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Finding novel anti-diabetic compounds with effective suppression activities against hepatic
glucagon response is urgently required for the development of new drugs against
diabetes. Fungi are well known for their ability to produce new bioactive secondary
metabolites. As part of our ongoing research, five new indole-terpenoids (1–5), named
encindolenes D-H, were isolated from the fungus Penicillium sp. HFF16 from the
rhizosphere soil of Cynanchum bungei Decne. The structures of the compounds were
elucidated by spectroscopic data and ECD analysis. In the anti-diabetic activity assay,
compounds 1–5 could inhibit the hepatic glucose production with EC50 values of 17.6,
30.1, 21.3, 9.6, and 9.9 μM, respectively, and decrease the cAMP contents in glucagon-
induced HepG2 cells.
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INTRODUCTION

Microorganism have been proven to be an important source of structurally novel and biologically active
natural compounds, many of which have potential for drug development. In recent years, more and more
attention has been paid to the study of active metabolites from fungi, of which paxilline-type indole-
diterpenoids is well known for their diverse structures and bioactivities (Kong et al., 2019). Structurally and
biosynthetically, paxilline-type indolediterpenes bear a common core structure derived from indole and
geranylgeranyl diphosphate (GGPP), and further modifications, such as hydroxylation and prenylation,
afforded other members of this family. The gene cluster pax was identified as the first biosynthetic gene
cluster of this family (Tagami et al., 2013). Diabetes is a group of metabolic diseases characterized by
hyperglycemia, which is caused by impaired peripheral glucose uptake and elevated hepatic glucose
production (Unger and Cherrington, 2012; Jiang et al., 2021). Enhanced glucagon response is proposed to
be responsible for increased hepatic glucose production; it is proposed that suppression of hepatic glucagon
response may provide therapeutic advantages in diabetes management (Ozcan et al., 2012; Xiao et al.,
2017). Therefore, finding novel and effective suppression of hepatic glucagon response anti-diabetic
compounds is urgently required. The paxilline-type indole-terpenoids are one of the largest classes of
fungal indole-terpenoids (Kong et al., 2019), many of which have significant bioactivities. In our ongoing
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search for bioactivemetabolites from fungi (PanGJ et al., 2021; PanG
et al., 2021), the secondary metabolites produced by Penicillium sp.
HFF16 isolated from the rhizosphere soil of Cynanchum bungei
Decne. from Mount Tai, China, were investigated, which resulted in
the isolation and identification of five new indole-terpenoids with
weak anti-inflammatory activities (Pan GJ et al., 2021). Subsequent
chemical investigation on the same extract from Penicillium sp.
HFF16 led to the identification of another five new indole-
terpenoids (1–5) (Figure 1). All of the compounds exhibited
moderate anti-diabetic effects on glucagon-stimulated cAMP
accumulation and hepatic glucose production in HepG2 cells.
Herein, the isolation, structural elucidation, and bioactivities of
these compounds were described.

MATERIALS AND METHODS

General Experimental Procedures
Optical rotations were measured on a JASCO P-1020 digital
polarimeter, and UV spectra were measured on a Beckman DU
640 spectrophotometer. ECD data were collected using a JASCO
J-715 spectropolarimeter. NMR spectra were recorded on a
Bruckmercury Plus-400 or a JNM-ECZR-500 spectrometers
with TMS as an internal standard. HRESIMS spectra were
recorded with a Micromass Autospec -Uitima- TOF. Semi-
preparative HPLC was carried out using an ODS column
(YMC-pack ODS-A, 10 × 250 mm, 5 μm, 4 ml/min). Thin
layer chromatography (TLC) and column chromatography
(CC) were performed on plates precoated with silica gel GF254
(10–40 μm, Yantai Jiangyou Silicone Development Co., Ltd.).

Fungal Material and Fermentation
The fungus Penicillium sp. HFF16 was isolated from the
rhizosphere soil of Cynanchum bungei Decne., in Mount Tai,
China in May 2020. After grinding, the sample (1.0 g) was diluted
to 10−2 g/ml with sterile H2O, 100 μl of which was deposited on
Bengal red medium (maltose 20 g, monosodium glutamate 10 g,

glucose 10 g, yeast extract 3 g, corn pulp 1 g, mannitol 20 g,
sodium chloride 0.3 g, potassium dihydrogen phosphate 0.5 g,
agar 20 g per liter of tap water) plate containing chloramphenicol
(200 μg/ml) as a bacterial inhibitor. A single colony was
transferred onto another PDA plate and was identified
according to its morphological characteristics and ITS gene
sequences (Pan GJ et al., 2021). A reference culture of
Penicillium sp. HFF16 maintained at −80°C is deposited in our
laboratory. The isolate was cultured on plates of PDA medium at
28°C for 4 days. Plugs of agar supporting mycelium growth were
cut and transferred aseptically to 7 × 250 ml Erlenmeyer flasks
each containing 100 ml of liquid medium (potato 200 g, glucose
20 g per liter of tap water) and cultured at 28°C at 150 RPM for
3 days. The seed liquid was inoculated aseptically into 140 ×
1,000 ml Erlenmeyer flasks each containing rice medium (80 g
rice, 100 ml tap water) at 0.5% inoculation amount and incubated
at room temperature under static conditions for 35 days.

EXTRACTION AND ISOLATION

The cultures (11.2 kg) were then extracted into 40 L of EtOAc
(ethyl acetate) by soaking overnight. The extraction was repeated
for three times. The combined EtOAc extracts were dried under
vacuum to produce 38.2 g of extract. The EtOAc extract was
subjected to a silica gel VLC (vacuum column chromatography)
column, eluting with a stepwise gradient of 0, 9, 11, 15, 20, 30, 50,
and 100% EtOAc in petroleum ether (v/v), to give 7 fractions (Fr.
1−7). Fraction 3 (10.2 g) was applied to ODS silica gel with
gradient elution of MeOH (CH3OH)-H2O (1:5, 2:3, 3:2, 4:1, 1:0)
to yield five subfractions (Fr. 3-1–Fr. 3-5). Fr. 3-2 (1.03 g) was
applied to ODS silica gel with gradient elution of MeCN-H2O (1:
4, 2:3, 3:2, 4:1) to yield five tertiary fractions (Fr. 3-2-1–Fr. 3-2-5).
Fr. 3-2-4 (92 mg) was purified using semi-prep HPLC (isocratic
system 80% MeOH/H2O, v/v) to give compounds 4 (tR 7.9min;
4 mg) and 5 (tR 11.8min; 5.8 mg). Fraction 2 (2.3 g) was applied to
ODS silica gel with gradient elution of MeOH-H2O (1:5, 2:3, 3:2, 4:1,

FIGURE 1 | The chemical structures of compounds 1–5.
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1:0) to yield five subfractions (Fr. 2-1–Fr. 2-5). Fr. 2-4 (66mg) was
purified using semi-prep HPLC (isocratic system 75% MeCN/H2O,
v/v) to give compound 2 (tR 22.36min; 7.8 mg). Fr. 2-5 (124mg) was
purified using semi-prep HPLC (isocratic system 75% MeCN/H2O,
v/v) to give compound 1 (tR 21.58min; 6.9mg). Fraction 3 (2.13 g)
was applied to ODS silica gel with gradient elution ofMeOH-H2O (1:
5, 2:3, 3:2, 4:1, 1:0) to yield eight subfractions (Fr. 3-1–Fr. 3-8). Fr. 3-6
(56mg) was further purified using semi-prep HPLC (isocratic
system 85% MeCN/H2O, v/v) to give compound 3 (tR 7.6min;
5.2mg).

Encindolene D (1): white powder; [α]25 D -6 (c 0.1, MeOH);
UV (MeOH) λmax (log ε): 307 (3.18), 239 (3.36) nm; ECD
(MeOH) λmax 218 (-11.34), 249 (+3.74), 269 (-2.26), 355
(-0.55) nm. 1H and 13C NMR data, Table 1; HRESIMS m/z
602.3464 [M + H]+ (calcd for C37H48NO6, 602.3476).

Encindolene E (2): white powder [α]25 D -205 (c 0.1, MeOH);
UV (MeOH) λmax (log ε): 303 (3.33), 243 (3.27) nm; ECD
(MeOH) λmax 221 (-4.62), 245 (+1.34), 282 (-15.45), 361 (-3.10)
nm. 1H and 13CNMR data, Table 1; HRESIMSm/z 606.3172 [M
+ H]+ (calcd for C37H45NO5Na, 606.3190).

Encindolene F (3): white powder; [α]25 D +9 (c 0.1, MeOH);
UV (MeOH) λmax (log ε): 334 (2.74), 268 (3.05) nm. 1H and 13C
NMR data, Table 1; HRESIMS m/z 628.3274 [M - H]- (calcd for
C38H46NO7, 628.3280).

Encindolene, Encindolene G (4): white powder; [α]25 D +11 (c
0.1, MeOH); UV (MeOH) λmax (log ε): 284 (2.28), 227 (2.96) nm.
1H and 13C NMR data, Table 2; HRESIMS m/z 422.3078 [M -
H]- (calcd for C28H40NO2, 422.3065).

Encindolene H (5): white powder; [α]25 D -28 (c 0.1, MeOH); UV
(MeOH) λmax (log ε): 285 (2.68), 226 (3.15) nm. 1H and 13C NMR

TABLE 1 | The 1H (400 MHz) and 13C NMR (100 MHz) data of compounds 1–3 in CD3OD.

Position 1 2 3

δC δH (J
in Hz)

δC δH (J
in Hz)

δC δH (J
in Hz)

1 125.1, C 7.39, s 124.8, C 7.37, s 127.8, C 7.43, s
2 114.8, CH 114.9, CH 116.1, CH
3 136.0, C 7.11, s 136.2, C 7.14, s 135.8, C
4 141.6, C 142.5, C 132.6, C
5 102.9, CH 103.1, CH 105.0, CH 7.47, s
6 140.5, C 2.31, dd (11.6, 11.6) 140.9, C 143.2, C
7 28.8, CH2 28.8, CH2 2.79, overlap 28.3, CH2 2.37, dd (11.4, 11.5)

2.68, overlap 2.83, overlap 2.69, overlap8 117.7, C 118.8, C 117.5, C
9 153.5, C 149.6, C 156.0, C
10 52.6, C 50.2, C 53.1, C
11 51.3, CH 2.42, overlap 47.3, CH 2.86, m 50.1, CH 3.33, overlap
12 22.8, CH2 1.46, m 29.7, CH2 2.35, m 29.4, CH2 1.81, overlap

1.87, m 2.26, m 2.02, overlap
13 34.3, CH2 134.1, CH 6.10, br s 33.9, CH2 1.91, overlap

2.04, overlap14 78.7, C 143.5, C 77.8, C
15 44.9, C 44.7, C 40.9, C
16 27.7, CH2 1.69, m 30.7, CH2 1.97, m 27.7, CH2 1.90, overlap

2.53, m 2.40, m 2.62, m
17 37.4, CH2 1.71, m 35.4, CH2 2.14, m 22.3, CH2 1.72, m

1.55, m 2.21, m 2.06, overlap18 96.3, C 96.1, C 106.1, C
19 163.4, C 164.5, C 172.2, C
20 122.3, CH 5.67, s 122.9, CH 5.93, s 122.2, CH 6.06, s
21 200.9, C 201.8, C 199.4, C
22 79.4, CH 4.27, s 80.0, CH 4.26, s 89.2, CH 4.30, s
23 73.8, C 74.4, C 79.4, C
24 26.0, CH3 1.28, s 26.1, CH3 1.29, s 23.4, CH3 1.15, s
25 27.1, CH3 1.28, s 27.4, CH3 1.28, s 29.2, CH3 1.39, s
26 20.7, CH3 0.68 23.9, CH3 1.14, s 24.8, CH3 1.42, s
27 17.0, CH3 1.24, s 16.0, CH3 0.99, s 16.6, CH3 1.40, s
1′ 37.6, CH2 3.33, s 37.7, CH2 3.31, overlap 91.5, CH 4.62, s
2′ 143.4, C 143.7, C 81.6, C
3′ 76.0, C 76.1, C 79.5, C
4′ 31.5, CH3 1.43, s 31.5, CH3 1.42, s 23.9, CH3 1.41, s
5′ 31.4, CH3 1.43, s 31.5, CH3 1.42, s 29.7, CH3 1.42, s
1″ 134.0, C 133.3, C 132.6, C
2″ 35.9, CH2 2.43, s 36.1, CH2 2.44, s 122.2, CH 6.06, s
3″ 73.8, C 73.8, C 74.3, C
4″ 30.5, C 1.33, s 30.7, C 1.32, s

1.32, s
32.8, CH3 1.42, overlap

5″ 30.6, C 1.34, s 30.7, C 27.5, CH3 1.43, overlap
1′-OCH3 57.6, CH3 3.48, s
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data, Table 2; HRESIMS m/z 422.3059 [M - H]- (calcd for
C28H40NO2, 422.3065).

Measurement of Cell Viability Assay
HepG2 cells (a cell line of human hepatoma, from the Type Culture
Collection of the Chinese Academy of Sciences) were cultured in
DMEM supplemented with 10% FBS, 100 μg/ml of streptomycin,
and 100 U/ml of penicillin at 37°C in a 5% CO2 atmosphere. Cell
viability was assessed by the MTT method (Pan GJ et al., 2021).
HepG2 cells were seeded in a 96-well plate and treated with 100 nM
glucagon (Novo Nordisk, Denmark) and various concentrations of
test compounds (1–100 μM) for 24 h. After that, MTT solution
(10 μl) was added and incubated at 37°C for 4 h. The purple
crystals were dissolved with dimethylsulfoxide (150 μl) added, and
the absorbance valuewasmeasured by amicroplate reader at 570 nm.

GLUCOSE OUTPUT

HepG2 cells were maintained in DMEM medium with 10% FBS.
After attachment, the media was replaced with Krebs-Ringer
HEPES buffer to fast the cells for 2 h. Then, the cells were cultured

with glucose out media supplemented with 10 mM pyruvate,
100 nM glucagon, or metformin and the indicated compounds (1,
5, 10, 50, and 100 μM). After 6 h, the cell supernatant was
collected for glucose analysis.

Measurement of cAMP Production
HepG2 cells were pretreated with the test compounds and
stimulated with 100 nM glucagon for 4 h. The cAMP
production in culture medium was calculated by commercial
kit (Xiao et al., 2017). All data were expressed as the mean ± SD
from at least three independent experiments.

RESULTS AND DISCUSSION

Structure Elucidation of Compounds
Compound 1 was assigned the molecular formula C37H47NO6 by
HRESIMS. The double-bond equivalents of 1 were calculated to
be 15. The 13C and HSQC NMR spectra (Table 1) of 1 revealed a
total of 37 carbons including one ketone carbonyl, eight aromatic
carbons (two protonated) attributed to one indole moiety, four
olefinic carbons with one protonated, six oxygenated carbons

TABLE 2 | The 1H (400 MHz) and 13C NMR (100 MHz) data of compounds 4 and 5 in CD3OD.

Position 4 5

δC δH (J in Hz) δC δH (J in Hz)

2 123.7, CH 7.18, s 124.6, CH 7.25, s
3 119.6, C 117.9, C
4 128.9, C 128.3, C
5 119.4 CH 7.64, d (8.1) 118.6, CH 7.48, d (8.0)
6 119.2 CH 6.97, t (8.1) 119.9, CH 7.04, t (8.0)
7 121.9, CH 7.04, (8.1) 122.6, CH 7.11, t (8.0)
8 112.0, C 7.29, d (8.1) 112.5, CH 7.37, d (8.0)
9 137.7, C 137.7, C
10 22.8, CH2 3.15, dd (15.0, 6.1) 34.2, CH 3.78, dd (12.7, 5.4)

2.96, br d (15.0)
11 52.0, CH 2.77, m 42.2, CH 2.16, dd (5.4, 5.4)
12 75.6, C
13 38.1, CH2 1.86, m 25.0, CH2 2.05, m

1.53, m 1.83, m
14 31.7, CH2 1.59, m 29.3, CH2 0.94, m

1.38, m 1.60, m15 41.2, C 40.3, C
16 32.1, CH 2.35, m 32.3, CH 2.09, m
17 26.5, CH2 1.02, m 26.7, CH2 1.78, m

1.57, overlap 1.27, m
18 30.5, CH2 0.96, m 30.7, CH2 1.82, m

1.36, overlap 2.08, m
19 70.0, CH 4.25, dd (2.7, 2.7) 69.3, CH 4.76, br s
20 49.0, C 44.9, C
21 32.0, CH2 2.14, m 29.2, CH2 1.17, m

1.60, m 1.60, m
22 26.9, CH2 2.42, m 23.9, CH2 1.70, m

1.88, m
23 127.8, CH 5.18, m 46.1, CH 2.57, ddd (12.7, 12.0, 6.7)
24 131.3, C 76.6, C
25 26.0, CH3 1.74, s 26.8, CH3 1.06, s
26 18.1, CH3 1.73, s 29.0, CH3 1.06, s
27 24.6, CH3 1.44, s 22.2, CH3 1.38, d (7.4)
28 16.7, CH3 0.77, d (6.6) 16.3, CH3 0.75, d (6.9)
29 18.7, CH3 0.93, s 18.7, CH3 0.97, s
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with one protonated, seven sp3 methylenes, one sp3 non-
oxygenated methine, two sp3 non-oxygenated quaternary
carbons, and eight methyls. The above data were quite similar
to those of pyrapaxilline (Matsui et al., 2014), a previous reported
indole-diterpene with an additional dihydropyran ring. The main
difference between them was the replacement of the oxygenated
methine CH-18 in pyrapaxilline by a dioxygenated quaternary
carbon at δC 96.3 in 1, suggesting the presence of a hydroxyl at C-
18. HMBC correlation from H-20 to C-18 further confirmed this
deduction (Figure 2). The relative configuration of 1was assigned
by analysis of its ROESY spectrum (Figure 3), which showed
correlations of H-11/H3-26/H-17/H-24 (25) and H3-26/H-13.
The experimental ECD spectrum (Figure 4) of 1 showed
negative Cotton effects (CEs) around 220, 260, and 350 nm,
and positive ones around 250 and 300 nm, respectively

(Figure 4), which was very similar to that for encindolene A
(Pan GJ et al., 2021), an analogue isolated from the same fungus.
This led to the assignment of the absolute configurations of 1 as
shown in Figure 1.

Compound 2 was obtained as a white powder, and its
molecular formula was determined as C37H45NO5 according to
the HRESIMS data, with a molecule of H2O less than 1. The NMR
data of 2 were also quite similar to those of 1. However, detailed
comparison of the NMR data between them revealed that signals
for the hydroxylated non-protonated carbon C-14 and the CH2-
13methylene in the NMR spectra of 1were replaced by signals for
a tri-substituted double bond in those of 2. The location of this
double bond at C-13/C-14 was revealed by COSY correlations
(Figure 2) of H2-7/H-11/H2-12/H-13 and HMBC correlations
(Figure 2) fromH3-26 to C-14. Thus, 2was determined to be a C-

FIGURE 2 | Selected HMBC and COSY correlations of 1–5.

FIGURE 3 | Selected ROESY correlations of 1–5.
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14/C-13 dehydrated derivative of 1. The relative configuration of
2 was assigned to be the same as that of 1 based on analysis of the
ROESY data (Figure 3). The absolute configurations of 2 were
also assigned as shown in Figure 1 by a comparison of its ECD
spectrumwith that of 1 (Figure 4), which showed great similarity.

The molecular formula of compound 3 was established as
C38H47NO7 by HRESIMS, with one more degree of unsaturation
compared to 3. The NMR spectra of 3 were closely related to
those of 2, indicating that 3 was also an indolediterpene bearing
an additional substituted dihydropyran ring linked with the
indole unit. The carbon skeleton of 3 was assigned the same
as that of 2 by analysis of the 2D NMR data (Figure 2). However,
in the HMBC spectrum of 3, correlations from H3-4″ and H3-5″
to C-3″ and C-2″ at δC 122.2, as well as fromH-2″ to C-1″ and C-
4, suggested the presence of the C-1’’/C-2″ double bond. HMBC
correlations from H3-4′ and H3-5′ to C-2′ at δC 81.6 indicated the
location of a hydroxyl group at C-3’. HMBC correlations from
both H-2 and the methoxy protons at δH 3.48 to C-1′ at δC 91.5
suggested the presence of a methoxy at C-1’. The characteristic
chemical shifts of the two oxygenated carbons C-18 and C-23 (δC
106.1 and 79.4), together with the molecular formula, suggesting
the linkage of C-18/O/C-23. In the ROESY spectrum (Figure 3),
correlation of H-11/H3-26 indicated the same orientation of these
protons, while correlation of H-16/H3-27 suggested that they
were on the face opposite to H3-26. In the ROSEY spectrum
collected in DMSO-d6, correlation between the protons of OH-2′
and 1′-OCH3 indicated their same orientation.

The molecular formula of compound 4 was established as
C28H41NO2 by HRESIMS. The double-bond equivalent of 4 was
calculated to be nine. The HSQC spectrum displayed the typical
pattern of a 3-substituted indole moiety, seven sp3 methylenes,
five methyls, three sp3 methines with one oxygenated, three sp3

non-protonated carbons with one oxygenated, and one tri-
substituted double bond. These data were nearly identical to
those for penicilindole A (Zheng et al., 2018), and the main
difference between them was the chemical shift for C-13, which
was δC 47.7 for penicilindole A, while δC 52.0 for 4. Detailed

analysis of the HMBC and COSY data (Figure 2) for 4 revealed
that it bears the same planar structure as that of penicilindole A.
Similar to that of penicilindole A, correlations of H3-27/H-10/H-
19 and H-11/H-16 were observed in the ROESY spectrum of 4,
leading to the assignment of the relative configurations for all of
the chiral carbons except for C-27 (Figure 3). However, the
absence of the correlation between H3-27 and H-11 in the ROESY
data of 4 indicated their trans relationship, which was different
from that of penicilindole A. Thus, compound 4 was determined
to be 27-epi- penicilindole A.

Compound 5 was obtained as a white powder, and its
molecular formula was determined as C28H41NO2 according to
the HRESIMS data, with nine degrees of unsaturation. Analysis of
the NMR spectra of 5 also revealed a 3-substituted indole moiety.
Besides, five methyls, six sp3 methylenes, six sp3 methines with
one oxygenated, and three sp3 non-protonated carbons with one
oxygenated were also observed. The above data were comparable
to those reported for 10,23-dihydro-24,25-dehydroaflavinine
(Mark et al., 1989), with the main differences being the
replacement of the signals for the methylene in 10,23-dihydro-
24,25-dehydroaflavinine by one methyl and one oxygenated sp3

non-protonated carbon in 5. In the HMBC spectrum of 5
(Figure 2), correlations from both H3-25 and H3-26 to C-24 at
δ 76.6 and C-23 were observed. These data suggested that the C-
24/C-25 double bond in 10,23-dihydro-24,25-dehydroaflavinine
was hydrated in 5. The remaining structure of 5 was determined
to be the same as that of 10,23-dihydro-24,25-dehydroaflavinine
by analysis of the 2D NMR data. The relative configuration of 5
was determined by ROSESY correlations (Figure 4) of H-11/H-
19/H-16 and H3-27/H-23.

Until now, more than 100 paxilline-type indole-terpenoids
have been reported. These compounds showedmultiple activities,
including anti-H1N1 (Fan et al., 2013), antibacterial (Xu et al.,
2019), cytotoxic, ion channel antagonistic (Sheehan et al., 2009),
and PTP1B inhibitory activities. However, the anti-diabetic
activities of these compounds have not been reported.

Anti-Diabetic Activity Assay
Compounds 1–5 were nontoxic against HepG2 cells by MTT
assay at the concentration of 100 μM (Figure 5A). Excessive
hepatic glucose production was considered to be a key for the
onset of diabetes (Liao et al., 2021). The hepatic glucose
production in response to all the compounds was
evaluated, and EC50 values were used to assess their
potencies. Glucagon challenge increased hepatic glucose
production in HepG2 cells, whereas compounds 1–5
inhibited hepatic glucose production, with EC50 values of
17.6, 30.1, 21.3, 9.6, and 9.9 μM, respectively, while 1.9 μM
for the positive control metformin. cAMP is a second
messenger in response to glucagon and responsible for the
initiation of cascade signaling of hepatic glucose production.
Glucagon stimulation increased cAMP contents in cells
(Figures 5B,C). Compound 1–5 treatment suppressed
cAMP accumulation, with 4 showing the strongest effect.
The results suggested that compounds 1–5 inhibited
hepatic glucose production by suppressing hepatic glucagon
response.

FIGURE 4 | The experimental ECD spectra of 1 and 2.
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CONCLUSION

In summary, from the fungus Penicillium sp. HFF16, five new
indole-terpenoids were isolated and identified. These compounds
could inhibit cAMP accumulation and hepatic glucose
production, without affecting the cell viability in glucagon-
stimulated HepG2 cells. Among them, compound 4 showed
the strongest effect, which showed its potential in the
development of new anti-diabetic drugs.
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