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INTRODUC TION

Lifestyle interventions can reliably produce and sustain only modest 
(~5%-10%) weight loss (1), necessitating other types of antiobesity 
interventions, such as pharmacotherapy, to address obesity man-
agement. Antiobesity medication development initially relied on ob-
servations of weight loss in agents approved for other indications, 
which resulted in troubled first-generation medications being used 

for weight management. However, new pharmacological treatments 
have been emerging based on an understanding of the biology of ap-
petite regulation (2-4). These agents have been developed by taking 
advantage of their known effects on reducing energy intake and they 
appear promising in delivering more desirable amounts of weight 
loss of up to 15% from baseline after 6 to 10 months of treatment 
(2-4). Apart from weight loss per se, a more specific goal of weight 
management should be health improvement through a reduction 
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Abstract
New appetite-regulating antiobesity treatments such as semaglutide and agents 
under investigation such as tirzepatide show promise in achieving weight loss of 15% 
or more. Energy expenditure, fat oxidation, and lean mass preservation are important 
determinants of weight loss and weight-loss maintenance beyond appetite regulation. 
This review discusses prior failures in clinical development of weight-loss drugs tar-
geting energy expenditure and explores novel strategies for targeting energy expend-
iture: mitochondrial proton leak, uncoupling, dynamics, and biogenesis; futile calcium 
and substrate cycling; leptin for weight maintenance; increased sympathetic nervous 
system activity; and browning of white fat. Relevant targets for preserving lean mass 
are also reviewed: growth hormone, activin type II receptor inhibition, and urocortin 
2 and 3. We endorse moderate modulation of energy expenditure and preservation of 
lean mass in combination with efficient appetite reduction as a means of obtaining a 
significant, safe, and long-lasting weight loss. Furthermore, we suggest that the regu-
latory guidelines should be revisited to focus more on the quality of weight loss and its 
maintenance rather than the absolute weight loss. Commitment to this research focus 
both from a scientific and from a regulatory point of view could signal the beginning 
of the next era in obesity therapies.
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of excess adipose tissue (which drives ill health) while at the same 
time preserving lean mass and healthy bone. And equally important, 
these improvements must be sustainable in the long term.

The purpose of this review was to look beyond appetite reg-
ulation as a target for pharmacological therapy and to explore 
the potential for targeting energy expenditure, fat oxidation, and 
preservation of lean mass as pathways to healthy weight loss and 
weight-loss maintenance in combination with the newer, efficacious 
appetite-regulating compounds. To do this, we discuss the impor-
tance of energy expenditure and fat oxidation as determinants of 
weight gain and of weight-loss maintenance and explore the quality 
of weight loss versus simply the amount of weight lost. Our aim was 
to satisfactorily answer the question “How can we produce sustain-
able high-quality weight loss through targeting energy expenditure, 
fat oxidation, and preservation of lean mass?”

ROLE OF ENERGY E XPENDITURE AND FAT 
OXIDATION IN BODY WEIGHT CONTROL

Energy balance is not only the reflection of energy in versus energy 
out but the sum of fat, carbohydrate, and protein balances (alcohol 
also needs to be considered if part of the diet) (5). Because of the 
physiological interactions between energy substrate availability and 
hormonal and enzymatic responses, body weight and body composi-
tion will remain stable only when macronutrient intakes are compen-
sated by similar energy expenditure and substrate oxidation rates 
(Figure 1). As shown in Figure 1, over the short term, most energy 
surplus is stored as fat mass, whereas energy deficit is buffered by 
the loss of fat mass (5). However, if sustained, caloric restriction will 
lead to variable weight loss depending on the partitioning of these 
calories between lean mass and fat mass. In medical practice, most 
diets and current pharmacotherapies will lead to some degree of 
lean mass loss (Figure 2) (6-8).

The best evidence for the role of energy expenditure and fat 
oxidation in the predisposition to weight gain has been from pro-
spective studies among Pima Indians, a population with high rates 
of obesity and type 2 diabetes, although part of these findings has 
not been consistently replicated in other populations or studies 
conducted with non-state-of-the-art methods (9). At least three 
metabolic parameters have been found to be predictive of weight 
gain, when assessed under neutral energy balance conditions: a) 
low resting and 24-hour energy expenditure while being sedentary 
(10); b) impaired fat oxidation, independently of energy expenditure 
(11); and c) reduced sympathetic activity, which might underlie the 
two previous factors (12). Moreover, recent studies have shown that 
changes in energy expenditure in response to acute 24-hour over-
feeding or 24-hour complete fast are similarly predictive of body 
weight changes (9). Using this approach, two well-differentiated 
phenotypes, “thrifty” and “spendthrift,” can be identified. Thrifty 
individuals are characterized by larger decreases in 24-hour energy 
expenditure in response to fasting and smaller increases in 24-hour 
energy expenditure in response to overfeeding (13). Conversely, 

spendthrift individuals exhibit attenuated decreases in 24-hour 
energy expenditure in response to fasting and relatively large in-
creases in 24-hour energy expenditure in response to overfeeding. 
Importantly, the thrifty phenotype is associated with larger body 
weight gain during a free-living follow-up (14) or a 6-week over-
feeding intervention (15) and with lower weight loss during a tightly 
controlled calorie restriction intervention (16). In addition, acute 
overfeeding studies have shown that not only the increase in 24-
hour energy expenditure but also the changes in fat oxidation is pre-
dictive of body weight changes (17). This capacity to adapt substrate 
oxidation to its availability, known as metabolic flexibility, is also 

Study Importance

What is already known?

►	Most available pharmacotherapies for obesity treat-
ment target appetite regulation.

►	Beyond appetite regulation, energy expenditure and fat 
oxidation are important determinants of weight gain 
and weight-loss maintenance.

►	Most of the drugs stimulating energy expenditure have 
failed in clinical development because of safety issues or 
lack of efficacy.

►	Maximizing the loss of fat mass while preserving lean 
mass and energy expenditure is a desirable target for 
obesity treatment.

What does this review add?

►	We propose that safe and durable high-quality weight 
maintenance can be achieved by moderate modula-
tion of energy expenditure and preservation of lean 
mass in combination with efficient appetite-reducing 
compounds.

►	We discuss potential molecular targets to prevent the 
decrease in energy expenditure and lean mass observed 
during weight loss.

How might these results change the direction of 
research or the focus of clinical practice?

►	Commitment to this new research focus, including regu-
lation of energy expenditure and fat oxidation and pres-
ervation of lean mass, could signal the beginning of the 
next era in obesity therapies.

►	We suggest that regulatory guidelines should be re-
visited to 1) recognize that weight-loss induction and 
weight-loss maintenance may require different ap-
proaches and 2) focus more on the quality of weight loss 
and its maintenance than the absolute weight loss.
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believed to play a central role in preventing ectopic fat accumulation 
and insulin resistance (18).

In summary, both low energy expenditure and impaired fat oxi-
dation are risk factors for weight gain but they also cause resistance 
to weight loss. Therefore, any pharmacological treatment should 
keep in mind that a booster of either energy expenditure, fat oxida-
tion, or both is likely to play a role in improved body weight manage-
ment and favor loss of fat mass rather than lean mass.

CHALLENGES OF WEIGHT LOSS AND ITS 
MAINTENANCE WITH EMPHA SIS ON LE AN 
MA SS PRESERVATION AND METABOLIC 
ADAPTATION

Today, significant weight loss can be achieved in most patients living 
with obesity by intensive lifestyle, pharmacological, or surgical in-
terventions. However, body weight often plateaus before reaching a 
medically or cosmetically desirable weight loss (Figure 3). Even more 
disturbing for many patients is the challenging struggle to main-
tain the lost weight. Following lifestyle interventions, 30% to 50% 
of the body weight loss is commonly recovered within a year (19) 
whereas more than half of patients recover their initial body weight 
within 5 years after the initiation of treatment (20). Even after bari-
atric surgery, weight regain is a common phenomenon (21). All in all, 

preventing weight regain after weight loss is commonly considered 
one of the biggest challenges in obesity treatment (22).

Variability in physical activity and adherence to the specific 
treatment explain part of the variability in both the weight loss and 
its maintenance, but these are not the sole explanatory factors (23). 
Body weight (or more precisely, body energy stores) is under ho-
meostatic regulation, which means that complex and interrelated 
physiological mechanisms are activated to counteract perturbations 
in energy balance so a stable body weight can be maintained (24) 
(Figure 4A). In people living with obesity, the homeostatic control of 
body weight is commonly altered so a higher body weight is often 
defended by alterations in the homeostatic control of both energy 
intake and energy expenditure (25). Consequently, energy expendi-
ture is considerably reduced in parallel with weight loss (Figure 4A).

Lean mass preservation

In large part, the reduction in energy expenditure induced by weight 
loss is attributable to the decline in lean mass, the metabolically 
active tissues (26-28). Even if lifestyle modifications and currently 
available therapies for weight loss can deliver substantial decreases 
in fat mass, 15% to 40% of the weight loss represents reductions 
in lean mass (6-8) (Figure 2). Resting energy expenditure is reduced 
by approximately 13 kcal/d for each kilogram of muscle mass lost, 

F I G U R E  1  Short-term substrate balance in response to perturbation of energy balance. Most of the energy reserves in the body are 
stored in the form of fat, whereas protein represents some stores while only a small fraction of energy reserves is stored as carbohydrates 
(left panel). In a state of energy balance, the daily turnover (intake and oxidation) of carbohydrates represents approximately 50% to 100% 
of the body carbohydrate stores (circulating glucose plus liver and muscle glycogen), whereas protein and fat turnovers typically represent 
approximately 1% of body reserves. Changes in daily carbohydrate and protein intakes are rapidly mirrored by proportional changes in their 
respective oxidation, whereas changes in fat intake are not compensated in the short term by changes in fat oxidation. Therefore, both 
carbohydrate and protein balances are tightly maintained in response to changes in energy intake (right panel). In contrast, a surplus or a 
deficit in energy intake will be buffered by changes in fat stores: a loss in case of energy restriction and a gain during a surplus in energy 
intake. Adapted from Flatt (163) and Abbott et al. (5)
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in contrast with the much lower 4.5-kcal/d reduction for each kilo-
gram of fat mass lost (29). Moreover, besides reducing skeletal mus-
cle mass, weight loss also decreases the mass of highly thermogenic 
organs such as liver, heart, and kidney (8) (Figure 2). The contribu-
tion of these thermogenic organs to basal metabolic rate is between 
15- and 33-fold higher, per mass unit, than the contribution of rest-
ing skeletal muscle (29); therefore, the decrease in resting energy 
expenditure because of the decreased lean mass can be substan-
tial. Furthermore, after weight loss, most of the weight regained is 
typically fat mass, leading to a progressive decline in lean mass over 
several weight cycles, thereby further exacerbating the reduction in 
energy expenditure (30). Hence, drug candidates that either spare 
the loss of lean mass or even increase lean mass during weight loss 
(31) could potentially prevent part of the reduction in energy ex-
penditure and thereby enable a more pronounced and sustainable 
weight loss.

Metabolic adaptation

Together, changes in fat mass, muscle mass, and organ size account 
for, on average, ~60% of the reductions in energy expenditure ob-
served in response to weight loss, thus leaving ~40% of the energy 
expenditure decrease unexplained (8). The decrease in the energy 
necessary to sustain weight-bearing activities at a reduced weight 
as well as the lower thermic effect of food owing to lower energy 
intake must also be considered. Nonetheless, part of the remaining 

~40% is also explained by increased energy efficiency (i.e., energy 
expended per unit of metabolic mass), which is known as metabolic 
adaptation, adaptive thermogenesis, or metabolic slowing (28). 
Potential mechanisms underlying metabolic adaptation include de-
creases in plasma leptin concentrations (32), decreased activities of 
the thyroid (33) and sympathetic nervous system (SNS) axes (12), in-
creased mitochondrial biogenesis (34), and improved mitochondrial 
coupling of oxidative phosphorylation (35). Metabolic adaptation to 
weight loss commonly accounts for reductions of 6% to 10% of total 
daily energy expenditure (33) and has been documented in response 
to varied behavioral interventions, including lifestyle, pharmaco-
logical, and surgical treatments of obesity (36). Metabolic adapta-
tion may persist many years after weight loss (37), and it is believed 
to be a relevant barrier to weight-loss maintenance. Nonetheless, 
evidence directly linking the degree of chronic metabolic adapta-
tion to weight-loss regain remains elusive (38). Some studies have 
failed to observe an association between metabolic adaptation in 
resting metabolic rate and later weight regain (37,38). However, 
resting metabolic rate is only one of the components of total en-
ergy expenditure (39). Studies with an adequate assessment of all 
components of energy expenditure (sleeping metabolic rate, resting 
metabolic rate, nonexercise activity thermogenesis, exercise activity 
thermogenesis, and diet-induced thermogenesis) and body composi-
tion, conducted in large sample sizes, are needed to elucidate the 
interindividual variability and the extent to which metabolic adap-
tation contributes to the variability in both weight loss and weight 
regain. Also, potential differences in metabolic adaptation after 

FI G U R E 2 Long-term change in body composition during sustained energy restriction. Body fat percentage is commonly higher than 25% in men 
with obesity and higher than 35% in women with obesity, and it increases with age. However, in many patients with severe obesity, fat mass can be 
up to 50% or more (left panel). The rest of the body (fat-free mass) includes bone mass (3%-5% body weight) and lean mass (with water). Lean mass is 
composed of large organs (including brain, liver, kidneys, and heart, 3%-5% body weight), muscle mass (20%-30%), and residual lean mass (digestive 
tract, small organs, connective tissue, tendons, etc.). In response to sustained energy restriction, most of the weight loss comes from loss of fat mass 
(60%-85%) whereas 15% to 40% can come from a loss of lean mass. Most of the lost lean mass is a loss of skeletal muscle mass while other highly 
thermogenic organs, such as the liver, kidneys, and heart, are minimally impacted during weight loss (right panel). In addition, a small decrease in 
the residual lean mass (tendons, connective tissue, digestive tract, etc.) is also observed. Ideal pharmaceutical therapeutics for weight management 
should aim at preventing the decrease in lean mass, thus facilitating further loss of fat mass and weight-loss maintenance
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diet-induced versus pharmacologically and surgically induced weight 
loss needs further investigation.

Energy expenditure and energy intake regulation

Energy expenditure has been proposed as a primary driver of energy 
intake (40). Changes in energy expenditure are usually matched by 
changes in energy intake, explaining why therapies that solely mod-
ify energy expenditure usually result in less-than-expected weight 
loss (41). However, even if energy intake generally matches energy 
expenditure in the long term, low levels of total energy expenditure 
seem to be linked to appetite dysregulation resulting in enhanced 
hunger and impaired satiation, favoring hyperphagia (40). This has 
led to thinking that the human body can better match energy intake 
to expenditure at high energy flux (42). This hypothesis suggests 
that, if energy expenditure is kept low enough, the drive to eat is not 
decreased proportionally. This seems to be corroborated by prelimi-
nary evidence showing that acute increases in energy flux improve 
appetite control and reduce the drive to eat (43). Moreover, the 
maintenance of high total energy expenditure by increasing volun-
tary or spontaneous physical activity (or targeting inactivity) is one of 
the few factors that has been shown to favor successful weight-loss 
maintenance (42,44). Consequently, the decreased energy expendi-
ture induced by weight loss might, to some extent, oppose the ef-
fects exerted by appetite-regulating drugs on energy intake. Indeed, 
a positive association between the increase in hunger and metabolic 
adaptation has been documented (36), which might explain why 
metabolic adaptation seems to be a weak predictor of weight-loss 
maintenance. Furthermore, the decrease in lean mass in response to 
weight loss also seems to drive compensatory hyperphagia aiming at 
restoring the lost lean mass (30). Pharmacological strategies aimed 
at sparing lean mass or counteracting metabolic adaptation could 
therefore provide additional benefits for controlling energy intake, 
thus triggering larger and more sustainable weight loss.

FAILED PHARMACOLOGIC AL TARGETS FOR 
INCRE A SING ENERGY E XPENDITURE OR 
FAT OXIDATION

Pharmacological targeting of energy expenditure has already been 
pursued for weight-loss induction. In fact, some of the first an-
tiobesity treatments used in the early nineteenth century, thyroid 
hormones and the mitochondrial uncoupler dinitrophenol (DNP), 
targeted energy expenditure (Table 1).

Thyroid hormones

Thyroid hormones as part of the hypothalamic-pituitary-thyroid 
axis increase energy expenditure by increasing SNS activity and 
mitochondrial uncoupling and/or biogenesis (45). Higher baseline 

free triiodothyronine, T3, was predictive of greater weight loss in 
the POUNDS LOST trial (46), whereas weight loss decreases free 
T3, an adaptation that contributes to the weight-loss–induced re-
duction of energy expenditure (47). Thyroid extracts were once 
used for weight-loss induction (48), and although a low dose of 
thyroid hormones may aid weight maintenance and the preserva-
tion of lean mass, hyperthyroidism or thyrotoxicosis in euthyroid 
patients (49) along with adverse effects on bone metabolism and 
cardiac mass and/or function are significant risks (50).

DNP

DNP is a chemical mitochondrial uncoupler that induces a proton 
leak that uncouples oxygen consumption from ATP production, 
leading to energy dissipation as heat and thereby increasing overall 
energy expenditure (51). DNP was discovered to induce weight loss 
in the 1920s, but despite good efficacy with a 30% to 40% increase 
in energy expenditure and a corresponding weight loss of 0.7 to 0.9 
kg/wk (52), the dose-response curve was very steep, and side ef-
fects from skin rashes, peripheral neuritis, cataract, and hyperther-
mia to sudden deaths led the US Food and Drug Administration to 
ban the use of DNP in 1938 (53).

Monoaminergic systems

Drugs that target monoaminergic systems cause appetite-
suppression–induced weight loss by inhibiting the reuptake or pro-
moting the release of serotonin, dopamine, and/or noradrenaline or 
by stimulating the respective receptors (54). While some also increase 
energy expenditure in rodents (55), this effect is quite variable in hu-
mans. Sibutramine increased resting energy expenditure and attenu-
ated the weight-loss-induced energy expenditure reduction in women 
with obesity (56,57) but had no thermogenic effect in other obesity 
trials (58). Fenfluramine, in contrast, did not increase resting energy 
expenditure but enhanced the thermic effect of food in both rodents 
and humans (59). Many drugs in this class, including fenfluramine and 
sibutramine, failed because of detrimental cardiovascular or psycho-
tropic effects (60).

β3 adrenergic receptor agonists

Modulation of energy expenditure via brown adipose tissue (BAT) 
activation has been long debated. The discovery that adults express 
significant amounts of BAT that can be recruited by cold exposure 
or appropriate pharmacological treatments has spurred interest (61). 
Selective β3 adrenergic receptor (AR) agonists have been extensively 
pursued based on promising data in rodents, but most human stud-
ies have resulted in limited efficacy and off-target cardiovascular side 
effects (62). Recently, it has been shown that β2-AR seems to be the 
only relevant β-AR in human BAT (63), which could imply a potential 
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for selective β2-AR agonists for BAT activation, although selectivity 
and cardiovascular side effects remain a challenge (64).

Melanocortin receptor agonists

Melanocortin 4 receptor (MC4R) agonists suppress appetite and, in 
animal models, increase energy expenditure by increasing SNS activity 
(65,66). Several MC4R agonists failed in the clinic because of increased 
blood pressure or lack of efficacy combined with hyperpigmentation 
owing to off-target activity on MC1R (67,68). Recently, setmelanotide 
successfully passed clinical development and is marketed for chronic 
weight management in patients with ultrarare genetic obesity linked to 
MC4R signaling. Treatment in those with pro-opiomelanocortin defi-
ciency demonstrated remarkable weight loss, unlike the minor weight 
loss observed with general obesity (69). Importantly, setmelanotide 
did not produce adverse cardiovascular effects (69). Although the 
primary factor driving weight loss was decreased appetite, an acute 
increase in resting energy expenditure (~6%, relative to placebo) was 
also observed in the clinic (70).

Glucagon and glucagon-like peptide-1 receptor co-
agonists

About a decade ago, the concept of using a dual glucagon-like 
peptide-1 (GLP-1)/glucagon agonist for obesity emerged (71). The 
concept built on activation of both GLP-1 receptors leading to de-
creased energy intake and glucagon receptors mainly causing in-
creased energy expenditure, resulting in superior effects on body 
weight and glucose metabolism (72). Promising animal studies with 
potent GLP-1/glucagon co-agonists led to initiation of several clini-
cal programs (73). Unfortunately, the challenge was much greater in 
humans, in which there is a narrow optimal ratio for getting additional 

weight loss on top of the GLP-1 alone without affecting glycemia or 
causing adverse cardiovascular effects (74). Today, most obesity pro-
grams have been abandoned or turned to indications such as nonal-
coholic steatohepatitis (NASH).

Fibroblast growth factor 21

In 2005, fibroblast growth factor 21 (FGF21), a hormone secreted from 
the liver, was described as a novel metabolic regulator (75). Treatment 
of animal models demonstrated impressive effects on body weight, 
glucose regulation, dyslipidemia, and NASH (76). Energy expenditure 
was markedly increased in rodents (77) in parallel to a browning of 
white adipocytes (78), suggesting that FGF21 analogues could be new 
powerful antiobesity agents. Several FGF21 analogues entered human 
clinical trials for the treatment of obesity and type 2 diabetes, but un-
fortunately, the impressive preclinical effects on energy expenditure 
did not translate to humans (76). However, there was robust lipid low-
ering in plasma and liver, and most of the FGF21 analogues have been 
transferred to the NASH indication.

Methionine aminopeptidase 2 inhibitors

Methionine aminopeptidase 2 (MetAP2) inhibitors induce weight 
loss in humans and were thought to increase energy expenditure 
because of observations of increased levels of ketones and FGF21 
(79). Beloranib, an irreversible inhibitor, produced clinically rel-
evant lean-mass-sparing weight loss but was terminated because 
of venous thromboembolic events (80). A second reversible inhibi-
tor (ZGN-1061) with an improved risk profile is currently in clinical 
development (79). MetAP2 inhibitors inhibit adipogenesis and en-
hance lipolysis and fat oxidation, although reduced hyperphagia has 
also been observed (81). Effects of MetAP2 inhibitors on energy 

F I G U R E  3  Weight-loss trajectories with current and future therapies. Lifestyle interventions produce modest weight loss followed by 
weight regain. Most current pharmacotherapies induce additional but still insufficient weight loss, and weight regain typically occurs over 
time. RYGB is associated with substantially greater and more sustained weight loss, but nevertheless, some weight regain is observed after 
2 years, and this therapy is not available for the majority of people living with obesity. The future of weight management must target not 
only weight loss but also quality of the weight loss and weight maintenance. To do that, medications must have effects beyond appetite 
suppression and must target preservation of lean mass and energy expenditure. RYGB, Roux-en-Y gastric bypass
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expenditure in humans have not been reported, but in rodents, 
the inhibitor fumagillin actually decreased energy expenditure and 
sympathetic tone while suppressing appetite (82).

In summary, many of the drugs that have a relevant effect on en-
ergy expenditure have failed in clinical development or have been 
withdrawn from the market mainly because of safety issues or, in 
some cases, because of lack of efficacy (Table 1). Hence, there is a 
huge therapeutic gap with respect to safe targeting of this side of 
the energy balance equation, which, together with lean mass pres-
ervation, could significantly improve current weight-management 
strategies.

RETHINKING APPROACHES FOR WEIGHT 
LOSS AND ITS MAINTENANCE

A general concern related to pharmacological targeting of increased en-
ergy expenditure is the concomitant increase in heart rate and cardiac 
workload needed to meet the body’s increased oxygen requirements, 
especially if energy expenditure is increased by more than 25% (83). 
In individuals with obesity who already have a challenged cardiovas-
cular system, this additional burden may not be well tolerated. Based 
on predictive models, it can be calculated that an increase in energy 
expenditure of 5% to 10% will by itself provide a 5% weight loss over 

F I G U R E  4  Trends in energy balance regulation in response to different weight-loss regimens. Energy intake and energy expenditure are 
balanced in weight-stable obesity. (A) The reduction in energy intake during calorie restriction results in increased hunger and decreased 
satiation, driven by the neurohormonal mechanisms shown in the insert. Furthermore, energy expenditure decreases because of changes 
in body mass/lean mass, neurohormonal changes, and metabolic adaptation. Together, the increased hunger, decreased satiation, and 
decreased energy expenditure can readily promote weight regain, and the decrease in energy expenditure has been shown in some cases 
to persist for years (37). (B) When the weight loss is induced by continuous treatment with an appetite-reducing compound, the hunger is 
decreased and the satiation is increased, enabling a longer period with reduced energy intake. However, energy expenditure is typically 
still reduced owing to loss of body mass/lean mass, neurohormonal changes, and some degree of metabolic adaptation. Consequently, 
the reduction in body weight is still limited, and usually, over time, weight regain occurs despite continued treatment, albeit at a slower 
rate compared with the regain observed with calorie restriction in panel A. (C) The future aspiration for pharmacotherapy that combines 
appetite-reducing, energy-expenditure–boosting, and lean-mass–preserving mechanisms. Such a combination will decrease hunger, 
increase satiety, and protect lean mass, resulting in less suppression of energy expenditure, which (together with an actual energy-
expenditure–boosting component) will have the potential to cause greater and more sustainable weight loss. BMR, basal metabolic rate; 
CCK, cholecystokinin; EE, energy expenditure; EI, energy intake; GLP-1, glucagon-like peptide-1; PYY, peptide YY; SNS, sympathetic nervous 
system; TEF, thermic effect of food; TH, thyroid hormone; WL, weight loss; WM, weight maintenance
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a year (84), and we suggest targeting this level of energy expenditure 
for safe promotion of weight loss and weight-loss maintenance. In the 
same way, because skeletal muscle mass is typically already increased in 
(nonsarcopenic) individuals with obesity (85), the main aim should be to 
preserve or moderately increase muscle mass to counteract further de-
creases in energy expenditure thereby enabling sustained weight loss. 
Potential pathways that could be targeted with these aims in mind are 
shown in Figure 5 and are described in more detail subsequently.

TARGETING ENERGY E XPENDITURE 
FOR INDUC TION OF WEIGHT LOSS AND 
WEIGHT-LOSS MAINTENANCE

Thermogenesis occurs in a variety of tissues, such as skeletal muscle, 
BAT, white adipose tissue (WAT), and liver. Skeletal muscles compose 
up to 40% of body mass, are responsible for approximately 20% of 
resting energy expenditure (86), and contribute to cold-induced 

thermogenesis by both shivering and nonshivering mechanisms. 
Muscle-derived nonshivering thermogenesis (NST) may be the domi-
nant source of heat production in animals in which BAT is either ab-
sent (such as in birds and pigs) or reduced (such as in large mammals, 
including adult humans) (87). Given the large mass of skeletal muscles, 
enhancement of NST in muscle may be relevant to increase energy 
expenditure sufficiently to impact weight management. Also, skeletal 
muscles have the vascularization needed to meet the increased de-
mands for oxygen and substrate and dissipate the extra heat. Skeletal 
muscle NST can result from mitochondrial proton leak, sarcolipin 
(SLN)-mediated futile calcium cycling, and various substrate cycles, 
which may also occur in other tissues (Figure 5) (88-90).

Mitochondrial proton leak

Most energy expenditure occurs through oxidative phosphorylation 
in mitochondria, leading to the production of ATP (86). However, the 

F I G U R E  5  Rethinking approaches for weight maintenance by targeting energy expenditure and lean mass preservation. Potential ways 
of maintaining or increasing energy expenditure include a diversity of targets ranging from sympathetic nervous system and transient 
receptor potential channel activation over browning of white adipose tissue to increased nonshivering thermogenesis in various organs. 
Nonshivering thermogenesis in skeletal muscle and other tissues can be brought about by increasing mitochondrial proton leak, by 
pharmacologically induced futile calcium cycling or various other futile substrate cycles, all of which would increase fatty acid oxidation and 
energy expenditure. Mitochondrial biogenesis and improved mitochondrial function are needed to support this increased energy demand. 
Potential targets for maintaining or increasing muscle mass include growth hormone, activin type II receptors A/B, and urocortin 2 and 3, 
which will secondarily lead to maintenance of the energy expenditure. ActIIR A/B, activin type II receptors A/B; AMPK, AMP-activated 
protein kinase; FAO, fatty acid oxidation; GH, growth hormone; MFN2, mitofusin 2; N-ADA, N-arachidonoyl dopamine; PGC1α, peroxisome 
proliferator-activated receptor gamma coactivator 1α; PPARα, peroxisome proliferator-activated receptor alpha; RyR, ryanodine receptor; 
SERCA, sarcoplasmic/endoplasmic reticulum Ca2+-dependent ATPase; SLN, sarcolipin; SNS, sympathetic nervous system; SR, sarcoplasmic 
reticulum; TRP, transient receptor potential; Ucn2/3, urocortin 2 and 3; UCP1, uncoupling protein 1; WAT, white adipose tissue
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efficiency of the conversion of energy to ATP varies, owing to the 
naturally occurring mitochondrial proton leak, which uncouples part 
of the energy consumption from the ATP production and dissipates 
it as heat (89,91). This proton leak is estimated to contribute 20% 
to 30% of the resting energy expenditure in rats, with the majority 
coming from the liver and skeletal muscles (91). Such variability in 
mitochondrial efficiency is associated with total energy expenditure 
and response to diet-induced weight loss (92,93). The mitochondrial 
proton leak consists of a basal component associated with the ad-
enine nucleotide translocases (primarily ANT1 in muscles and ANT2 
in other tissues) and uncoupling protein 1 (UCP1) in BAT, and an in-
ducible part mediated by activation of ANT, UCP1, UCP2, and UCP3, 
with UCP3 being the most abundant UCP in skeletal muscle (89,94). 
Although muscle-specific overexpression of UCP3 in mice results 
in weight loss (95), in most species the contribution of both UCP2 
and UCP3 to thermogenesis is thought to be negligible. Rather, the 
main function of UCP2/3 may be the regulation of reactive oxygen 
species (ROS), facilitation of mitochondrial fatty acid transport, and 
modulation of hormone secretion (89). In contrast, ANT1 catalyzes 
more than half of the basal mitochondrial proton leak in muscles 
(94) and thus may constitute a potential pharmacological target for 
increasing energy expenditure. However, so far, pharmacologically 
increased proton leak and decreased mitochondrial efficiency has 
primarily been targeted by chemical mitochondrial uncouplers.

Chemical mitochondrial uncouplers

The clinical efficacy of DNP is intriguing, and various ways of improv-
ing the narrow therapeutic window, by producing chemical uncouplers 
with different physical and chemical characteristics, have been explored 
(96,97). A series of studies has shown that butylated hydroxytoluene uti-
lizes the mitochondrial ANT to induce limited uncoupling at low concen-
tration and conventional uncoupling at higher concentration resulting 
in a wide dynamic range of more than a millionfold in vitro (96). Tissue-
specific uncoupling has also been reported to avoid uncoupling of the 
more sensitive tissues such as heart, kidneys, and peripheral nerves (98). 
Furthermore, mitochondrial uncoupling in combination with pyruvate 
dehydrogenase activation has been shown to modulate DNP-related 
side effects (99), and pro-drugs and controlled-release formulations of 
DNP may attenuate the peak plasma concentration, thereby improving 
the therapeutic window (100). However, whether it will be enough to 
confer these drugs a sufficient safety window is still questionable given 
the severity of the side effects. Despite the promising preclinical data 
and the many years of research in this area, none of the mitochondrial 
uncouplers has made it into clinical development for the treatment of 
obesity, underscoring the safety challenge with this mode of action.

Futile calcium cycling

Stimulation of skeletal muscle fibers leads to calcium (Ca2+) release 
into the cytoplasm via the ryanodine receptor 1 (RyR1). The released 

Ca2+ promotes heat generation from ATP hydrolysis during muscle 
contraction and when Ca2+ ions are pumped back into the sarco-
plasmic reticulum by the sarcoplasmic/endoplasmic reticulum Ca2+-
dependent ATPase (SERCA) (90). Under resting conditions, there is 
evidence for continuous Ca2+ cycling via a partially open RyR1 chan-
nel and SERCA, leading to continuous ATP hydrolysis and heat gen-
eration (101). SERCA1a is expressed predominantly in fast-twitch 
glycolytic muscle, whereas SERCA2a is expressed mostly in cardiac 
and slow-twitch oxidative muscle fibers. SERCA2b is expressed in 
low levels in all tissues, including heart and muscle (90). SERCA gene 
expression and activity in heart and muscle are regulated by thyroid 
hormones (102) and by small proteins such as phospholamban, SLN, 
myoregulin, and dwarf open reading frame (90). Binding of SLN to 
SERCA reduces the efficiency of Ca2+ transport, resulting in more 
ATP being used to transport the same amount of Ca2+, thus leading 
to increased energy expenditure and heat production (103). In con-
trast to mitochondrial uncoupling that comes with a risk of severe 
ATP depletion, the uncoupling of SERCA seems to simultaneously 
improve mitochondrial biogenesis and increase oxidative metabo-
lism to meet the increased ATP demand (90). Mice with skeletal-
muscle-specific overexpression of SLN display reduced weight gain, 
indicating that SLN and potentially other compounds could pharma-
cologically activate this futile cycle to promote weight loss (104). A 
tissue-targeted approach may be needed to avoid potential adverse 
effects in the heart as observed in mice overexpressing SLN selec-
tively in the heart (105).

Futile substrate cycles

Substrate cycles may account for a significant fraction of ATP 
consumption, and modulation of their activity may increase heat 
production and energy expenditure (88,106). An example is the 
triglyceride/fatty acid cycle, in which esterification of triglycer-
ides is followed by hydrolysis (88). It occurs in WAT and muscle, 
is upregulated under several conditions, such as severe burns 
(107), cachexia (108), and exercise (109), and seems to be primar-
ily mediated by catecholamines (107,108). However, it can also be 
stimulated by peroxisome proliferator-activated receptor alpha 
(PPARα) agonists in vitro in white adipocytes (110), indicating that 
pharmacological modulation of such substrate cycles is possible 
although the effect on whole-body energy expenditure remains 
to be determined.

Mitochondrial dynamics and biogenesis

Enhancing mitochondrial biogenesis, thus providing structural in-
tegrity and oxidative capacity, might facilitate therapies aimed at in-
creasing energy expenditure and/or fat oxidation. Obesity, and more 
specifically ectopic fat deposition, triggers mitochondrial impair-
ments manifested by reduced oxidative capacity and fat oxidation, 
increased glucose dependence, increased ROS production, and a 
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shift from mitochondrial fusion to fission (111,112). Such mitochon-
drial fragmentation is accompanied by reduced mitochondrial bio-
genesis and structural changes resulting in swollen, more rounded 
mitochondria (111,112). These impairments mimic deteriorations 
that occur with aging, sarcopenia, and some neurodegenerative dis-
eases (113,114). Importantly, exercise and caloric restriction induce 
opposite effects on mitochondrial integrity (115,116). The defective 
mitochondrial function usually observed in obesity probably impacts 
the metabolic adaptation and the impaired fat oxidation triggered 
by weight loss. Therefore, a plethora of targets governing mito-
chondrial function may be used as an adjuvant therapy if the safety 
concerns of such an approach can be mitigated (117). Nonetheless, 
improved mitochondrial function and biogenesis need to be accom-
panied by increased mitochondrial activity in order to increase en-
ergy expenditure.

AMP-activated protein kinase (AMPK), a heterotrimeric serine/
threonine kinase, when activated, mimics the transcriptional signa-
ture induced by exercise in human skeletal muscle. AMPK is also 
implicated with peroxisome proliferator-activated receptor gamma 
coactivator 1α (PGC1α) in increased mitochondrial biogenesis and 
fat oxidation (118). Currently, Betagenon’s O304 AMPK activator is 
in clinical development for diabetes with future potential for obesity 
(119,120).

Mitofusin 2 (Mfn2) is a mitochondrial membrane-associated 
guanidine triphosphate hydrolase that regulates mitochondrial fu-
sion and mitochondrial–endoplasmic reticulum associations (121). 
Mfn2 expression is decreased with overfeeding, and Mfn2-deficient 
mice have increased ROS production and mitochondrial dysfunction 
in muscle and liver (111). Targeted adipose-specific Mfn2 deficiency 
results in an obesity phenotype in mice (122). Thus, Mfn2 activators 
present a potential therapeutic opportunity for enhancing energy 
expenditure if proven safe (123,124).

Leptin for weight maintenance

When leptin was discovered in 1994 (125), hopes were high that a 
magic bullet had been found for the treatment of obesity. Leptin acts 
on neural circuits in the hypothalamus and other brain areas to regu-
late food intake and energy expenditure (125). The thermogenic ef-
fect is mediated by increased sympathetic efferent signaling to BAT 
and WAT, thereby increasing BAT activity and lipolysis (126). Several 
clinical trials have been conducted in people living with obesity (127), 
but most of them with disappointing outcomes. It turned out that 
the major physiological function of leptin is to signal states of nega-
tive energy balance and decreased energy stores rather than the op-
posite, explaining the lack of effect in individuals with obesity (127). 
However, in the hypometabolic state, which occurs after weight 
loss, there is a relative leptin insufficiency, and here low-dose lep-
tin can partially reverse the physiological and behavioral responses 
associated with weight loss, leading to reduced hunger and resto-
ration of energy expenditure (127). Therefore, pharmacotherapies 
affecting the leptin system are likely to be effective for weight-loss 

maintenance rather than weight loss itself, but currently, there is no 
regulatory pathway for a weight-loss maintenance indication.

Increased SNS activity

The SNS plays a complex role in energy homeostasis and differen-
tially regulates substrate mobilization in many innervated tissues 
(128,129). Whereas SNS tone is inconsistently described as increased 
or decreased in obesity (12,129), postsynaptic sympathetic signal-
ing is consistently decreased in adipose tissue in obesity, leading to 
decreased lipolysis, BAT activity, and energy expenditure and to in-
creased lipid deposition (130). This can be attributed to decreased 
β-AR expression (131) and to increased uptake and degradation of 
norepinephrine in white adipocytes (132) and in specialized adipose-
tissue and sympathetic neuron-associated macrophages (133,134). 
Sympathetic neuron-associated macrophage–specific silencing of 
solute carrier family 6 member 2 inhibits norepinephrine uptake and 
degradation in macrophages and induces weight loss via restoration 
of lipolysis and energy expenditure in mice (134). Whether this ap-
proach can produce clinically relevant effects on body weight is yet 
unclear.

Sympathomimetics are presumed to induce weight loss via central 
nervous system–mediated appetite suppression and SNS activation 
but also cause concomitant adverse cardiovascular effects. Spurring 
new interest in this area, a recent report using a pegylated amphet-
amine that did not cross the blood–brain barrier has shown increased 
lipolysis and thermogenesis resulting in weight loss in mice without 
affecting appetite or triggering cardiovascular side effects (135).

Transient receptor potential (TRP) channels detect environ-
mental changes (e.g., temperature, touch, pain, taste) and regulate 
energy expenditure through SNS and BAT activation (reviewed by 
Saito (136)). Capsaicin, capsinoids, and menthol are examples of 
TRP channel activators suggested to affect energy expenditure and 
body weight, although only minor and somewhat BAT- and BMI-
dependent effects have been observed in humans (136).

Overall, without cell-type–specific targeting, significant SNS ac-
tivation bears the risk of cardiovascular side effects. Nonetheless, 
restoration of local sympathetic signaling will be important in 
preventing the metabolic adaptations that impede weight-loss 
maintenance.

Browning of white adipocytes

The variable amount of BAT and the overall modest contribution of 
BAT to daily energy expenditure is challenging for activation of the 
existing BAT as an effective therapeutic concept (61,137). In con-
trast, treatments that increase the overall adipose tissue thermo-
genic capacity by transforming the more abundant WAT into more 
mitochondria-dense and metabolically active “beige” adipose tis-
sue could result in relevant increases in energy expenditure (138). 
This process, termed “browning,” has been studied intensively in 
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rodents but has also been observed in patients with norepinephrine-
producing tumors (139), severe burn injuries (140), and in humans 
treated with the phosphodiesterase type-5 inhibitor sildenafil (141). 
Numerous pharmacological approaches for “browning” of WAT have 
been proposed (142,143), although a sufficient capacity for pharma-
cological “browning” resulting in relevant effects on energy expendi-
ture has yet to be proven in humans. Another way of increasing the 
thermogenic capacity could be by implantation of stem cell–derived 
or genetically engineered functional “beige” adipocytes as demon-
strated in mice (144) or by gene-based therapies aiming for "brown-
ing" of WAT as reviewed by Wang and Wei (145). The latter approach 
is supported by data from pigs with a WAT-specific clustered regu-
larly interspaced short palindromic repeats (CRISPR)-based UCP-1 
reconstitution leading to a leaner phenotype (146). Common for 
both pharmacologically induced and transplanted “beige” adipose 
tissue is that pharmacological stimulation of thermogenesis in these 
cells is needed to obtain an effect on energy expenditure (142).

G protein–coupled receptor 75

Variants in the G protein–coupled receptor 75 (GPR75) have recently 
been shown to be associated with protection from obesity in hu-
mans, and knockout of the gene in high-fat-fed mice results in resist-
ance to weight gain (147). Data from mouse studies with the GPR75 
ligand 20-HETE indicate that activation of the receptor decreases 
energy expenditure whereas there are no effects on energy intake 
(148). Together, this suggests that inhibition of GPR75 signaling may 
be a new therapeutic strategy for increasing energy expenditure 
and counteracting obesity, although cardiovascular safety must be 
considered.

PRESERVATION OF LE AN MA SS

The decrease in lean mass and energy expenditure observed with 
weight loss can be somewhat prevented by resistance exercise 
(42,44). In addition, drugs that favor lean mass preservation could 
have an important role in the weight maintenance phase (Figure 5).

Growth hormone

Growth hormone (GH) and its effector hormone insulin-like growth 
factor 1 (IGF-1) are key regulators of somatic growth, with major 
anabolic and lipolytic effects in muscle, liver, and adipose tissue 
(149). Besides its lipolytic effect, browning and fat oxidation has also 
been suggested to be involved in the GH regulated carbohydrate and 
lipid metabolism via interactions with insulin and IGF-1 (150). GH is 
used for the treatment of GH deficiency in children and adults and 
has been tested in several studies in people with obesity (151), in 
whom a functional GH deficiency is often observed (149). However, 
GH treatment only has marginal effects on body weight per se but 

alters body composition in a favorable manner owing to simultane-
ous loss of fat mass and gain of lean mass (149,151). GH has gained 
interest in the bariatric surgery field wherein the loss of lean mass 
can be significant (152). The addition of GH therapy in bariatric sur-
gery patients with existing low GH and IGF-1 levels results in a more 
favorable body composition with greater reductions in fat mass, 
preservation of lean mass, and similar improvements in metabolic 
parameters (153). In a similar manner, GH therapy may also be ben-
eficial as adjunct to pharmacological antiobesity treatments in order 
to maintain lean mass.

Activin type II receptor inhibition

Bimagrumab (Novartis, Basel, Switzerland) is a human monoclonal 
antibody that binds the activin type II receptors (ActRII), thereby 
preventing binding of the natural ligands, including myostatin and 
activin A, that otherwise negatively regulate muscle growth (154). 
Treatment with bimagrumab effectively increases lean mass while 
at the same time decreasing fat mass in patients living with obesity 
and type 2 diabetes (31). Heymsfield et al. found that lean mass in-
creased by 3.6%, with an impressive fat mass loss of 20.5% after 
48 weeks of treatment, resulting in a total weight loss of 6.5% (31). 
Despite the modest weight loss, the superior quality of the weight 
loss gave rise to metabolic improvements on par with most current 
antidiabetic treatments (31). Interestingly, dietary intake did not dif-
fer from baseline to treatment week 48 in either of the two groups, 
suggesting lean mass preservation and increases in energy expendi-
ture as part of the mechanism of action for the weight loss.

Urocortin 2 and 3

Many of the same beneficial effects on body composition and me-
tabolism observed for the ActRII inhibitors are seen in preclinical 
animal models following treatment with urocortin (Ucn) 2 and Ucn3, 
which are selective agonists of the corticotrophin-releasing hormone 
receptor 2 (CRHR2) (155). These urocortins have primarily been in-
vestigated for their beneficial effects on the cardiovascular system 
(156), but in addition, both Ucn2 and Ucn3 treatment or overexpres-
sion significantly increase muscle mass (157,158) while at the same 
time modulating food intake, fat mass, glucose tolerance, and insulin 
sensitivity (157,159,160). The effect of urocortins on muscle seems to 
be partially mediated through a direct effect on CRHR2 receptors on 
the muscle fibers resulting in both muscle growth and increased glu-
cose uptake via increased glucose transporter type 4 (GLUT4) translo-
cation and increased insulin signaling (159,160). Furthermore, ex vivo 
studies indicate a direct effect on thermogenesis in skeletal muscle 
potentially driven by substrate cycling between de novo lipogenesis 
and lipid oxidation (161) although increased whole-body energy ex-
penditure has not been observed (159). It remains to be seen whether 
the preclinical data translate to humans and whether the acute cardio-
vascular effects observed in the clinical trials can be mitigated.
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IMPLIC ATIONS AND CONCLUDING 
REMARKS

Current evidence suggests that weight loss itself and weight-loss 
maintenance may require different treatment strategies to be ef-
ficient. Although caloric restriction and appetite-reducing treat-
ments are very effective as the sole strategy for weight-loss 
induction, long-term weight-loss maintenance requires additional 
modulation of energy expenditure and/or fat oxidation together 
with preservation of lean mass. Moreover, concomitantly target-
ing energy expenditure during appetite-suppressant–driven weight 
loss might result in higher rates of weight loss (Figure 4). The pri-
mary efficacy criterion in the guidelines for weight-management 
drugs for both the US Food and Drug Administration and the 
European Medicines Agency is the demonstration of a statistically 
significant, placebo-corrected weight loss of at least 5% from base-
line weight after 12 months of treatment, in addition to ensuring 
that the weight loss is caused primarily (>50%) by a reduction in fat 
content and not lean body mass. The current requirement for a 5% 
weight loss is inadequate for novel drugs that induce fat loss while 
preserving lean mass, as they might result in significant improve-
ments in body composition and metabolic profile despite an overall 
lower weight loss (31). In addition, such a profile is likely to lead to 
better long-term weight-loss maintenance. However, it is currently 
not possible to obtain approval for drugs effective for weight-loss 
maintenance even though this is often the greatest challenge for 
people who have lost weight. Weight regain is almost inevitable 
and it often leaves the patients in a worse position because of met-
abolic adaptation and a less favorable body composition caused by 
loss of lean mass and regain of primarily fat mass. Hopefully, more 
clinical data will be gathered to support a revision of regulatory 
guidance to 1) recognize that weight loss and weight-loss main-
tenance may require different treatment strategies and 2) focus 
more on fat loss, lean mass preservation, and long-term weight-loss 
maintenance rather than absolute weight loss after 1 year.

In this review, we addressed the question “How can we pro-
duce sustainable high-quality weight loss through targeting energy 
expenditure, fat oxidation, and preservation of lean mass?” and ex-
plored the biology and physiology underlying the sustainability of 
weight loss in the face of metabolic adaptation and the variability 
of the composition of the lost mass. Previous approaches targeting 
energy expenditure for weight loss have not been able to achieve 
an acceptable benefit/risk ratio, and currently, no pharmacological 
agents targeting energy expenditure are approved for obesity. By 
rethinking energy expenditure as a driver for weight-loss mainte-
nance rather than for significant weight loss, we propose that safe 
and durable high-quality weight maintenance can be achieved. 
We suggest that moderate modulation of energy expenditure and 
preservation of lean mass in combination with efficient appetite-
reducing compounds are a prerequisite for a significant and long-
lasting healthy weight loss as depicted in Figures 3 and 4C. To 
achieve this goal, research activities need to look beyond appetite 
regulation to find safe, effective new modalities for weight-loss 

enhancement and maintenance. Furthermore, it must be stressed 
that obesity is a chronic disease, and even with a multimodal treat-
ment strategy, lifelong treatment is likely needed to prevent the 
weight regain that otherwise will occur when treatment is discon-
tinued (162). Commitment to this research focus both from a scien-
tific and regulatory point of view could signal the beginning of the 
next era in obesity therapies.O
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