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Theoretical and numerical analysis 
of COVID‑19 pandemic model 
with non‑local and non‑singular 
kernels
Ting Cui1, Peijiang Liu2*, Anwarud Din3 & Fawad Ali4

The global consequences of Coronavirus (COVID‑19) have been evident by several hundreds of demises 
of human beings; hence such plagues are significantly imperative to predict. For this purpose, the 
mathematical formulation has been proved to be one of the best tools for the assessment of present 
circumstances and future predictions. In this article, we propose a fractional epidemic model of 
coronavirus (COVID‑19) with vaccination effects. An arbitrary order model of COVID‑19 is analyzed 
through three different fractional operators namely, Caputo, Atangana‑Baleanu‑Caputo (ABC), and 
Caputo‑Fabrizio (CF), respectively. The fractional dynamics are composed of the interaction among 
the human population and the external environmental factors of infected peoples. It gives an extra 
description of the situation of the epidemic. Both the classical and modern approaches have been 
tested for the proposed model. The qualitative analysis has been checked through the Banach fixed 
point theory in the sense of a fractional operator. The stability concept of Hyers‑Ulam idea is derived. 
The Newton interpolation scheme is applied for numerical solutions and by assigning values to 
different parameters. The numerical works in this research verified the analytical results. Finally, 
some important conclusions are drawn that might provide further basis for in‑depth studies of such 
epidemics.

At this time, individuals worldwide face an epidemic brought approximately by using the SARS-CoV-2 virus. 
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), a mineral virus present in proteins is 
the active source of the enormous coronavirus sickness. This is understood that it relates to a big own society of 
the viruses as the community of coronaviruses. Initially, excessive sickness as a result of a Coronavirus found in 
2003 from acute severe respiration syndrome (SARS) epidemic taking started in China. The 2nd shift of this virus 
found in the middle east respiration syndrome virus (MERS) was tested in 2012 in the middle east countries of 
Asia UAE, Syria, Saudi Arabia, etc.1,2. The COVID-19 sickness of the year 2019 became the starting declaration 
as an Emergency by the organization of World Health (WHO) on 30th of January  20203,4 through different ter-
ritories of public health. The said disease was announced as indeed a deadly infection on 11th of March  20201. 
The cause of this declaration is due to the determination to the public civilian health emergency to about all 
the Nations of globe and spreading of the disease. The infection is mainly transmitted through connection with 
infectious respiration or lung drops from coughing, sneezing, and  speeching5–7. More analysis has proved that 
the illness may be caused via air-borne  spreadings8,9. Contact with infectious areas is also a common reason for 
contamination. Few tested symptoms of COVID-19 that may be seen after 2-14 days of exposure are coughing, 
high fever, windedness, pain in muscles, smell-less, diarrhea, jogging off the nose, and fatigue.

On the eleventh of January, 2021 there have been 908, 680, novel inflamed instances reported in the world 
921, 222, cases in America, 4,254 confirmed cases in the country of Tennessee, and 133 were reported in the 
Republic of  China10. A complete 11,415 cases of deaths have been reported  internationally10,11. The continent of 
America recently has over 40 million verified infections with the united states main on the top in all other Nations 
in this vicinity and the Sector with nearly 25 million showed instances. At the same time as there appears to be 
a rapidly growing variety of confirmed instances, there also are many intervention applications given to reduce 
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the cutting-edge traits of the disorder. Such packages consist of the contemporary vaccines packages which all 
started inside the remaining region of  202014, use of dis-infections, community distancing, public fitness school-
ing, use of nostril masks and other covering shields, isolations of inflamed/uncovered humans, investment of 
COVID-19 tasks and so on.

The mathematical formulation concepts describe the real world situation very well up to small errors and 
these phenomena are called mathematical  modeling12,13. This concept is applied to various biological, business 
problems, and different dynamics phenomena. Therefore these aspects can also be used as a study of spreading 
and controlling the diseases and future predictions for the sake of mankind. So various research articles have 
been published related to COVID-19 which can be seen in (15–18). Controlling and minimizing techniques for 
the said pandemic from further spreading, are the main and biggest challenges for the recent researchers and 
different scholars around the globe. Therefore some work has been done against the said disease and made some 
beneficial plans and strategies for its optimality and elimination for the society. The dynamical problems and 
the infectious disease situation are handled by mathematical modeling. Such types of techniques are very well 
to enable the situation of COVID-19 in the community  (see19–21).

Modern calculus is the generalization of the integer order calculus having an extra degree of choices for 
analysis. To check the inside behavior of the dynamics of various problems we can use significantly the idea 
of fractional calculus. Fractional dynamical systems can be checked on any values lying between two different 
natural numbers. Therefore fractional order differential equation may model very well the infectious problems 
under  discussions30–33. So many fractional operators have been defined as having a kernel of singularity and 
non-singularity34–37 along with better  applicability30,38,39. Some of the scholars  in40 have taken a problem related 
to the coupled dynamics of hepatitis and cancer under the fractional operators along with their valuable results.

The remaining article is constructed in the following format: in "Preliminaries" section includes the basic 
definitions of the fractional-order derivatives. The model construction processes in form of integer and frac-
tional order derivatives are presented in "The classical integer order model" section. The existence of a solution 
is pointed out in "Existence results" section through fixed point theory in sense of the Atangana-Baleanu-Caputo 
derivative. U-H stability concept is established in "Hyers-Ulam stability" section. The graphical representation 
is carried out in "Numerical schemes and graphical results" section, while a short summary is added in the last 
section.

Preliminaries
We present in this section, some definitions of differential and integral operators starting with Caputo fractional 
derivative

Caputo-Fabrizio fractional derivative

Atangana-Baleanu fractional derivative

The classical integer order model
Let us have a population that is mixed with an equal contact rate for each and every population. This considera-
tion is of the idealistic approach of various compartments through mathematical modeling for the description 
of the epidemic dynamical analysis. We take the whole population N (t) at time t and make their partition in 
some biological conditions related to each individual’s health conditions. The population includes Susceptible 
class S(t) , Vaccinated class V(t) , Exposed individuals E(t) , Infectious symptomatic class I(t) , Asymptomatic 
infectious class A(t) , Hospitalized individuals H(t) and Recovery cases R(t).

The mathematical model of COVID-19 in the form of integer order is given  in22, along with some assump-
tions therein may be followed as:

with
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Ṡ = (1− p)�+ ηR− (βs + µ+ v)S ,

V̇ = p�+ vS − (βv + µ)V ,

Ė = βsS + βvV − (σ + µ)E,

İ = σψE + �(1− φ)A− (γ + µ+ δ)I ,

Ȧ = σ(1− ψ)E − (�+ µ)A,

Ḣ = γ (1− κ)I − (τ + µ+ δ)H,

Ṙ = γ κI + �φA+ τH− (η + µ)R,
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Parameter estimation. Here we utilized the least square curve fitting for the recorded COVID-19 cases 
in Pakistan from 13-Jul 2021 to 25-Aug, 2021. Comparison of the model with the reported cases are shown in 
Figs. 1 and 2, while the estimated values of the parameters are shown in Table 1.

Model in Atangana‑Baleanu‑Caputo sense. Modeling the dynamical problems through non-integer 
order epidemic models was investigated in the near future by many of the field  scholars23–27. In this subpart, we 
model the arbitrary-order COVID-19 dynamics. For the observation of the memory impacts, the problem (4), 
in the form of integration as:

(5)S(0),V(0), E(0),I(0),A(0),H(0),R(0) ≥ 0.
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Figure 1.  Conformed COVID-19 cumulative cases time series in Pakistan
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Figure 2.  Conformed COVID-19 cumulative cases time series in Pakistan
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Under the starting approximation

The transition rates from susceptible and vaccinated to exposed is given by:

Existence results
Assume that B(J) represent a real-valued continuous function which containing the suprimum norm 
space property is a banach space on J = [0, b] and P = B(J)× B(J)× B(J)× B(J)× B(J)× B(J)× B(J) 
w i t h  n o r m  �(S ,V , E ,I ,A,H,R)� = �S� + �V� + �E� + �I� + �A� + �H� + �R�  ,  w h e r e �S� = supt∈J |S(t)|, �V� = supt∈j |V(t)|, �E� = supt∈j |E(t)|, �I� = supt∈j |I(t)|, �A� =

supt∈j |A(t)|, �H� = supt∈j |H(t)|, �R� = supt∈j |R(t)|  . Now by set-
ting ABC fractional integral operator to left and right hand sides of Eq. (6), we get the following system
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(7)
βs =b

ωAA+ ωII + ωHH

N

βv =b(1− ǫ)
ωAA+ ωII + ωHH

N
.

Table 1.  Descriptions and numerical values of the parameters

Symbols Description Values References

� Birth rate of population in the Susceptible class 2.3072 Fitted

p Rate of proportions of new born Vaccinated population 0.0005 22

v Rate Vaccinated peoples 0.4 22

ωA Decrease in population through contact from A(t) 0.076 Fitted

ωI Growth in the rate of transmitted from Symptomatic class 0.1326 Fitted

ωH decrease in the rate of transmitted from Hospitalized 0.6000 22

µ Rate of Natural occurring death 0.005 Fitted

δ The rate induction disease 0.124 Fitted

ǫ Rate of reduction trough infection of vaccination 0.00554 Fitted

σ Rate of removal from Expose cases 0.03365 Fitted

γ Rate of removal from the Infectious cases 0.08 22

κ Rate of recovery form Infected class with out treatment 0.0941 22

ψ Infection reduction of vaccinated individuals 0.1433 Fitted

b The rate of connections 1.12 22

τ Rate of Recovered Hospitalized population 0.0718 22

φ Rate of natural recovery proportions of asymptomatic class 0.6703 Fitted

� Exit rate from the asymptomatic class 0.25021 Fitted

η Losing of strong immunity rate 0.081 Fitted
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Applying the definition of 3, we can write

where

If S ,V , E ,I ,A,H and R contains their upper greatest value or bound, then M1 , M2 , M3 , M4 , M5 , M6 and M7 
must fulfill the Lipschitz condition. Assuming that S and S∗ are two different functions, we obtain

Taking into account

one reaches

In a similar way, we can get the following
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The last equation is the Lipschitzian condition that has held for all the mappings. Going in a repetition mode, 
the equation in (9) becomes

together with S(0) = S0,V(0) = V0, E(0) = E0,I(0) = I0,A(0) = A0,H(0) = H0 and R(0) = R0 . Whenever 
the repeating terms divination is considered, we get

It is important to see that

η2 = (βv + µ), η3 = (σ + µ), η4 = (γ + µ+ δ), η5 = (�+ µ),

η6 = (τ + µ+ δ), η7 = (η + µ).
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Furthermore, on implication of (12)-(13) and choosing that

we reach

Theorem 4.1 Note that the given conditions holds

Then, (6) has unique root for t ∈ [0, b].

Proof This is derived that S(t),V(t), E(t),I(t),A(t),H(t) and R(t) are mapping which have bounds. Next, as 
one can see from Eqs. (12) and (13), the abbreviation M1,M2,M3,M4,M5,M6, and M7 holds for Lipchitzian 
condition. Hence, applying Eq. (16) along with a repeating hypothesis, we get as

Therefore, it implies for n → ∞ , all mapping exists and fulfill
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�I,n−1 = In−1 − In−2, �A,n−1 = An−1 −An−2, �H,n−1 = Hn−1 −Hn−2,

�R,n−1 = Rn−1 −Rn−2.

(16)

∥

∥�S ,n(t)
∥

∥ ≤ 1−�
B(�)

η1
∥

∥�S ,n−1(t)
∥

∥

�
B(�)Ŵ(�)

η1 ×
∫ t
0 (t − ϑ)�−1

∥

∥�S ,n−1(ϑ)
∥

∥dϑ

∥

∥�V ,n(t)
∥

∥ ≤ 1−�
B(�)

η2
∥

∥�V ,n−1(t)
∥

∥

�
B(�)Ŵ(�)

η2 ×
∫ t
0 (t − ϑ)�−1

∥

∥�V ,n−1(ϑ)
∥

∥dϑ

∥

∥�E ,n(t)
∥

∥ ≤ 1−�
B(�)

η3
∥

∥�E ,n−1(t)
∥

∥

�
B(�)Ŵ(�)

η3 ×
∫ t
0 (t − ϑ)�−1

∥

∥�E ,n−1(ϑ)
∥

∥dϑ

∥

∥�I,n(t)
∥

∥ ≤ 1−�
B(�)

η4
∥

∥�I,n−1(t)
∥

∥

�
B(�)Ŵ(�)

η4 ×
∫ t
0 (t − ϑ)�−1

∥

∥�I,n−1(ϑ)
∥

∥dϑ

∥

∥�A,n(t)
∥

∥ ≤ 1−�
B(�)

η5
∥

∥�A,n−1(t)
∥

∥

�
B(�)Ŵ(�)

η5 ×
∫ t
0 (t − ϑ)�−1

∥

∥�A,n−1(ϑ)
∥

∥dϑ

∥

∥�H,n(t)
∥

∥ ≤ 1−�
B(�)

η6
∥

∥�H,n−1(t)
∥

∥

�
B(�)Ŵ(�)

η6 ×
∫ t
0 (t − ϑ)�−1

∥

∥�H,n−1(ϑ)
∥

∥dϑ

∥

∥�R,n(t)
∥

∥ ≤ 1−�
B(�)

η7
∥

∥�R,n−1(t)
∥

∥

�
B(�)Ŵ(�)

η7 ×
∫ t
0 (t − ϑ)�−1

∥

∥�R,n−1(ϑ)
∥

∥dϑ .

(17)
1−�

B(�)
ηi +

�

B(�)Ŵ(�)
b�ηi < 1, i = 1, 2, . . . , 7.

(18)

∥

∥�S ,n(t)
∥

∥ ≤ �S0(t)�
(

1−�
B(�)

η1 +
�b�

B(�)Ŵ(�)
η1

)n

∥

∥�V ,n(t)
∥

∥ ≤ �V0(t)�
(

1−�
B(�)

η2 +
�b�

B(�)Ŵ(�)
η2

)n

∥

∥�E ,n(t)
∥

∥ ≤ �E0(t)�
(

1−�
B(�)

η3 +
�b�

B(�)Ŵ(�)
η3

)n

∥

∥�I,n(t)
∥

∥ ≤ �I0(t)�
(

1−�
B(�)

η4 +
�b�

B(�)Ŵ(�)
η4

)n

∥

∥�A,n(t)
∥

∥ ≤ �A0(t)�
(

1−�
B(�)

η5 +
�b�

B(�)Ŵ(�)
η5

)n

∥

∥�H,n(t)
∥

∥ ≤ �H0(t)�
(

1−�
B(�)

η6 +
�b�

B(�)Ŵ(�)
η6

)n

∥

∥�R,n(t)
∥

∥ ≤ �R0(t)�
(

1−�
B(�)

η7 +
�b�

B(�)Ŵ(�)
η7

)n

∥

∥�S ,n

∥

∥ → 0,
∥

∥�V ,n

∥

∥ → 0,
∥

∥�E ,n

∥

∥ → 0,
∥

∥�I,n

∥

∥ → 0,
∥

∥�A,n

∥

∥ → 0,
∥

∥�H,n

∥

∥ → 0,
∥

∥�R,n

∥

∥ → 0.
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with Zi = 1−�
B(�)

ηi +
�

B(�)Ŵ(�)
b�ηi < 1 by supposition. As, Sn,Vn, En,In,An,Hn and Rn may be observed as a 

Cauchy sequence in banach space B(J). It implies that all the quantities are uniformly  convergent28. applying the 
limiting Theorem in Eq. (15) as n → ∞ conforms that the limit of such type of sequences have unique root of 
(6). This shows that the existence of Eq. (6) is unique having the condition (17).   �

Hyers‑Ulam stability

Definition 1 . The AB arbitrary order integration problem as in Eq. (9) is called H-U  stable29 if their exist fixed 
�i > 0, i ∈ N

7 fulfilling: For allγi > 0, i ∈ N
7 , for

there exist (Ṡ , V̇ , Ė , İ , Ȧ, Ḣ, Ṙ) which are satisfying

(19)

∥

∥Sn+k − Sn

∥

∥ ≤
∑n+k

j=n+1 Z
j
1 =

Zn+1
1 −Zn+k+1

1
1−Z1

,

∥

∥Vn+k − Vn

∥

∥ ≤
∑n+k

j=n+1 Z
j
2 =

Zn+1
2 −Zn+k+1

2
1−Z2

,

∥

∥En+k − En
∥

∥ ≤
∑n+k

j=n+1 Z
j
3 =

Zn+1
3 −Zn+k+1

3
1−Z3

,

∥

∥In+k − In
∥

∥ ≤
∑n+k

j=n+1 Z
j
4 =

Zn+1
4 −Zn+k+1

4
1−Z4

,

∥

∥An+k −An

∥

∥ ≤
∑n+k

i=n+1 Z
j
5 =

Zn+1
5 −Zn+k+1

5
1−Z5

,

∥

∥Hn+k −Hn

∥

∥ ≤
∑n+k

j=n+1 Z
j
6 =

Zn+1
6 −Zn+k+1

6
1−Z6

,

∥

∥Rn+k −Rn

∥

∥ ≤
∑n+k

i=n+1 Z
j
7 =

Zn+1
7 −Zn+k+1

7
1−Z7

.

(20)

|S(t)−
1−�

B(�)
M1(�, t,S(t))+

�

B(�)Ŵ(�)
×

∫ t

0

(t − ϑ)�−1
M1(�,ϑ , S(ϑ))dϑ | ≤ γ1,

|V(t)−
1−�

B(�)
M2(�, t,V(t))+

�

B(�)Ŵ(�)
×

∫ t

0

(t − ϑ)�−1
M2(�,ϑ ,V(ϑ))dϑ | ≤ γ2,

|E(t)−
1−�

B(�)
M3(�, t, E(t))+

�

B(�)Ŵ(�)
×

∫ t

0

(t − ϑ)�−1
M3(�,ϑ , E(ϑ))dϑ | ≤ γ3,

|I(t)−
1−�

B(�)
M4(�, t,I(t)+

�

B(�)Ŵ(�)
×

∫ t

0

(t − ϑ)�−1
M4(�,ϑ ,I(ϑ))dϑ | ≤ γ4,

|A(t)−
1−�

B(�)
M5(�, t,A(t))+

�

B(�)Ŵ(�)
×

∫ t

0

(t − ϑ)�−1
M5(�,ϑ ,A(ϑ))dϑ | ≤ γ5,

|H(t)−
1−�

B(�)
M6(�, t,H(t))+

�

B(�)Ŵ(�)
×

∫ t

0

(t − ϑ)�−1
M6(�,ϑ ,H(ϑ))dϑ | ≤ γ6,

|R(t)−
1−�

B(�)
M7(�, t,R(t))+

�

B(�)Ŵ(�)
×

∫ t

0

(t − ϑ)�−1
M7(�,ϑ ,R(ϑ))dϑ | ≤ γ7.
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Such that

Theorem 5.1 Under the condition J, the considered model of arbitrary order (6) is H-U stable.

Proof By Theorem (4.1), the proposed AB fractional problem (6) has unique root (S ,V , E ,I ,A,H,R) fulfilling 
equations of of model (9). Then as follows

(21)

Ṡ(t) =
1−�

B(�)
M1(�, t,S(t))+

�

B(�)Ŵ(�)
×

∫ t

0

(t − ϑ)�−1
M1(�,ϑ , Ṡ(ϑ))dϑ ,

V̇(t) =
1−�

B(�)
M2(�, t,V(t))+

�

B(�)Ŵ(�)
×

∫ t

0

(t − ϑ)�−1
M2(�,ϑ , V̇(ϑ))dϑ ,

Ė(t) =
1−�

B(�)
M3(�, t, E(t))+

�

B(�)Ŵ(�)
×

∫ t

0

(t − ϑ)�−1
M3(�,ϑ , Ė(ϑ))dϑ ,

İ(t) =
1−�

B(�)
M4(�, t,I(t))+

�

B(�)Ŵ(�)
×

∫ t

0

(t − ϑ)�−1
M4(�,ϑ , İ(ϑ))dϑ ,

Ȧ(t) =
1−�

B(�)
M5(�, t,A(t))+

�

B(�)Ŵ(�)
×

∫ t

0

(t − ϑ)�−1
M5(�,ϑ , Ȧ(ϑ))dϑ ,

Ḣ(t) =
1−�

B(�)
M6(�, t,H(t))+

�

B(�)Ŵ(�)
×

∫ t

0

(t − ϑ)�−1
M6(�,ϑ , Ḣ(ϑ))dϑ ,

Ṙ(t) =
1−�

B(�)
M7(�, t,R(t))+

�

B(�)Ŵ(�)
×

∫ t

0

(t − ϑ)�−1
M7(�,ϑ , Ṙ(ϑ))dϑ .

|S − Ṡ| ≤ ζ1γ1, |V − V̇| ≤ ζ2γ2, |E − Ė | ≤ ζ3γ3, |I − İ| ≤ ζ4γ4,

|A− Ȧ| ≤ ζ5γ5, |H− Ḣ| ≤ ζ6γ6, |R− Ṙ| ≤ ζ7γ7.

(22)

�S − Ṡ� ≤
1−�

B(�)

∥

∥M1(�, t,S)−M1(�, t, Ṡ)
∥

∥

+
�

B(�)Ŵ(�)

∫ t

0

(t − ϑ)�−1
∥

∥M1(�, t,S)−M1(�, t, Ṡ)
∥

∥dϑ

≤

[

1−�

B(�)
+

�

B(�)Ŵ(�)

]

�1�S − Ṡ�

(23)

�V − V̇� ≤
1−�

B(�)

∥

∥M2(�, t,V)−M2(�, t, V̇)
∥

∥

+
�

B(�)Ŵ(�)

∫ t

0

(t − ϑ)�−1
∥

∥M2(�, t,V)−M2(�, t, V̇)
∥

∥dϑ

≤

[

1−�

B(�)
+

�

B(�)Ŵ(�)

]

�2�V − V̇�

(24)

�E − Ė� ≤
1−�

B(�)

∥

∥M3(�, t, E)−M3(�, t, Ė)
∥

∥

+
�

B(�)Ŵ(�)

∫ t

0

(t − ϑ)�−1
∥

∥M3(�, t, E)−M3(�, t, Ė)
∥

∥dϑ

≤

[

1−�

B(�)
+

�

B(�)Ŵ(�)

]

�3�E − Ė�

(25)

�I − İ� ≤
1−�

B(�)

∥

∥M4(�, t, I)−M4(�, t, İ)
∥

∥

+
�

B(�)Ŵ(�)

∫ t

0

(t − ϑ)�−1
∥

∥M4(�, t,I)−M4(�, t, İ)
∥

∥dϑ

≤

[

1−�

B(�)
+

�

B(�)Ŵ(�)

]

�4�I − İ�
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Taking, γi = �i ,�i =
1−�
B(�)

+ �
B(�)Ŵ(�)

, this implies

Similarly, we have the followings

So the the derivation is achieved.   �

Numerical schemes and graphical results
In this section, we apply the new differential and integral operators to the proposed mathematical model of 
COVID-19. Here, the the classical differential operator will be replaced by the operator with power-law, expo-
nential decay, and Mittag-Leffler kernels.

Iterative solution by Newton polynomial. In this section, we presented numerical schemes based on 
the Newton  polynomial41 for our model.  In42,43 Atangana and Seda proposed new COVID-19 models and solved 
by Newton polynomial. Newton’s interpolation is a classical polynomial interpolation approach and plays a sig-
nificant role in numerical analysis and image processing. The interpolation function of most classical approaches 
is unique to the given data. At present, Newton’s polynomial interpolation is at the center of research on polyno-
mial interpolation methods. While it has shown good interpolation performance, The Newton-type polynomial 
interpolation algorithm has many advantages, such as fast convergence a simple and explicit mathematical rep-
resentation and ease of computation; easy differentiation, integration, and having derivatives of any order. The 
value of the Newton-type polynomial interpolant function can be adjusted in the interpolant region by choosing 
appropriate parameter values; according to the actual geometric design needs, the shape of the interpolation 
curves or surfaces can be adjusted.

We start with Mittag-Leffler kernel

(26)

�A− Ȧ� ≤
1−�

B(�)

∥

∥M5(�, t,A)−M5(�, t, Ȧ)
∥

∥

+
�

B(�)Ŵ(�)

∫ t

0

(t − ϑ)�−1
∥

∥M5(�, t,A)−M5(�, t, Ȧ)
∥

∥dϑ

≤

[

1−�

B(�)
+

�

B(�)Ŵ(�)

]

�5�A− Ȧ�

(27)

�H− Ḣ� ≤
1−�

B(�)

∥

∥M6(�, t,H)−M6(�, t, Ḣ)
∥

∥

+
�

B(�)Ŵ(�)

∫ t

0

(t − ϑ)�−1
∥

∥M6(�, t,H)−M6(�, t, Ḣ)
∥

∥dϑ

≤

[

1−�

B(�)
+

�

B(�)Ŵ(�)

]

�6�H− Ḣ�

(28)

�R− Ṙ� ≤
1−�

B(�)

∥

∥M7(�, t,R)−M7(�, t, Ṙ)
∥

∥

+
�

B(�)Ŵ(�)

∫ t

0

(t − ϑ)�−1
∥

∥M7(�, t,R(t))−M7(�, t, Ṙ)
∥

∥dϑ

≤

[

1−�

B(�)
+

�

B(�)Ŵ(�)

]

�7�R− Ṙ�

(29)�S − Ṡ� ≤ γ1�1

(30)































�V − V̇� ≤ γ2�2

�E − Ė� ≤ γ3�3

�I − İ� ≤ γ4�4

�A− Ȧ� ≤ γ5�5

�H− Ḣ� ≤ γ6�6

�R− Ṙ� ≤ γ7�7.
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More simply, we can write as follows;

Later on after application of fractional integration with Mittag-Leffler kernel law and plugging Newton polyno-
mial in type of equations, we evaluate our model as follows;

(31)



























































ABC
D
�
0,t [S(t)] = (1− p)�+ ηR∗ − (βs + µ+ v)S∗,

ABC
D
�
0,t [V(t)] = p�+ vS∗ − (βv + µ)V∗,

ABC
D
�
0,t [E(t)] = βsS

∗ + βvV
∗ − (σ + µ)E∗,

ABC
D
�
0,t [I(t)] = σψE

∗ + �(1−�)A∗ − (γ + µ+ δ)I∗,

ABC
D
�
0,t [A(t)] = σ(1− ψ)E∗ − (�+ µ)A∗,

ABC
D
�
0,t [H(t)] = γ (1− κ)I∗ − (τ + µ+ δ)H∗,

ABC
D
�
0,t [R(t)] = γ κI∗ + ��A

∗ + τH∗ − (η + µ)R∗.

(32)



























































ABC
D
�
0,t [S(t)] = S

∗(t,S ,V , E ,I ,A,H,R),

ABC
D
�
0,t [V(t)] = V

∗(t,S ,V , E ,I ,A,H,R),

ABC
D
�
0,t [E(t)] = E

∗(t,S ,V , E ,I ,A,H,R),

ABC
D
�
0,t [I(t)] = I

∗(t,S ,V , E ,I ,A,H,R),

ABC
D
�
0,t [A(t)] = A

∗(t,S ,V , E ,I ,A,H,R),

ABC
D
�
0,t [H(t)] = H

∗(t,S ,V , E ,I ,A,H,R),

ABC
D
�
0,t [R(t)] = R

∗(t,S ,V , E ,I ,A,H,R).

S
a+1 =

1−�

AB(�)
+ S

∗(ta,S
a,Va, Ea,Ia,Aa,Ha,Ra)

+
�(�t)�

AB(�)Ŵ(�+ 1)

a
�

µ=2

S
∗(tµ−2,S

µ−2,Vµ−2, Eµ−2,Iµ−2,Aµ−2,Hµ−2,Rµ−2)�

+
�(�t)�

AB(�)Ŵ(�+ 2)

a
�

µ=2

�

S∗(tµ−1,S
µ−1,Vµ−1, Eµ−1,Iµ−1,Aµ−1,Hµ−1,Rµ−1)

−S∗(tµ−2,S
µ−2,Vµ−2, Eµ−2,Iµ−2,Aµ−2,Hµ−2,Rµ−2)

�

�

+
�(�t)�

2AB(�)Ŵ(�+ 3)

a
�

µ=2







S∗(tµ,S
µ,Vµ, Eµ,Iµ,Aµ,Hµ,Rµ)

−2S∗(tµ−1,S
µ−1,Vµ−1, Eµ−1,Iµ−1,Aµ−1,Hµ−1,Rµ−1)

+S∗(tµ−2,S
µ−2,Vµ−2, Eµ−2,Iµ−2,Aµ−2,Hµ−2,Rµ−2)







�

V
a+1 =

1−�

AB(�)
+ V

∗(ta,S
a,Va, Ea,Ia,Aa,Ha,Ra)

+
�(�t)�

AB(�)Ŵ(�+ 1)

a
�

µ=2

V
∗(tµ−2,S

µ−2,Vµ−2, Eµ−2,Iµ−2,Aµ−2,Hµ−2,Rµ−2)�

+
�(�t)�

AB(�)Ŵ(�+ 2)

a
�

µ=2

�

V∗(tµ−1,S
µ−1,Vµ−1, Eµ−1,Iµ−1,Aµ−1,Hµ−1,Rµ−1)

−V∗(tµ−2,S
µ−2,Vµ−2, Eµ−2,Iµ−2,Aµ−2,Hµ−2,Rµ−2)

�

�

+
�(�t)�

2AB(�)Ŵ(�+ 3)

a
�

µ=2







V∗(tµ,S
µ,Vµ, Eµ,Iµ,Aµ,Hµ,Rµ)

−2V∗(tµ−1,S
µ−1,Vµ−1, Eµ−1,Iµ−1,Aµ−1,Hµ−1,Rµ−1)

+V∗(tµ−2,S
µ−2,Vµ−2, Eµ−2,Iµ−2,Aµ−2,Hµ−2,Rµ−2)







�

E
a+1 =

1−�

AB(�)
+ E

∗(ta,S
a,Va, Ea,Ia,Aa,Ha,Ra)

+
�(�t)�

AB(�)Ŵ(�+ 1)

a
�

µ=2

E
∗(tµ−2,S

µ−2,Vµ−2, Eµ−2,Iµ−2,Aµ−2,Hµ−2,Rµ−2)�

+
�(�t)�

AB(�)Ŵ(�+ 2)

a
�

µ=2

�

E∗(tµ−1,S
µ−1,Vµ−1, Eµ−1,Iµ−1,Aµ−1,Hµ−1,Rµ−1)

−E∗(tµ−2,S
µ−2,Vµ−2, Eµ−2,Iµ−2,Aµ−2,Hµ−2,Rµ−2)

�

�

+
�(�t)�

2AB(�)Ŵ(�+ 3)

a
�

µ=2







E∗(tµ,S
µ,Vµ, Eµ,Iµ,Aµ,Hµ,Rµ)

−2E∗(tµ−1,S
µ−1,Vµ−1, Eµ−1,Iµ−1,Aµ−1,Hµ−1,Rµ−1)

+E∗(tµ−2,S
µ−2,Vµ−2, Eµ−2,Iµ−2,Aµ−2,Hµ−2,Rµ−2)







�
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Where

I
a+1 =

1−�

AB(�)
+ I

∗(ta,S
a,Va, Ea,Ia,Aa,Ha,Ra)

+
�(�t)�

AB(�)Ŵ(�+ 1)

a
�

µ=2

I
∗(tµ−2,S

µ−2,Vµ−2, Eµ−2,Iµ−2,Aµ−2,Hµ−2,Rµ−2)�

+
�(�t)�

AB(�)Ŵ(�+ 2)

a
�

µ=2

�

I∗(tµ−1,S
µ−1,Vµ−1, Eµ−1,Iµ−1,Aµ−1,Hµ−1,Rµ−1)

−I∗(tµ−2,S
µ−2,Vµ−2, Eµ−2,Iµ−2,Aµ−2,Hµ−2,Rµ−2)

�

�

+
�(�t)�

2AB(�)Ŵ(�+ 3)
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Graphical results. This section examines the numerical simulation results for the COVID-19 pandemic disease 
model (6). The numerical method employed in the system (6) hinged on Newton’s polynomial Rule. The numeri-
cal simulation is undertaken to make use of parameter values from Table 1.

Simulation with exponential kernel. Later on by application of fractional integration with exponential 
kernels and plugging Newton polynomial in such types of equations, we compute our problem as follows;

Graphical results. This section examines the numerical simulation results for the COVID-19 pandemic disease 
model (6). The numerical method employed in the system (6) hinged on Newton’s polynomial Rule. The numeri-
cal simulation is undertaken to make use of parameter values from Table 1.

Simulation with power law kernel. Finally, we can the following numerical approximation with the 
Caputo derivative.
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Figure 3.  Numerical simulation for COVID-19 epidemic model 6 via Mittag-Leffler Generalized Function.
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Figure 4.  Numerical simulation for COVID-19 epidemic model 6 via exponential kernel.
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Figure 5.  Numerical simulation for COVID-19 epidemic model 6 via power-law kernel
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Figure 6.  The plot represents the comparison of ABC, CF and Caputo fractional models at � = 0.97
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Graphical results. This section examines the numerical simulation results for the COVID-19 pandemic disease 
model (6). The numerical method employed in the system (6) hinged on Newton’s polynomial Rule. The numeri-
cal simulation is undertaken to make use of parameter values from Table 1.

Discussion. The key outcomes of the current research work pointed out the infectious system chosen into 
consideration in the format of arbitrary-order ordinary differential equations in sense of ABC CF and Caputo. 
For this purpose, we can see clearly Fig. 3a represents the dynamics of S(t) in various arbitrary orders. We notice 
that at the beginning there is a rapid increase occurs in the susceptible class in the vicinity of t = 18 days. After 
that phase of time, this agent shows decay and then moves to a stable position. We also see the convergence of 
the said population to their equilibrium point with the passage of time. Figure 3b represents the vaccinated indi-
viduals V(t) cases which increased slowly for the first some days and then bends for attaining stability. Similarly, 
Fig. 3c represents the Exposed individuals E(t) which increased slowly for the first some days and then bends 
for attaining stability. In the same way, Fig. 3d shows the dynamics of the Symptomatic infected individuals 
I(t) against time. We pointed out that the Symptomatic infected individuals show the same dynamics as by 
E(t) on various fractional orders. Similarly, Fig. 3e is the increase for the first 40 days and then decrease in the 
Asymptomatic infected individual’s cases A(t) on different arbitrary orders of derivatives. One can see that as 
the order of non-integer order derivative increases, the graph converges to the natural order. In a similar fashion 
Fig. 3f represents the Hospitalized individuals H(t) increased rapidly in the vicinity of t = 100 and then slowly 
decreased towards the stability point. Figure 3g represents the Recovered cases which increased slowly for the 
first some days. The said compartment also converges to its equilibrium points with time durations. In the same 
fashion, Fig. 4 shows all of the seven compartments in different non-integer orders in the CF sense and behaves 
similar to that of Fig. 3. Also, Fig. 5 represents the simulation results of all of the seven classes in different non-
integer orders in the Caputo sense. Similarly, Fig. 6 represents the simulation results of the comparison of the 
three different operators at � = 0.97.

Conclusion
In this work, we address the dynamical behavior of the updated SEIR problem for COVID-19 in sense of Atan-
gana-Baleanu Caputo (ABC) arbitrary order derivative of order � against the required data of Pakistan. The 
existence of a solution is successfully derived from the concept of the theory of fixed point and functional analysis. 
For the approximate solution, the arbitrary order polynomial of the Newton method has been applied to the 
proposed model. The Hyers-Ulam stability is also derived for the proposed model. For numerical simulation, we 
used the various parameters data of Pakistan and draw each compartment graphically. Finally, given the graphical 
visualizations to the analytical results to verify the results. We believe that this assumption, extension, and the 
new analysis are plausible both biologically and mathematically.
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