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A B S T R A C T   

Neuropsychiatric symptoms are commonly observed as brain pathology progresses with dementia. Behavioral 
and affective disturbances underly the distinct neuroanatomical basis of typical symptoms of cognitive impair-
ment; however it remains unclear whether enriched intellectual experience, such as educational attainment, can 
mitigate the effect of brain structural patterns on neuropsychiatric symptom severity. We utilized the Open 
Access Series of Imaging Studies (OASIS-3) dataset, which includes brain structural MRI and behavioral symptom 
evaluation. We included 904 older adults who were mostly cognitively normal, clinically diagnosed with very 
mild to moderate Alzheimer’s disease, or other types of dementia. Canonical correlation analysis was used to 
identify the patterns of multivariate association between the gray matter structure and neuropsychiatric symp-
tom severity. First, we identified two canonical modes capturing the distinct neuroanatomical basis of common 
and mood-specific factors of neuropsychiatric symptoms. The first common pattern reflected a smaller volume in 
the amygdala and adjacent temporal regional thickness. The second mood-specific pattern reflected patterns in 
lateral and orbital prefrontal regional thickness. In the external correlational analysis, the two canonical cor-
relations reflected global brain volume and white matter lesions; however, the second pattern was not associated 
with functional impairments or cognitive function. Moreover, older adults with higher education showed an 
attenuated severity of behavioral symptoms, even with the presence of a brain structural pattern. Our findings 
suggest that educational attainment, as a proxy of cognitive reserve, can mitigate the severity of behavioral and 
affective symptoms of dementia.   

1. Introduction 

The clinical hallmarks of late-life neurodegenerative diseases include 
significant changes in memory, executive, and other functions across 
cognitive domains. Neuropsychiatric symptoms (NPS), on the other 
hand, are also commonly observed in individuals with mild cognitive 
impairment (MCI) or dementia (Lyketsos et al., 2002). The behavioral 
and psychological symptoms of dementia typically include a wide range 
of aberrant behavior, mood, affect, or thoughts (Finkel, 2000). Although 
NPS is not a core diagnostic feature of dementia, its presence and 
severity typically leads to profound changes in patients’ functional 
abilities and caregiver burdens (Wadsworth et al., 2012). 

Initially, NPS was viewed as a non-specific consequence of global 
cognitive impairment; however, accumulating studies have suggested 

that a wide variability of behavioral abnormalities characterize the 
distinct clinical trajectories of dementia and neuropathological corre-
lates (Bruen et al., 2008; Teng et al., 2007). Researches have targeted the 
amygdala and corticolimbic network as a neural basis of NPS, which are 
the core structures in maintaining socioemotional functioning, to ac-
count for the variability of NPS beyond typical cognitive impairment 
(Bickart et al., 2014a; b). Previous results have shown an unclear asso-
ciation between the amygdala structure and NPS in Alzheimer’s disease 
(AD) (Horinek et al., 2006; Hu et al., 2015; Poulin et al., 2011). Whole- 
brain voxel-wise exploration via repetitive univariate testing with a 
highly lenient threshold can result in inconsistent brain correlates that 
are less likely to be replicated in a new dataset (Habeck et al., 2008; 
Masouleh et al., 2019). It is less likely that individual differences in these 
symptoms are based on a focal regional morphology; therefore, a more 
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neuroscientifically valid determination of neuroimaging markers is 
required (Woo et al., 2017). It is an important task to examine the neural 
basis of NPS with a more reliable multivariate pattern of 
neurodegeneration. 

Currently, it is unknown whether there is a resilience factor that 
makes an individual tolerant to the NPS onset in the presence of a 
neuropathological burden. The cognitive reserve hypothesis states that 
enriched neural resources gained from lifespan psychosocial and intel-
lectual experiences can buffer the deleterious effect of neuropathology 
on the clinical manifestation (Stern et al., 2018). Numerous studies have 
confirmed that educational attainment, as a proxy of cognitive reserve, 
attenuates or delays the progression of the cognitive impairment; how-
ever, few studies have examined the role of cognitive reserve on the 
affective and behavioral symptoms of dementia (Premi et al., 2013; 
Spreng et al., 2011). It is possible that the neuroanatomical basis of 
behavioral symptoms in AD differs from that of typical impairment in 
memory, executive, and language domain. Thus, the role of education 
on the NPS remains largely unexplored. 

In this study, we examined the neuroanatomical correlates of NPS in 
an open-access dataset that includes older adults who were cognitively 
normal or diagnosed with dementia. We aimed to identify a multivariate 
association between the patterns of NPS items and regional gray matter 
thickness and volume. We utilized canonical correlation analysis to 
characterize distinctive modes of correlation between multiple measures 
of clinical and brain features (Drysdale et al., 2017; Moser et al., 2018; 
Wang et al., 2018; Xia et al., 2018). This multivariate approach may 
reliably capture the distributed nature of neuroanatomical correlates 
that have been detected in the previous studies. Moreover, we examined 
whether educational attainment, as a proxy of cognitive reserve, mod-
erates the effect of brain structural patterns that are associated with NPS 
severity. We hypothesized that older adults with higher education will 
show fewer clinical manifestations in NPS even with increased brain 
structural risk patterns. 

2. Methods 

2.1. Participants 

The dataset, Open Access Series of Imaging Studies (OASIS-3), was 
used in this study. OASIS-3 includes participants enrolled into several 
ongoing studies through the Charles F. and Joanne Knight Alzheimer 
Disease Research Center (Knight ADRC) at Washington University in St. 
Louis spanning over 15 years and several research studies, including 
Memory and Aging Project, Adult Children Study, and Healthy Aging 
and Senile Dementia (LaMontagne et al., 2019). OASIS-3 includes the 
clinical, neuropsychological, neuroimaging, and biomarker data of 1098 
participants (age: 42–95 years; www.oasis-brain.org). We analyzed the 
initial visit session data of 904 participants who completed informant- 
rated behavioral symptoms and MRI scans. Participants with incom-
plete T1 structural scans (n = 111), informant ratings (n = 82), and 
cognitive tests (n = 25) at baseline were excluded from the analysis. 

The standardized collection of OASIS-3 was designed at the Alz-
heimer’s Disease Centers (ADC) program of the National Institute on 
Aging (NIA) as a component of the Uniform Data Set (UDS) (Beekly 
et al., 2007; Morris et al., 2006). Clinical characteristics of dementia 
severity were provided based on the Clinical Dementia Rating (CDR). 
The CDR is a semi-structured interview developed to provide a global 
dementia severity rating, which is useful for staging and tracking decline 
in AD (Fillenbaum et al., 1996; Morris, 1997). Each CDR score repre-
sents levels of functional impairment (0 = no impairment; 0.5 = ques-
tionable or very mild impairment; 1 = mild impairment; 2 = moderate 
impairment) and summarizes the estimate of dementia severity (Marcus 
et al., 2007; Morris, 1993). Participants meeting the criteria for de-
mentia mainly included AD followed by questionable, uncertain, or 
other non-AD disorders (Table 1). Our analyses were conducted across 
all participants available ranging from cognitively normal to moderate 

dementia (n = 904). In addition, same analysis was used when the target 
population was confined to participants with less severe symptoms 
(CDR ≤ 0.5, n = 836). 

2.2. Neuropsychiatric Inventory 

Behavioral and psychological symptoms were evaluated using the 
Neuropsychiatric Inventory, short-form (NPI-Q) (Cummings et al., 1994; 
Kaufer et al., 2000). The NPI is a structured interview administered to 
the patients’ caregivers. It consists of 12 separate items assessing 
neuropsychiatric disturbances, including delusion, hallucination, 
agitation/aggression, depression/dysphoria, anxiety, elation/euphoria, 
apathy/indifference, disinhibition, irritability/lability, and aberrant 
motor behavior (Table 2). In this study, eating abnormalities and 
nighttime behavior symptoms were excluded from the analyses because 
they are not part of the core NPI questionnaire (Cajanus et al., 2019). 
The NPI items coded symptoms as four levels: absent (0, no symptoms), 

Table 1 
Descriptive characteristics of the participants.   

Mean ± SD / Frequency 

Age 68.56 ± 9.45 
Education 15.60 ± 2.77 

7–12 182 (20.1%) 
13–15 175 (19.3%) 
16–17 259 (28.6%) 
18–29 288 (31.8)  

Gender  
Male (0) 409 (45.2%) 
Female (1) 495 (54.8%) 

MMSE 28.07 ± 2.75  

CDR  
0 (No impairment) 635 (70.2%) 
0.5 (Very mild) 201 (22.2%) 
1 (Mild) 65 (7.2%) 
2 (Moderate) 3 (0.3%)  

Diagnosis  
Cognitively normal 636 (70.4%) 
AD dementia 174 (19.2%) 
AD dementia with other comorbidities 43 (4.8%) 
Non-AD / Uncertain 69 (7.6%) 
Questionable impairment 25 (2.8%)  

Table 2 
Neuropsychiatric Inventory (NPI-Q) questionnaires.  

Agitation / 
Aggression 

Is the patient stubborn and resistive to help from others? 

Irritability / 
Lability 

Is the patient impatient or cranky? Does he or she have 
difficulty coping with delays or waiting for planned 
activities? 

Elation / Euphoria Does the patient appear to feel too good or act excessively 
happy? 

Disinhibition Does the patient seem to act impulsively? For example, does 
the patient talk to strangers as if he or she knows them, or 
does the patient say things that may hurt people’s feelings? 

Motor disturbance Does the patient engage in repetitive activities, such as pacing 
around the house, handling buttons, wrapping string, or 
doing other things repeatedly? 

Depression / 
dysphoria 

Does the patient act as if he or she is sad or in low spirits? Does 
he or she cry? 

Anxiety Does the patient become upset when separated from you? 
Does he or she have any other signs of nervousness, such as 
shortness of breath, sighing, being unable to relax, or feeling 
excessively tense? 

Apathy / 
indifference 

Does the patient seem less interested in his or her usual 
activities and in the activities and plans of others? 

Delusions Does the patient believe that others are stealing from him or 
her, or planning to harm him or her in some way? 

Hallucinations Does the patient act as if he or she hears voices? Does he or 
she talk to people who are not there?  
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mild (1, noticeable, but not a significant change), moderate (2, signifi-
cant, but not a dramatic change), and severe (3, very marked or prom-
inent; a dramatic change). The participants showed a relatively high 
prevalence in irritability (22%), agitation (17%), depression (17%), 
which were followed by apathy (12%), anxiety (11%), disinhibition 
(9%), motor (6%), elation (3%), delusion (3%), and hallucination (1%). 

The interview informants were mostly spouses (n = 499) and chil-
dren (n = 199), followed by other relationships (n = 221: sibling, 
neighbor, relative, and paid caregiver). The reliability of the informant 
was binary-coded (questionable = 1, not questionable = 0) and included 
as a covariate in the subsequent multiple regression model. 

2.3. Neuroimaging acquisition and preprocessing 

The neuroimaging data in OASIS-3 were collected in a 16-channel 
head coil from different scanners (Siemens TIM Trio 3T, Siemens Bio-
Graph mMR PET-MR 3T, Siemens BioGraph mMR PET-MR 3T, Siemens 
Sonata 1.5T, and Siemens Vision 1.5T). High-resolution T1-weighted 
structural image were used for this analysis this study (TR = 2.4 s, TE =
3.08 ms, FOV = 256 × 256 mm, FA = 8◦, voxel size 1 × 1 × 1 mm3). We 
used a fully automated preprocessing procedure implemented in CAT12 
r1450 (Computational Anatomy Toolbox, Structural Brain Mapping 
Group, Departments of Psychiatry and Neurology, Jena University 
Hospital, http://dbm.neuro.uni-jena.de/cat/) to apply a standardized 
analysis pipeline. First, a spatial-adaptive non-local means (SANLM) 
denoising filter (Manjón et al., 2010) was employed. Segmentation al-
gorithms based on the adaptive maximum a posterior (AMAP) technique 
implemented in CAT12, were used to classify brain tissue into gray 
matter (GM), white matter (WM), cerebrospinal fluid (CSF), and white 
matter hypointensities (WMH). Additionally, partial volume estimation 
was used to create a more accurate segmentation for the two mixed 
classes: GM–WM and GM–CSF. Projection-based estimation of cortical 
thickness was conducted in the segmented images (Dahnke et al., 2013; 
2012), which showed a comparable accuracy with other surface-based 
tools (Righart et al., 2017). In total, 78 values were extracted from the 
CAT12 region of interest (ROI) analysis pipeline, including 68 cortical 
thickness and mean GM density values in ten bilateral subcortical 
structures (accumbens, caudate, putamen, amygdala, and hippocam-
pus). Cortical areas were defined based on the automatic parcellation of 
gyri (Desikan et al., 2006). Subcortical volumes were defined using the 
Neuromorphometric atlas (http://Neuromorphometrics.com). The 
overall summary measure for the whole brain was calculated with an 
inverse measure of normalized whole brain volume (nWBV = 1 − (GM 
+ WM)/Total Intracranial Volume). White matter lesions were calcu-
lated with the total amount of WMH volume and log-transformed. The 
78 cortical thickness and volumetric measures were introduced into 
main analysis of dimension reduction and CCA. On the other hand, 
normalized WBV and white matter lesion volume were used in the 
external correlation analysis. 

2.4. Dimension reduction 

Principal component analysis (PCA) was conducted to reduce the 
high dimensionality of the brain morphometry and strong comorbidity 
of NPI measures. While NPI is typically composed of diverse construct of 
symptoms, a strong correlation between NPI-sum and NPI-item severity 
was observed, similar to that of the previous study (mean r = 0.57) 
(Kaufer et al., 2000). The valid NPI domains unit remains largely un-
known in the current population; therefore, this data-driven approach 
was utilized to determine the optimal unit of symptom patterns. 

Before conducting PCA, the original measures were scaled to have 
unit variance. In addition, a parallel analysis was used to determine the 
optimal number of components to be summarized in the further analysis. 
This analysis compares the scree of eigenvalues of the observed data 
with that of a random data matrix of the same size as the original. The 
random data matrix was generated with 50 iteration. Components with 

higher eigenvalues than the randomly generated data were considered 
as a meaningful unit of the principal components. This parallel analysis 
was conducted using the psych package (Revelle, 2018). The parallel 
analysis on the brain structural measures (904*78; cortical thickness 
and GM volume), identified 7 principal components as optimal which 
explained 65% of the total brain morphometry measures. The parallel 
analysis on the NPI measures (904*10; item scores) identified 2 prin-
cipal components as optimal which explained 47% of the total items. 
These dimension reduction procedures prevented the subsequent anal-
ysis from capturing minute patterns of association. In sum, brain 
structure and NPI measures are reduced into 7 and 2 principal compo-
nent scores, respectively, and used in the subsequent CCA. 

2.5. Canonical correlation analysis 

Canonical correlation analysis was conducted using the CCA package 
in R (González et al., 2012). The CCA finds several modes of the linear 
combination that produce the highest correlation between two canoni-
cal variates (Fig. 1; U and V). Each side of the variate is composed of 
vector weights, which indicate the relative contribution of the input 
variables. The canonical variate (CV) is calculated using the weighted 
sum of the principal component score of either brain measures or NPI 
scores. The number of canonical modes is limited to the minimum di-
mensions of the input variables; therefore, two canonical modes were 
produced. 

CCA identifies the linear combination that produces the highest ca-
nonical correlation; therefore, the permutation test confirmed whether 
the canonical correlations between two sets of variables are statistically 
meaningful relative to the null distribution. The subject measures of NPI 
were randomly shuffled 10,000 times and produced the null distribu-
tion. The p-value was calculated by p-value = (cases that were higher 
canonical correlation)/10,000. 

We conducted 5-fold cross-validation to assess the generalizability 
and rate of overfitting in CCA. The canonical variates of each fold were 
predicted based on the CCA coefficients estimated within the indepen-
dently separated folds. Next, we calculated the correlation between the 
two predicted canonical variates. This procedure was iterated 1000 
times to assess the stability of the group partitioning. The mean and 
standard deviation of the iterated results are reported. 

Fig. 1. Schematic figure of Canonical Correlation Analysis (CCA). Mth pairs of 
mode represent a multivariate association between canonical variates of brain 
canonical variate (U, top left) and NPI canonical variate (V, top right). Bottom: 
Each canonical variate represents a linear combination of the brain and NPI’s 
principal component (PC) scores, and identifies two highest canonical modes. 
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2.6. Statistical analysis 

After identifying statistically meaningful canonical modes, the 
composition and characteristics of each canonical variate were 
described using Pearson’s correlation between the variate score and the 
original NPI or the brain measures before being reduced into principal 
components. Furthermore, correlations between the brain canonical 
variate (U) and other external measures were examined in age, sex, total 
intracranial volume (TIV), whole brain volume (1 − GM + WM/TIV), 
white matter lesion, Mini-Mental Status Examination (MMSE), and CDR. 

Multiple regression analysis was conducted to examine the moder-
ating effect of education on the relationship between brain structural 
pattern (U) and NPI symptom severity (V) by adding the interaction 
terms (Brain CV1 × Education and Brain CV2 × Education). A separate 
regression analysis was conducted on the distinct canonical modes that 
included regressors of no interest (demographics, informant reliability, 
TIV, CDR, and MMSE). 

The freesurfer_statsurf_display function was used to visualize the ca-
nonical weight on cortical surface areas (Murdoch Childrens Research 
Institute Developmental, Imaging Group, 2017, 
https://chrisadamsonmcri.github.io/freesurfer_statsurf_display). 

3. Results 

After reducing NPI and brain measures into principal component 
scores, the canonical correlation analysis was conducted and produced 
two canonical correlation modes (first mode: r = 0.275, second mode: r 
= 0.140). The permutation test confirmed that the true canonical cor-
relation values were not included in the randomly generated null dis-
tributions (first mode: p < 10− 5, second mode: p = 9 × 10− 5; Fig. 2). To 
test the generalizability of the canonical correlation, 5-fold cross- 
validation was iterated 1000 times. We identified a canonical correla-
tion when the coefficients were estimated based on the separately 
trained sample (80% of the total sample). This identified a stable ca-
nonical correlation, although the strength of association generally 
decreased (first mode: mean r = 0.241, SD = 0.011; second mode: mean 
r = 0.097, SD = 0.017). The partial correlation between two canonical 
scores, after adjusting for the effect of demographic characteristics, 
clinical severity, and cognitive function, showed a reduction especially 
in the first canonical mode (first mode: r = 0.11, second mode: r = 0.12). 

Parallel analysis on NPI identified two principal components as 
optimal. NPI CV showed that the first canonical mode were associated 

with the first PC that captured overall effect of 10 items of NPI, whereas 
the second mode were associated with the second PC that captured the 
behavior- and mood-specific items (agitation, irritability, depression, 
and apathy; Supplementary Table 2,3). The CV score weights were 
described with their correlation to original measures before being 
transformed into the principal component axis (Fig. 4A). 

Parallel analysis on brain measures identified seven principal com-
ponents of structural pattern as optimal. The PCA identified distinct 
constitutions of brain structural patterns in the first mode of CV, which 
included global (PC1), subcortical (PC2), orbital and medial prefrontal 
(PC3), and medial temporal (PC4) (Table 3, Fig. 3). The lateral pre-
frontal (PC5) and other additional components (PC4, PC7) were asso-
ciated with second CV mode of CV. Overall, the brain measures (cortical 
thickness and subcortical volume) showed that the first canonical mode 
was primarily comprised of the amygdala and lateral temporal lobe, 
whereas the second mode was comprised of the thinner lateral, medial, 
and orbital prefrontal cortex and thicker temporo-parietal cortex 
(Fig. 4B, C, Supplementary Table 4). For the post-hoc interpretation, we 
also depicted the characteristic of the brain CV with the correlation 

Fig. 2. The permutation test result of CCA. The null distribution of canonical correlation with randomly shuffled data (histogram) and the true canonical correlation 
(red dashed line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 3 
Canonical weights of brain canonical variate (CV). Pairwise correlation co-
efficients (r) between the composite score of brain CV and principal component 
(PC) scores of brain measures.   

Brain regions Correlation 
Between Brain 
Canonical Variate 
(CV) and PC score 

CV1 CV2 

PC1 (+) superior frontal, middle frontal, supramarginal, 
superior temporal, inferior parietal, middle temporal 

− 0.790  0.114 

PC2 (+) accumbens, amygdala, hippocampus, putamen, 
caudate, entorhinal 

− 0.417  − 0.004 

PC3 (+) anterior cingulate cortex, insula, orbitofrontal 
(− ) caudate, putamen, pericalcarine 

− 0.301  − 0.067 

PC4 (+) entorhinal, temporal pole, pericalcarine, 
hippocampus, amygdala 
(− ) caudate, middle frontal, putamen, 

− 0.279  − 0.175 

PC5 (+) inferior temporal, inferior parietal 
(− ) precentral, pars triangularis, middle frontal 

0.029  0.966 

PC6 (+) posterior cingulate, anterior cingulate, 
orbitofrontal 

0.152  0.023 

PC7 (+) posterior cingulate, hippocampus 
(− ) lingual, pericalcarine, orbitofrontal 

− 0.093  0.132  
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between the CV score and the other external measures (Table 4). The 
first and second CV were overall correlated with higher age, whole brain 
volume, and white matter lesion volume; however, only the first ca-
nonical mode was strongly correlated with clinical impairment (CDR) 
and cognitive function (MMSE) (ps < 0.001). 

Next, we examined the moderation effect of education on the rela-
tionship between brain and NPI CV. We found that years of education 
moderated the effect of both first and second brain CV on NPI CV 

(Table 5). Older adults with higher education showed an attenuated 
association between brain CV and NPI CV (Fig. 5). This interaction effect 
remained unchanged when an alternative interaction effect (MMSE ×
Education) of the cognitive function was included (ps < 0.05). However, 
the moderating effect showed a decreasing pattern when the interaction 
term of general impairment (CDR × Education) was added in the model 
especially in the first brain variate (CV1 × Education: b = − 0.012, p =
0.237; CV2 × Education: b = − 0.036, p = 0.002). 

Fig. 3. Principal component loadings (rotation matrix) of cortical thickness.  

Fig. 4. (A) Correlation between the two NPI canonical variate score (mode 1, mode 2) and each item-level symptom severity. The first mode of canonical variate was 
comprised of overall presence of symptoms, whereas the second mode of canonical variate was comprised of the presence of mood dysregulation symptoms. (B, C) 
Correlation between the two brain canonical variate score and each regional cortical thickness. 
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To examine the outweighed effect of participants with severe 
symptoms, the same analysis was conducted within the clinically mild 
population (CDR ≤ 0.5, n = 836). These results showed a decreasing 
trend in the moderation effect (CV1 × Education: b = − 0.013, SE =
0.011, p = 0.220; CV2 × Education: b = − 0.030, SE = 0.013, p =
0.018). 

4. Discussion 

In the current study, we identified the neuroanatomical correlates of 
the behavioral and psychological symptoms of dementia and the pro-
tective role of education in the relationship between brain structural 
patterns and symptom severity. We identified two distinct canonical 
modes that map the multivariate relationship between the NPS and 
brain morphological patterns. The first canonical correlation captured a 
brain structural pattern of the medial and lateral temporal structural 
volumes that reflected the overall symptoms. The second pattern 
captured the regional components of the lateral and medial prefrontal 
cortex that correlated with behavior- and mood-specific symptoms. 
Furthermore, individuals’ educational attainment attenuated the effect 
of brain structural patterns on NPS severity in both models. Older adults 
with higher education showed minimal NPS even with a high risk of 
brain structural pattern. 

Previous studies have examined the unique and distinct neural cor-
relates of NPS that may explain its heterogeneous clinical manifesta-
tions. We confirmed previous findings that the amygdala is a prominent 
structure that accounts for the overall neuropsychiatric symptoms in AD. 
Amygdala, as a hub within the social brain, anchors the functional 
networks of multiple cortical areas, and the morphological covariance 
pattern of the amygdala may play a critical role in socioemotional 
functioning (Bickart et al., 2014b; Wei et al., 2018). In this study, the 
canonical variate included the entorhinal, fusiform, temporal pole, 
lateral orbitofrontal, and middle and superior temporal cortex thickness, 
which coincide with the functional network pattern of dorsal and 
ventrolateral amygdala (Bickart et al., 2012). Greater atrophy in these 

regions may lead to a selective lack of awareness or understanding of 
others’ social and emotional behavior, indicating its unique relevance in 
the onset of NPS (Bickart et al., 2014a). 

It is notable that the canonical variate of NPS largely shared its 
variance with the general pattern of AD pathological progression. The 
first canonical variate was highly correlated with the levels of dementia 
severity (CDR) and cognitive function (MMSE). When adjusting for this 
shared effect, there was a large decrease in the canonical correlation 
with NPS. The entorhinal cortex and hippocampal structures typically 
undergo prominent atrophy in patients with AD; therefore, the current 
analysis may have captured the major source of global AD pathology. It 
should be noted that previous studies did not affirm the role of the 
amygdala structure in NPS, possibly due to insufficient sample size or 
exclusion from the analysis target; however, our study illustrated that 
the amygdala-centered multivariate pattern was a significant correlate 
even after adjusting global dementia severity (Cajanus et al., 2019; 
Horinek et al., 2006; Poulin et al., 2011). 

The second canonical correlation mode showed that lateral, medial, 
and orbital prefrontal regional atrophy was associated with the mood- 
specific components of NPS. Interestingly, the second canonical 
variate did not correlate with global dementia impairment or cognitive 
function, in contrast to its association with white matter lesions and 
whole brain volume. Prefrontal atrophy and white matter changes may 
have increased the risk of mood-related NPS. This result is consistent 
with previous studies showing that patients with dysexecutive and 
behavioral variant AD show additional changes in the prefrontal vol-
umes and white matter pathology relative to temporo-parietal changes 
(Ossenkoppele et al., 2015; Park et al., 2011). Due to the earlier mani-
festation of frontal variant neuropathology, it may be less reflective of 
the age effect as observed in the current study. 

Consistent with previous studies, we confirmed that the lateral and 
orbital regions of the prefrontal cortex may play a critical role in with-
standing late-life socioemotional impairment (Cajanus et al., 2019; Hu 
et al., 2015; Peters et al., 2006). Specifically, the left inferior gyrus is a 
critical region in reappraising and regulating negative emotions while 
attenuating excessive amygdala activity (Berna et al., 2010; Goldin 
et al., 2008). Moreover, the amygdala-orbitofrontal network is crucial in 
representing the hierarchical structures of reward values allotted in an 
environment (Jung et al., 2018; Stalnaker et al., 2015). Thus, the 
maintenance of these structures may be correlated with a larger capacity 
to cope with complex social situations (Kwak et al., 2018; Powell et al., 
2010). 

In this study, we extended the previous findings that show educa-
tional attainment can exert a resilience effect in the relationship be-
tween neurodegeneration and clinical impairment. Years of education, 
as a proxy of cognitive reserve, may mitigate and delay the onset of 
behavioral and psychological symptoms as neurodegeneration pro-
gresses. Previous studies have shown that older adults with higher ed-
ucation had a minimal decline in their emotional intelligence (Cabello 
et al., 2014). This intellectual achievement typically represents the 

Table 4 
External correlates of brain canonical variate (CV). Pairwise correlation co-
efficients (r) between the composite score of brain CV and the other subject 
measures (demographic, clinical, and overall volumetrics) are listed.   

Mode 1 Brain CV Mode 2 Brain CV 

Age  0.36*  0.22* 
Sex  0.01  − 0.14* 
Education  − 0.18*  − 0.02 
Total Intracranial Volume  − 0.02  0.28* 
Informant Reliability  0.03  − 0.01 
Clinical Dementia Rating (CDR)  0.38*  0.05 
MMSE  − 0.36*  − 0.02 
White matter lesion  0.47*  0.28* 
Normalized Whole brain volume  0.62*  0.32* 

* p < 0.0001 

Table 5 
Multiple regression model that predicts NPI canonical variate (CV). The interaction term between Brain CV and education is mainly tested while including the 
covariates of no interest.   

Mode 1 (DV: NPI CV1) Mode 2 (DV: NPI CV2) 

Beta SE t p-value  Beta SE T p-value 

Age − 0.01  0.00 − 2.10 0.036 Age  0.00  0.00 − 0.05  0.964 
Sex − 0.11  0.06 − 1.68 0.093 Sex  − 0.06  0.08 − 0.79  0.428 
Informant Reliability 0.18  0.12 1.50 0.133 Informant Reliability  − 0.07  0.14 − 0.49  0.626 
Total Intracranial Volume 0.00  0.00 1.09 0.274 Total Intracranial Volume  0.00  0.00 0.79  0.427 
CDR 1.75  0.12 14.40 <2 £ 10¡16 CDR  0.17  0.14 1.19  0.234 
MMSE 0.05  0.01 3.18 0.002 MMSE  − 0.03  0.02 − 1.68  0.094 
Brain CV1 0.40  0.15 2.77 0.006 Brain CV2  0.64  0.18 3.55  <0.001 
Education − 0.03  0.01 − 3.27 0.001 Education  0.01  0.01 0.85  0.397 
Brain CV1 × Education − 0.02  0.01 − 2.06 0.039 Brain CV2 × Education  − 0.03  0.01 − 2.90  0.004 

Results with p-values < 0.05 are shown in bold. 
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Fig. 5. Visualization of the interaction effect between brain canonical variate and years of education. The strength of the canonical correlation was attenuated in the 
higher-educated older adults (yellow dots). The symptom weights of NPI items (correlation coefficient with the original measures) are depicted beside the axis. 
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cognitive and motivational capacity that is inherited and accumulated 
with lifespan development (Bartrés-Faz et al., 2018; Richards and Deary, 
2005). This accumulation of resources may confer a larger capacity to 
maintain socioemotional functioning in the presence of neuropathology. 

Previous literature has been focused on the reserve effect in cognitive 
tasks. Our study further suggests that education plays role in broad 
psychosocial functioning (Barnett et al., 2006; Watson and Joyce, 2015). 
In this study, the mood dysregulation component of NPS was associated 
with thinner cortices in the left inferior and orbitofrontal cortex. The 
functional neural correlate of education is ubiquitous across brain re-
gions; however, previous studies have indicated that older adults with 
higher education may have developed a larger brain structure or effi-
cient functional network in the left inferior frontal, medial frontal and 
orbitofrontal cortex (Arenaza-Urquijo et al., 2013; Foubert-Samier et al., 
2012; Franzmeier et al., 2017; Marques et al., 2015; Premi et al., 2013). 
Such efficient connectedness of the control network may facilitate 
additional effort to compensate for the deleterious progression of de-
mentia pathology (Arenaza-Urquijo et al., 2017). 

One notable observation was that the moderating effect of education 
on the neuroanatomical correlate largely overlaps with its effect on 
global clinical impairment (i.e., the interaction between CDR and edu-
cation), whereas typical cognitive impairment did not (i.e., the inter-
action between MMSE and education). This result indicates that the 
cognitive reserve mechanism is comprised of a distinct aspect of both 
cognitive and socioemotional functioning in explaining overall clinical 
impairment. Further research is required to describe the full constituents 
of independent daily functioning and role of early-life intellectual 
experience in regulating socioemotional behavior. 

We note some limitations in the current study. The whole target 
population was taken from in the OASIS dataset; however, the majority 
of the individuals inculded in the brain scanning dataset did not show 
NPS. This leads to an unstable effect when adjusting for the effect of 
clinical status. Future studies are required to clarify the distinct effect of 
NPI subdomains and the dementia subtypes. Secondly, although NPI is a 
widely used instrument in assessing behavioral symptoms, the major 
source of information is based on the subjective assessment of real-world 
behaviors. Therefore, NPI is susceptible to the type and quality of the 
relationship between the informant and patient. Even when clinicians 
discerningly adjust for any informant bias, the detection and severity 
depends highly on caregiving context. A future study that utilizes the 
longitudinally fluctuating patterns of NPI or assessment of performance- 
based socioemotional ability test will clarify its validity (Boublay et al., 
2020; Poulin et al., 2017). 
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