy solutions,

but the inferred accuracy of these solutions was low (33–93%, see

Supplementary Table S1). Quality control checks showed that this pa-

tient had been run using the wrong normal control; when the analysis

was repeated with the correct control, accuracies were over 98%.

3 Discussion

Our BE results show the usefulness of CNValidator both in choosing

among alternative copy-number approaches (in our case, low- versus

high-ploidy baseline) and in detecting failure of copy-number call-

ing, in our case due to a quality-control issue.

The approach used by CNValidator applies only to multiple

samples from the same individual. In principle population-based

haplotype inference could be used to validate single samples as is

done by the Battenberg algorithm (Nik-Zainal et al., 2012), al-

though this would be vulnerable to errors in the inferred haplo-

types. CNValidator requires at least two somatic samples but is

more powerful with more samples (see Supplementary Fig. S3).

Regions of subclonal copy-number variation can cause dis-

agreement between the calling algorithm and CNValidator;

CNValidator will sometimes detect unbalanced states from sub-

clones that are not present in the majority clone. More work is

required to assess the performance of CNValidator in the face of

subclonality. Finally, CNValidator relies on the segmentation it

is given; a separate approach will be needed to detect segmenta-

tion failures.
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Fig. 1. Haplotype coherency test. (A) Allele frequencies in unbalanced sam-

ples reveal the underlying germline haplotypes. (B) Balanced samples show

only random fluctuation in allele frequencies and do not reveal the underlying

haplotypes. (C) Once haplotypes are established, unbalanced samples should

match the established allele frequency pattern, whereas balanced samples

should show a randomized pattern
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