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Theoretical and numerical analysis
of COVID-19 pandemic model
with non-local and non-singular
kernels

Ting Cui®, Peijiang Liu***, Anwarud Din?® & Fawad Ali*

The global consequences of Coronavirus (COVID-19) have been evident by several hundreds of demises
of human beings; hence such plagues are significantly imperative to predict. For this purpose, the
mathematical formulation has been proved to be one of the best tools for the assessment of present
circumstances and future predictions. In this article, we propose a fractional epidemic model of
coronavirus (COVID-19) with vaccination effects. An arbitrary order model of COVID-19 is analyzed
through three different fractional operators namely, Caputo, Atangana-Baleanu-Caputo (ABC), and
Caputo-Fabrizio (CF), respectively. The fractional dynamics are composed of the interaction among
the human population and the external environmental factors of infected peoples. It gives an extra
description of the situation of the epidemic. Both the classical and modern approaches have been
tested for the proposed model. The qualitative analysis has been checked through the Banach fixed
point theory in the sense of a fractional operator. The stability concept of Hyers-Ulam idea is derived.
The Newton interpolation scheme is applied for numerical solutions and by assigning values to
different parameters. The numerical works in this research verified the analytical results. Finally,
some important conclusions are drawn that might provide further basis for in-depth studies of such
epidemics.

At this time, individuals worldwide face an epidemic brought approximately by using the SARS-CoV-2 virus.
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), a mineral virus present in proteins is
the active source of the enormous coronavirus sickness. This is understood that it relates to a big own society of
the viruses as the community of coronaviruses. Initially, excessive sickness as a result of a Coronavirus found in
2003 from acute severe respiration syndrome (SARS) epidemic taking started in China. The 2nd shift of this virus
found in the middle east respiration syndrome virus (MERS) was tested in 2012 in the middle east countries of
Asia UAE, Syria, Saudi Arabia, etc.". The COVID-19 sickness of the year 2019 became the starting declaration
as an Emergency by the organization of World Health (WHO) on 30 of January 2020>* through different ter-
ritories of public health. The said disease was announced as indeed a deadly infection on 11 of March 2020".
The cause of this declaration is due to the determination to the public civilian health emergency to about all
the Nations of globe and spreading of the disease. The infection is mainly transmitted through connection with
infectious respiration or lung drops from coughing, sneezing, and speeching®”’. More analysis has proved that
the illness may be caused via air-borne spreadings®’. Contact with infectious areas is also a common reason for
contamination. Few tested symptoms of COVID-19 that may be seen after 2-14 days of exposure are coughing,
high fever, windedness, pain in muscles, smell-less, diarrhea, jogging off the nose, and fatigue.

On the eleventh of January, 2021 there have been 908, 680, novel inflamed instances reported in the world
921, 222, cases in America, 4,254 confirmed cases in the country of Tennessee, and 133 were reported in the
Republic of China'®. A complete 11,415 cases of deaths have been reported internationally'®!!. The continent of
America recently has over 40 million verified infections with the united states main on the top in all other Nations
in this vicinity and the Sector with nearly 25 million showed instances. At the same time as there appears to be
a rapidly growing variety of confirmed instances, there also are many intervention applications given to reduce
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the cutting-edge traits of the disorder. Such packages consist of the contemporary vaccines packages which all
started inside the remaining region of 2020'%, use of dis-infections, community distancing, public fitness school-
ing, use of nostril masks and other covering shields, isolations of inflamed/uncovered humans, investment of
COVID-19 tasks and so on.

The mathematical formulation concepts describe the real world situation very well up to small errors and
these phenomena are called mathematical modeling'>'>. This concept is applied to various biological, business
problems, and different dynamics phenomena. Therefore these aspects can also be used as a study of spreading
and controlling the diseases and future predictions for the sake of mankind. So various research articles have
been published related to COVID-19 which can be seen in (**-'%). Controlling and minimizing techniques for
the said pandemic from further spreading, are the main and biggest challenges for the recent researchers and
different scholars around the globe. Therefore some work has been done against the said disease and made some
beneficial plans and strategies for its optimality and elimination for the society. The dynamical problems and
the infectious disease situation are handled by mathematical modeling. Such types of techniques are very well
to enable the situation of COVID-19 in the community (see!*2").

Modern calculus is the generalization of the integer order calculus having an extra degree of choices for
analysis. To check the inside behavior of the dynamics of various problems we can use significantly the idea
of fractional calculus. Fractional dynamical systems can be checked on any values lying between two different
natural numbers. Therefore fractional order differential equation may model very well the infectious problems
under discussions®*~**. So many fractional operators have been defined as having a kernel of singularity and
non-singularity®*~” along with better applicability>>***. Some of the scholars in** have taken a problem related
to the coupled dynamics of hepatitis and cancer under the fractional operators along with their valuable results.

The remaining article is constructed in the following format: in "Preliminaries" section includes the basic
definitions of the fractional-order derivatives. The model construction processes in form of integer and frac-
tional order derivatives are presented in "The classical integer order model" section. The existence of a solution
is pointed out in "Existence results" section through fixed point theory in sense of the Atangana-Baleanu-Caputo
derivative. U-H stability concept is established in "Hyers-Ulam stability" section. The graphical representation
is carried out in "Numerical schemes and graphical results" section, while a short summary is added in the last
section.

Preliminaries
We present in this section, some definitions of differential and integral operators starting with Caputo fractional

derivative
DO F(t) = L/t A F Wy — v)-Cdw 1)
0t T T1-0) ), dv :
Caputo-Fabrizio fractional derivative
. M@©) [t d
CFmn©
D )= —— —F (¥ - t—W)|dv.
soprn = 1 | )exp{ — )} @
Atangana-Baleanu fractional derivative
5 AB(®) (' d ® .
ABCDOF (1) = /— W)E, | — t—w)°|dw.
PR =20 | g FWE| gt w ()

The classical integer order model
Let us have a population that is mixed with an equal contact rate for each and every population. This considera-
tion is of the idealistic approach of various compartments through mathematical modeling for the description
of the epidemic dynamical analysis. We take the whole population N/ (¢) at time ¢ and make their partition in
some biological conditions related to each individual’s health conditions. The population includes Susceptible
class S(t), Vaccinated class V(t), Exposed individuals £(¢), Infectious symptomatic class Z(t), Asymptomatic
infectious class A(t), Hospitalized individuals 7 (t) and Recovery cases R(t).

The mathematical model of COVID-19 in the form of integer order is given in?, along with some assump-
tions therein may be followed as:

S=A=pI+nR— B+ pn+vS,

V =pl +v8 — (By + W)V,

€=/SSS+,BVV—(U+M)E,

T=0yE+I1—P)A— (y + pu+ 87T, (4)
A=c(1—¥)E— U+ A,

H=y1-)I—(t+un+H,

R=ykIT+IpA+TH— 1+ WR,

with
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Figure 1. Conformed COVID-19 cumulative cases time series in Pakistan
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Figure 2. Conformed COVID-19 cumulative cases time series in Pakistan

5(0),1(0), £(0),Z(0), A(0), H(0), R(0) = 0. (5)

Parameter estimation. Here we utilized the least square curve fitting for the recorded COVID-19 cases
in Pakistan from 13-Jul 2021 to 25-Aug, 2021. Comparison of the model with the reported cases are shown in
Figs. 1 and 2, while the estimated values of the parameters are shown in Table 1.

Model in Atangana-Baleanu-Caputo sense. Modeling the dynamical problems through non-integer
order epidemic models was investigated in the near future by many of the field scholars*-%". In this subpart, we
model the arbitrary-order COVID-19 dynamics. For the observation of the memory impacts, the problem (4),
in the form of integration as:
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Symbols | Description Values | References
af Birth rate of population in the Susceptible class 2.3072 | Fitted
P Rate of proportions of new born Vaccinated population 0.0005 | %

v Rate Vaccinated peoples 0.4 2

WA Decrease in population through contact from A(t) 0.076 Fitted
)] Growth in the rate of transmitted from Symptomatic class | 0.1326 Fitted
wH decrease in the rate of transmitted from Hospitalized 0.6000 | *

n Rate of Natural occurring death 0.005 Fitted
8 The rate induction disease 0.124 Fitted
€ Rate of reduction trough infection of vaccination 0.00554 | Fitted
o Rate of removal from Expose cases 0.03365 | Fitted
y Rate of removal from the Infectious cases 0.08 2

K Rate of recovery form Infected class with out treatment 0.0941 =

v Infection reduction of vaccinated individuals 0.1433 Fitted
b The rate of connections 1.12 2

T Rate of Recovered Hospitalized population 0.0718 | %

¢ Rate of natural recovery proportions of asymptomatic class | 0.6703 | Fitted
A Exit rate from the asymptomatic class 0.25021 | Fitted
n Losing of strong immunity rate 0.081 Fitted

Table 1. Descriptions and numerical values of the parameters

ABCDO [S] = (1 — p)TT + nR — (Bs + p + v)S,

ABCDS V] = pTl +vS — (By + 1)V,

ABCDOIE] = B:S + BV — (0 + WE,

ABCDO T = o€ + 21 — p)A — (v + i + )T, (6)
ABEDO [A] = 0 (1 — ¥)E — 4+ WA,

ABEDGIHI =y (1 =)L = (t + 1+ OH,

ABCDO [R] = y«T + JpA+TH — (n + R.

Under the starting approximation

80) =8 v©0) =V, £0) =% 7(0) =71° A0) = A%, H(O) = H*, R(0) =R" > 0.

The transition rates from susceptible and vaccinated to exposed is given by:

5 _bwAA—{—wII—i—wHH
5 N )
8, =b(1 — E)wAA—FwII—Fa)HH'
N

Existence results
Assume that B(J) represent a real-valued continuous function which containing the suprimum norm

spa ropert is space on l% le f { x B(J) x f( () x B(J) x B()
T DSBS I kg;—s‘ﬂﬁbﬁf Hbp s 7 ARy " e
Supl’EJ |A(t)| ||H|| = SUP;¢; IHOL IR = SUP;e; | . Now by set-
ting ABC fractional integral operator to left and right hand sides of Eq. (6), we get the following system
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S(t) — S0) =*BC DY, [S1{ (1 — pIT+ 7R — (Bs + 1 + S},
V() — V() =45C DY, VI{pIT +vS — (B, + W)V},
E(t) — £(0) ="BC DY,IENBS + BV — (0 + WE),
I(t) — Z(0) =BC DY, [TNo v & + 2(1 — §)A — (y + p + 8T}, 8)
A(t) — A©0) =B5€ DY, [Al{o (1 — ¥)E — (4 + w) Al
H(t) — H(©0) =5C DY, [HI{y (1 — )T — (t + p + §H}
R(t) — R(O0) =ABC DO, [RIy«T + ip A+ TH — (n + 1R}

Applying the definition of 3, we can write

S(t) — S(0) T()())Ml(& ,S) + m x /0 (t — )M, (0,9, S(1))dV,

V(t) — V(0) = B(@? M (0,1, V) + % X /Ot(t — 9O IMy (O, 9, V(©))dD,

E(t) — E(0) T@?Mﬁo t,E) + % X /Ot(t — )97 IM;3(0, 9, £(9))dv,

(1) — Z(0) T@?MA;(O, I) + % X /Ot(t - )97 IM(O, 9, Z())dY, )
A(t) — A0) = B(O) MS(O t, A) + m x /Ot(t — )97 IM5(0, 9, A(19))dD,
H(t) — H(0) = B(O) M6(® t,H) + m x /Ot(t — )9 IMg(©, 9, H(9))do,
R(t) — R(0) TO())MM@ t,R) + m x /Ot(t — 99" IMy(©, 9, R(9))do.

where
Mi(©,£,5(1) =1 —pI+nR — (B + 1 +v)S,
M, (©,1, V(1) = pIll +v§ — (B, + WV,
M3(0,1,E(1) = BsS + BV — (0 + WE,
My(0,t,Z(t)) =0 E + A1 —P)A - (y + 1+ 8)Z, (10)
Ms(®,1, A1) =01 —¥)E — (A+ n)A,
Ms(®,t, H(t)) = y(1 =)L — (r + n + O)H,
M7(0,t,R(t)) = ykl + 2pA+1TH — (n + w)R.
IfS,V,€,7, A, Hand R contains their upper greatest value or bound, then M, M, Mi3, Ml, M5, Mg and M
must fulfill the Lipschitz condition. Assuming that S and $* are two different functions, we obtain
M (2, £,8) = M (4 £,8%) || = [[=(=(Bs + 1+ v)) (S = Y|
< =(=Bs + u+II|[(S = 8% (11)
< (I8 + 1+ vD]|(S = 8%)]|.

Taking into account
m = (Bs + 1 +v),
one reaches
M(®,6,5) - 101 (0,1.8") | = m |5 — . 1)
In a similar way, we can get the following

IMz(®,£,V) — Ma(O,1, V)| < 2V — V¥,

”M3(®> t 5) - M?’(@) L g*)” =< 773”8 - g*”>

IM4(®,8,Z) — My(©,t, T < mllZ — I, (13)
”M5(®> t A) - M5(®) t, A*)” =< 7]5||~A - A*”)

IMs(®, ¢, H) — Me(®, t, H*) || < n6llH — H* |,

IM7(©,t,R) — M7(O,t, R")|l < n7IIR — R*|l.

Where
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m=@By+wn, m=>0+wun), nu=+ut+d), n=>GA+uw),
=@ +un+d), n=m0+np.

The last equation is the Lipschitzian condition that has held for all the mappings. Going in a repetition mode,

the equation in (9) becomes

Su(t) — 8(0) = B(@?Ml@ t, S 1(t) + % x /;c — )97 IM(©,9, 8,1 (9))dD,
Va(t) = V(0) T@?MZ(O t, Va1 () + m x /Ot(t— )97 IM,L (0,9, V1 (9))dD,
En(t) — £(0) T@?M@(O t,En1(t) + % x /Ot(t —9)O7IM;3(0,9, 1 (9))dY,
T, (t) — Z(0) TO(;)ML;(O t, T 1(t) + m x /Ot(t—79)®’1M4((~),19,I,,,1(ﬁ))dz9,
A () — A0) = B(O) L Ony@,t, Anr () + m X /Ot(t— 997 IM5(0, 9, A1 (9))d0,
Hu(t) — H(0) T(;;Md@ t, Hy—1() + m x /Ot(t— 9O IM(®, 9, Hu—1(9))d?,

t
Rn(®) —R(0) = £M7(® t, Ru—1() + (t = )° 7 M7 (©, 9, Ryy—1 (9))d,

® o /
B(®) B@OI'(®) Jo

(14)

together with S(0) = S%, V(0) = V°,£(0) = £°,7(0) = Z°,.4(0) = A%, H(0) = H’and R(0) = R’. Whenever

the repeating terms divination is considered, we get

1-—

HS,n = Sn - Snfl B(O) (MI(O t Sn 1) - Ml(o t, Sn 2))
0 _ 9\0-1 _
+ m / (t 19) (Ml(®> 79)Sn—1(0)) Ml (®) v, Sn—Z(l?)))dﬁ
1-—
Hv,n = Vn - anl B(@) (M2(O t Vn l) - MZ(O t, Vn 2))

- 9701 o B -
+B(®)F(@)/(t )7 (Ma(0, %, Vo 1(9)) =M (O, 9, V,—2(9)))dd

1-—
Hep=En—Enm1 = 3(©) (Ms(@ t,En1) — M3(0,t,E0-2))

& o 916-1 O _ o
+7B(®)F(®)/(t $)° T (Ms(0,9,Ey-1()) —M3(0, 8, Ey—2(8)))dd

1-—
Nzy=Tn—Tn1= 3(0) (M4(@ t,Zyn—1) — My(0,t, 7, 2))

- _ 9\0-1
B(@)F(O) / (t—1)" " (My(0,9,Z,-1(8)) —My(O, 9,7, 2(3)))dd

1-—
Oan=As— A1 = 3(©) (M5(® t, Anc1) — Mi5(0,t, A,-2))

- 9,01 o _ o
+7B(®)F(@)/(t 97T (Ms(0, 9, Ay—1(8)) —Ms(0, 9, Ay—2()))dd

1—
My =Hin—Ho-1 = 3(0) (Ms(@ t, Hu—1) — Mg(O,t, Hy—2))

c _ 916-1 q _ .
* oo /O (t = )0 (Mg (©, 9, Hy_1 (9)) —M(©, 7, Hy_2(9)))d?

1-0
HR,n =Rn—Ru1 = W(Mﬂ@» t Rn—l) - M7(®> t, Rn—z))

- _ 0-1
B(@)F(O) / (t =97 (M7(0,8, Rn—1(8) —M7(8,8, Ry—2()))dv

It is important to see that

(15)
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n n n n
Si=> My Vo= My En=» Tep L=y Ma,
0 =0 i=0 i=0

=

n n
Av= Ty Ho=Y Moy Ra=» M.
i=0 i=0 i=0

Furthermore, on implication of (12)-(13) and choosing that

Msn—1=38n-1—8n—2 Myu-1=Va1—=Vua, Hgu1=En1-En2
1-Il',n—l =Zp1 —ZLy-2, H.A,n—l = Anfl - An72a 1-[71,;1—1 =Hp—1 — Hn-2,
1-[72,n—1 =Rnp-1—Rn-2.

we reach
IMsn®]| < Fgm [Msn1 0| gy x Jo ¢ = )™M ()]|do
[Ty, ®|| < g2 Ty )| sk 2 < Jo ¢ = 9O | Ty ()| do
[Men®| < F5m||Ten1 O] gmrmms < Jo & — 9O Men1(9)]|do
ITzn ()] < 5]z n 1O || 5oy e X fo (¢ — 9O Tz 1 (9)]|dw (16)
M40 < Fe315[Man—10|| 5t 15 X Jo & = O | Man-1()||do

M2, < Fgn6]| Tt O || 5ty 16 % Jo & = 9O M1 ()]

MR < sgm7 | TR a1 O || 5@y % Jo & = DO TR 01 ()] dD.
Theorem 4.1 Note that the given conditions holds
1-0 ®
ni + b
B(©) B(O)[(O)
Then, (6) has unique root fort € [0, b].

Oni<1li=12,...,7. (17)

Proof This is derived that S(t), V(¢), £(t), Z(t), A(t), H(t) and R(t) are mapping which have bounds. Next, as
one can see from Eqs. (12) and (13), the abbreviation M, M, M3, My, M5, Mg, and M holds for Lipchitzian
condition. Hence, applying Eq. (16) along with a repeating hypothesis, we get as

_@ Op° n
IMsa®] = 1SN (555 m + ey )

_ o n
IMa®]| = VoI (5ne + meiaynz)

e () n
IMen®] < 1801 (5 + st

A

—@® Op° n
IMza®] < 101 (5 + mriaym) (18)

A

@ Ob0 n
IMan®] = 14O (35515 + mieyns)

_@ ObO n
My ®]] = 10O (5316 + mrie e)

1-0 ob° "
HHR,n(t)H =< ||R0(f)|| B(©) n7 + B(O)(©) nz

Therefore, it implies for n — 00, all mapping exists and fulfill

IMsall = 0. [Tyl = 0. [|TTgn| — 0,
ITan] =0 [[Mral] = 0, [Tl — 0.

HlnH — 0,

Furthermore, from Eq. (18) and applying the triangle in-equality, for any k, we have

Scientific Reports|  (2022) 12:18178 | https://doi.org/10.1038/s41598-022-21372-4 nature portfolio



www.nature.com/scientificreports/

1-0
with Z; = graini + B(@)F )

HS”+k - S”H = Z;l:fﬂ Z]1' =

HVHk - V”H =X 7+Hk+IZJ

HgﬂJrk —&n H = Zntﬁ—l

|Zok = Zull < i1 Z) =

st — ]| = 025, 2L =

i=n+1

n+k Z]

HH’H‘k - H"H =2 ] n+1

Rk = Rl| < Sk, 7 =

i=n+1

n+1 n+k+1
Z4 _Z4

n+1 n+k+1
Zl _Zl

1-7; >

n+1 n+k+1
ZZ 722

1-Z, 4

n+1 n+k+1
_ -z

1-Z3 4

1—-Z4 >

n+1 n+k+1
ZS 725

1-Zs >
n+1 n+k+1
Z6 726
1-Zs >
+1 +k+1
z =77
1-Z7

bon <1 by supposition. As, Sy, Vi, €4y L Ay Hy and R, may be observed as a

Cauchy sequence in banach space B(J). It implies that all the quantities are uniformly convergent®. applying the
limiting Theorem in Eq. (15) as n — oo conforms that the limit of such type of sequences have unique root of
(6). This shows that the existence of Eq. (6) is unique having the condition (17). O

Hyers-Ulam stability

Definition 1 . The AB arbitrary order integration problem as in Eq. (9) is called H-U stable®’ if their exist fixed
A; > 0,i e N7 fulfilling: For ally; > 0,i € N7, for

IS(t)—

V()

IZ(t)—

[A(t)—

-0 ® f
M (0, ¢, S(t))—i-B(@)F(@) X /0 (t

- 99IM (0,9, S(®))d?| < 1,

B(©)
7®M (©,1, V(1) + 9% x /t(r — O IML(O, 8, V(©))dd| <
B©) BOT©®) o 2 =
0 S} t O—Ing (e
|5(f)—WM3(O tLEW®) + BO)T(®) X /0 (t—v)"" "M3(®,9,£()dd| < y3,
- © ® ' -1
B(@) My (O,t,Z(t) + BO)(®) X /O (t—10)"" "My(0,9,7(9)dd| < 4, (20)
S O
B(O) Ms(O LAW) + ——— BO)T(©) X /0 (t—v)°" 'Ms(0,9, A))d?| < ys,
1-0 e _ gy6-1
B(O) M6(® t,H() + BO)T(©) X /0 (t — 1) "Mg(0,8, H())dv| < s,

IH(®)—

IR(t)—

B(®)

~ M (©,1,R(t)) + _9
7 B(O)[(O)

there exist (S" , V, & , T R .A, H, 7'2) which are satisfying

t
x / (t = )97 My (®, 9, R(®))dd| < y7.
0
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sm—B&Sannam+EE§?5
V@‘gggMﬂOme+g@§ﬂj
5<t)—75ﬁ51w3<ot<‘3<t))+§@§;—((5

() _IB(T)M“(@ 12(1)) + m

A = B(@C))MS@ t, A(t)) + B(®)61)"(®) X /Ot(t
H(t) _T(;?Ms(Q t,H(t)) + % X /0
R”_EigMN)”am+EE§ﬂi

Such that

IS—S|<ay, V=V <ty [E-E <y
A — Al <¢sys, H—HI<¢vs IR—TRI<y

X /Ot(t —9)97IM, (0, 9, S(19))d?,
x /Ot(t — )97 IM,L (0,9, V(9))dD,
x /Ot(t — 9 97IM;3(0,9, £(®))dv,
x /Ot(t — )97 IML(O, 9, Z(9))dV,
— )97 IM;5(0, 9, A())dv,
't(r — )97 IMg(©, 9, H(9))dD,

t
x/(r—ﬁ)@—1M7((~),z9,7'z(z9))dz9.
0

1T — 1| < ¢ayas

Theorem 5.1 Under the condition ], the considered model of arbitrary order (6) is H-U stable.

(1)

Proof By Theorem (4.1), the proposed AB fractional problem (6) has unique root (S, V, £,Z, A, H, R) fulfilling

equations of of model (9). Then as follows

| IM1(©,1,8) — Mi(,,S)||
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Taking, y; = ©;, A; = 1-6 4 Wé@),this implies

B(®)

IS =8I <y (29)
Similarly, we have the followings

IV =Vl < »24,

IE — €Il < 7383

IZ — 7| < yalsy

H 30

A = All < y5As (30)

IH = HI < volrs

IR —RIl <y747.
So the the derivation is achieved. O

Numerical schemes and graphical results

In this section, we apply the new differential and integral operators to the proposed mathematical model of
COVID-19. Here, the the classical differential operator will be replaced by the operator with power-law, expo-
nential decay, and Mittag-Leffler kernels.

Iterative solution by Newton polynomial. In this section, we presented numerical schemes based on
the Newton polynomial*' for our model. In**** Atangana and Seda proposed new COVID-19 models and solved
by Newton polynomial. Newton’s interpolation is a classical polynomial interpolation approach and plays a sig-
nificant role in numerical analysis and image processing. The interpolation function of most classical approaches
is unique to the given data. At present, Newton’s polynomial interpolation is at the center of research on polyno-
mial interpolation methods. While it has shown good interpolation performance, The Newton-type polynomial
interpolation algorithm has many advantages, such as fast convergence a simple and explicit mathematical rep-
resentation and ease of computation; easy differentiation, integration, and having derivatives of any order. The
value of the Newton-type polynomial interpolant function can be adjusted in the interpolant region by choosing
appropriate parameter values; according to the actual geometric design needs, the shape of the interpolation
curves or surfaces can be adjusted.
We start with Mittag-Leffler kernel
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ABCDE [S(1)] = (1 — p)TT + nR* — (Bs + p + v)S*,

ABCDO [V(1)] = pIT + vS* — (B, + V¥,
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ABCDO[Z(H)] = oY EF + (1 — @) A" — (y + p + §)TF, (31)
ABEDO [A(D] = 0 (1 — Y)E* — 4+ w) A,

ABCD® [H(D] = ¥ (1 — )T* — (v + o+ §)HY,

ABCD® [R(D)] = yrT* + JOA* + TH* — (1 + ) R*.

More simply, we can write as follows;
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Later on after application of fractional integration with Mittag-Leffler kernel law and plugging Newton polyno-
mial in type of equations, we evaluate our model as follows;
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Graphical results.  This section examines the numerical simulation results for the COVID-19 pandemic disease
model (6). The numerical method employed in the system (6) hinged on Newton’s polynomial Rule. The numeri-
cal simulation is undertaken to make use of parameter values from Table 1.

Simulation with exponential kernel. Later on by application of fractional integration with exponential
kernels and plugging Newton polynomial in such types of equations, we compute our problem as follows;
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Graphical results.  This section examines the numerical simulation results for the COVID-19 pandemic disease
model (6). The numerical method employed in the system (6) hinged on Newton’s polynomial Rule. The numeri-
cal simulation is undertaken to make use of parameter values from Table 1.

Simulation with power law kernel. Finally, we can the following numerical approximation with the
Caputo derivative.
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Figure 3. Numerical simulation for COVID-19 epidemic model 6 via Mittag-Leffler Generalized Function.
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Figure 4. Numerical simulation for COVID-19 epidemic model 6 via exponential kernel.
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Figure 5. Numerical simulation for COVID-19 epidemic model 6 via power-law kernel
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Figure 6. The plot represents the comparison of ABC, CF and Caputo fractional models at ® = 0.97
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Graphical results.  This section examines the numerical simulation results for the COVID-19 pandemic disease
model (6). The numerical method employed in the system (6) hinged on Newton’s polynomial Rule. The numeri-
cal simulation is undertaken to make use of parameter values from Table 1.

Discussion. The key outcomes of the current research work pointed out the infectious system chosen into
consideration in the format of arbitrary-order ordinary differential equations in sense of ABC CF and Caputo.
For this purpose, we can see clearly Fig. 3a represents the dynamics of S(¢) in various arbitrary orders. We notice
that at the beginning there is a rapid increase occurs in the susceptible class in the vicinity of t = 18 days. After
that phase of time, this agent shows decay and then moves to a stable position. We also see the convergence of
the said population to their equilibrium point with the passage of time. Figure 3b represents the vaccinated indi-
viduals V(t) cases which increased slowly for the first some days and then bends for attaining stability. Similarly,
Fig. 3c represents the Exposed individuals £(t) which increased slowly for the first some days and then bends
for attaining stability. In the same way, Fig. 3d shows the dynamics of the Symptomatic infected individuals
Z(t) against time. We pointed out that the Symptomatic infected individuals show the same dynamics as by
£(t) on various fractional orders. Similarly, Fig. 3e is the increase for the first 40 days and then decrease in the
Asymptomatic infected individual’s cases A(f) on different arbitrary orders of derivatives. One can see that as
the order of non-integer order derivative increases, the graph converges to the natural order. In a similar fashion
Fig. 3f represents the Hospitalized individuals 7 (¢) increased rapidly in the vicinity of ¢ = 100 and then slowly
decreased towards the stability point. Figure 3g represents the Recovered cases which increased slowly for the
first some days. The said compartment also converges to its equilibrium points with time durations. In the same
fashion, Fig. 4 shows all of the seven compartments in different non-integer orders in the CF sense and behaves
similar to that of Fig. 3. Also, Fig. 5 represents the simulation results of all of the seven classes in different non-
integer orders in the Caputo sense. Similarly, Fig. 6 represents the simulation results of the comparison of the
three different operators at ® = 0.97.

Conclusion

In this work, we address the dynamical behavior of the updated SEIR problem for COVID-19 in sense of Atan-
gana-Baleanu Caputo (ABC) arbitrary order derivative of order ® against the required data of Pakistan. The
existence of a solution is successfully derived from the concept of the theory of fixed point and functional analysis.
For the approximate solution, the arbitrary order polynomial of the Newton method has been applied to the
proposed model. The Hyers-Ulam stability is also derived for the proposed model. For numerical simulation, we
used the various parameters data of Pakistan and draw each compartment graphically. Finally, given the graphical
visualizations to the analytical results to verify the results. We believe that this assumption, extension, and the
new analysis are plausible both biologically and mathematically.
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