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Abstract

Purpose—Current normal tissue complication probability modeling using logistic regression 

suffers from bias and high uncertainty in the presence of highly correlated radiation therapy (RT) 

dose data. This hinders robust estimates of dose-response associations and, hence, optimal normal 

tissue—sparing strategies from being elucidated. Using functional data analysis (FDA) to reduce 

the dimensionality of the dose data could overcome this limitation.

Methods and Materials—FDA was applied to modeling of severe acute mucositis and 

dysphagia resulting from head and neck RT. Functional partial least squares regression (FPLS) and 

functional principal component analysis were used for dimensionality reduction of the dose-

volume histogram data. The reduced dose data were input into functional logistic regression 

models (functional partial least squares—logistic regression [FPLS-LR] and functional principal 

component—logistic regression [FPC-LR]) along with clinical data. This approach was compared 

with penalized logistic regression (PLR) in terms of predictive performance and the significance of 

treatment covariate—response associations, assessed using bootstrapping.

Results—The area under the receiver operating characteristic curve for the PLR, FPC-LR, and 

FPLS-LR models was 0.65, 0.69, and 0.67, respectively, for mucositis (internal validation) and 
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0.81, 0.83, and 0.83, respectively, for dysphagia (external validation). The calibration slopes/

intercepts for the PLR, FPC-LR, and FPLS-LR models were 1.6/−0.67, 0.45/0.47, and 0.40/0.49, 

respectively, for mucositis (internal validation) and 2.5/−0.96, 0.79/−0.04, and 0.79/0.00, 

respectively, for dysphagia (external validation). The bootstrapped odds ratios indicated significant 

associations between RT dose and severe toxicity in the mucositis and dysphagia FDA models. 

Cisplatin was significantly associated with severe dysphagia in the FDA models. None of the 

covariates was significantly associated with severe toxicity in the PLR models. Dose levels greater 

than approximately 1.0 Gy/fraction were most strongly associated with severe acute mucositis and 

dysphagia in the FDA models.

Conclusions—FPLS and functional principal component analysis marginally improved 

predictive performance compared with PLR and provided robust dose-response associations. FDA 

is recommended for use in normal tissue complication probability modeling.

Introduction

Normal tissue complication probability (NTCP) modeling uses radiation therapy (RT) dose 

data, often in combination with clinical and biological data, to construct statistical models of 

RT-induced toxicity. There are 2 distinct aims of NTCP modeling: (1) accurate prediction of 

toxicity outcomes for individual patients; and (2) estimates of associations between 

treatment covariates and toxicity. Accurate prediction enables clinical decision support (1), 

treatment plan comparison, treatment modality selection (2), and personalized dose 

prescription (3). Robust estimates of associations between covariates and toxicity can inform 

the design of RT planning interventions aimed at reducing toxicity.

A major weakness of many NTCP models is suboptimal dimensionality reduction of the RT 

dose distribution (reducing the number of variables used to describe the dose distribution 

from all of the points on the 3-dimensional [3D] dose grid to a small number of summary 

metrics). To input dose data into statistical models, the 3D dose distribution delivered to an 

organ at risk (OAR) is reduced to a single or series of scalar metrics, for example, maximum 

dose or mean dose, or multiple points sampled from the dose-volume histogram (DVH), 

such as the volume of an OAR receiving at least x cGy (Vx). Ideally, information from each 

dose level should be explicitly input into the model to prevent loss of potentially important 

information. However, given the nature of the dose deposition within the patient, adjacent 

dose levels are very highly correlated (4). This is problematic for many statistical modeling 

methods, such as the commonly used logistic regression, which often exhibit biased 

regression coefficients with large standard errors in the presence of collinearity (5). The 

structure of the correlations is often consistent between patients because the volumes of an 

OAR receiving adjacent dose levels are highly correlated for all patients. Therefore, if the 

same or similar treatment techniques are used, this does not necessarily prevent the models 

from being able to accurately predict outcomes prospectively for new patients. However, it 

does result in the regression coefficients of the dosimetric covariates being biased and 

having large standard errors. The apparent regression co-efficients of the dosimetric 

covariates do not generalizewell to new patients and, hence, should not be used to determine 

the strength of associations between correlated dose metrics and toxicity, as is commonly 

done (6).
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A small number of studies have attempted to address this issue through using principal 

component analysis (PCA) to reduce the dimensionality of the DVH data (7-12). However, 

PCA has been shown to perform poorly when the number of predictors (DVH points) is 

comparable to, or larger than, the number of observations (patients), as is often the case in 

NTCP modeling (9, 11). Functional data analysis (FDA) is a statistical framework for 

analyzing continuous curves rather than discrete measurements (13). Treating an entire 

curve, for example, a DVH curve, as a single entity removes the problem of correlation (14) 

and explicitly retains the relationship between points on the DVH curve, which standard, 

nonfunctional statistical techniques do not capture. Data are represented as curves through 

the use of basis functions. There are different types of basis functions including a priori 

fixed bases, such as splines or wavelets, and data-driven bases, for example, functional 

principal component analysis (FPCA). Functional logistic regression uses functional data to 

predict binary outcomes. It is well suited to NTCP modeling because of the continuous 

nature of DVH curves and the binary nature of toxicity endpoints. Functional logistic 

regression has recently been applied to NTCP modeling by Benadjaoud et al (15), using 

FPCA (16) for dimensionality reduction of the DVH data. However, FPCA (and 

nonfunctional PCA) is unsupervised (it does not use outcome data), which may be a 

limitation for NTCP modeling. The FPCA components with the most variance in the RT 

dose data may not be the ones that are most strongly associated with the toxicity outcome of 

interest. Functional partial least squares regression (FPLS) (17, 18) is a supervised analogue 

of FPCA. It overcomes this limitation through generating uncorrelated covariates (FPLS 

components) in the linear space of the predictors, accounting for the correlation between 

those predictors and outcome, in this case toxicity. As partial least squares regression (and 

FPLS) uses the outcome (toxicity) data in establishing the components, it often outperforms 

PCA (and FPCA) in prediction tasks (19). However, because of the inclusion of outcome 

data, it is more susceptible to overfitting.

In this study we applied FPLS and FPCA to NTCP modeling of severe acute mucositis and 

dysphagia. We compared our novel application of FDA with nonfunctional penalized logistic 

regression (PLR) models. The aims of this study were to (1) determine whether using FPLS 

or FPCA to reduce the DVH data would improve predictive performance compared with 

PLR; and (2) assess whether FPLS or FPCA would lead to more robust estimates of 

associations between DVH data and toxicity than PLR.

Methods and Materials

Patient data

Data from 351 head and neck RT patients, enrolled in 1 of 6 different clinical trials (20-24) 

(International Standard Randomised Controlled Trial Number 81772291), were used to train 

and internally validate severe acute mucositis and dysphagia NTCP models. Data from the 

same patients were used for the modeling of both toxicities. This dataset is described in 

Appendix A (available online at www.redjournal.org) and the publication (25). Mucositis 

and dysphagia were both consistently scored for all studies using the Common Terminology 

Criteria for Adverse Events version 2.0 instrument (26) or version 3.0 instrument (27). The 

mucositis and dysphagia grading systems are nearly equivalent in both versions. Both 
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toxicities were recorded, prospectively, for all patients prior to the start of RT, weekly during 

RT, and at 1 to 4 and 8 weeks after RT by head and neck cancer specialists trained in the use 

of the scoring systems, using standard trial protocols. The toxicity outcome was defined as 

the peak grade of toxicity, dichotomized into grade 3 or worse (severe) and less than grade 3 

(non-severe). Grade 3 mucositis corresponds to confluent mucositis and grade 3 dysphagia 

corresponds to feeding-tube dependence for >24 hours. Patients with baseline toxicity were 

excluded from the analysis. To attempt to reduce bias at the expense of statistical power, 

patients with any missing toxicity scores and a peak score below 3 were excluded from the 

analysis. A detailed justification for this approach is provided in Appendix B (available 

online at www.redjournal.org). Of the 351 patients, 183 met the inclusion criteria for 

mucositis modeling (severe mucositis incidence, 73%) and 179 met the inclusion criteria for 

dysphagia modeling (severe dysphagia incidence, 66%). Ninety head and neck RT patients 

treated at Washington University School of Medicine in St Louis with acute dysphagia data 

available were used as an external validation cohort for the dysphagia models (severe 

dysphagia incidence, 48%). In this cohort severe acute dysphagia was defined as the 

requirement for percutaneous endoscopic gastrostomy (PEG) tube insertion. It should be 

noted that there was a slight difference in the scoring systems because of the data available. 

All centers involved in treating patients included in this study used a reactive approach to 

PEG insertion, that is, delaying insertion until deemed clinically necessary.

Induction chemotherapy (yes or no), concurrent chemotherapy regimen (cisplatin, 

carboplatin, 1 cycle of cisplatin followed by 1 cycle of carboplatin, or none), definitive 

versus postoperative RT, primary disease site (grouped into oropharynx or oral cavity, 

nasopharynx or nasal cavity, hypopharynx or larynx, parotid gland, and unknown primary), 

age, and sex were also included as covariates in the models. Concurrent chemotherapy was 

administered in 2 cycles, on day 1 and day 29 of RT. A comparison of the clinical covariate 

data in the training and external validation datasets is provided in Appendix C (available 

online at www.redjournal.org).

RT dose data

The extended oral cavity (25) and pharyngeal mucosa (described in Appendix D) were 

contoured by clinical oncologists and used as OARs in the mucositis and dysphagia models, 

respectively. The physical dose distribution was converted to the fractional dose distribution 

(physical dose delivered in each fraction). This has been shown to be appropriate for NTCP 

modeling of acute toxicity (28) as the toxicities often develop before the total dose is 

administered. The fractional dose distribution was described by the normalized cumulative 

DVH. Preliminary work indicated that corrections for different fractionation regimens based 

on radiobiological models made negligible difference to the results. This is because the 

fractionation regimens used (Appendix A; available online at www.redjournal.org) were 

similar. An alternative approach would be to use the cumulative dose delivered up to the 

appearance of the toxicity endpoint. However, treating clinicians’ subjective choice of when 

to initiate a feeding-tube intervention would lead to substantial noise in the cumulative dose 

delivered up to the time of intervention.
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PLR model

For the nonfunctional model, the fractional DVH curves were discretely sampled from 0.2 

Gy to 2.6 Gy at 0.2 Gy intervals. This sampling was chosen to encompass the entire range of 

OAR doses with enough granularity to capture the shapes of the DVHs. These DVH 

measurements were input into a PLR model along with the clinical covariates. Penalization 

was performed using the least absolute shrinkage and selection operator (LASSO) (29). 

LASSO reduces the magnitude of the regression co-efficients, setting some to 0, to prevent 

overfitting. In the context of correlated variables, it reduces the impact of multicollinearity. 

The penalization strength was selected by 10-fold cross validation with the value producing 

the highest average (over all of the cross validation folds) area under the receiver operating 

characteristic curve (AUC) on cross validation selected.

Functional data analysis

The fractional DVH curves (sampled from 0 Gy to 2.60 Gy in 0.01-Gy intervals) were 

represented using penalized FPCA (16, 30) and penalized FPLS (17, 31) basis functions. 

FPCA is a dimensionality reduction technique that represents the functional DVH data as 

orthonormal vector components explaining the maximum variance between patients in the 

DVH curves. The orthonormality constraint removes the collinearity in the dose metrics 

used for subsequent modeling and, hence, overcomes the limitations associated with 

modeling collinear data. The functional principal components represent the functional DVH 

data (normalized volume as a function of dose, d for patient i), Vi(d), as the sum of the 

eigenfunctions, ξk(d), weighted by their coefficients, cik:

(1)

where μ(d) is the mean V(d) and cik describes the score for functional principal component k 
for the DVH of patient i and is given by:

(2)

The eigenfunctions, , and their corresponding eigenvalues (describing the amount 

of variance explained by each eigenfunction), λ1 ≥ λ2 ≥ …, are determined by 

eigendecomposition (factorization into eigenvalues and eigenvectors) of the covariance 

operator, Σ, where:

(3)

in which d1 and d2 are two different dose levels and E is the expected value. V(d) can be 

approximated by a small number of principal components, kn, assuming that cik = 0 for k > 

kn, to achieve dimensionality reduction to a small number of basis functions efficiently 

describing the variation between patients in the DVH data:
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(4)

The eigenfunctions and their coefficients can then be used in subsequent analyses. The 

FPCA components can be used to estimate a toxicity outcome for patient i, yi, using a 

functional linear model (30, 32):

(5)

where α is the intercept and εi is a centered random error.

When FPCA is used to describe the DVH data, β(d) represents a “weighting function” 

describing the amount of variation between patients at all dose levels on the DVH. It can be 

approximated by kn eigenfunctions:

(6)

An estimate of the response, ŷi, can be made using the following [with the derivation 

described in a previous publication (30)]:

(7)

where

(8)

The model was fit to the data, placing penalization on the curvature (second derivative) of 

the eigenfunctions, by:

(9)

where r is the amount of penalization, P is the vector (0, 0, 1) that defines the penalty matrix 

such that the second derivative (curvature) is penalized, and yi is the actual outcome 

(toxicity) data for patient i. The choice of which components to include (within the first 5 

components) and the magnitude of the roughness penalty, r, to apply (selected from a set of 
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values in the range from 0 to 1350) to best estimate the toxicity outcomes were determined 

using model selection criteria (MSC) (16) with the Bayesian information criterion:

(10)

where n is the number of patients. This penalizes the model complexity to reduce overfitting. 

Models with different values of r and kn were generated, and the combination of values that 

minimized MSC was selected. The FPCA or FPLS components included affect the 

smoothness of the estimate of the β(d) function as the dominant mode of variation tends to 

be smooth and roughness tends to increase for subsequent modes of variation, in part 

because of the orthogonality constraint.

FPLS is similar to FPCA but uses the response (toxicity) data in constructing the FPLS 

components (17), , to establish orthogonal components that have maximum 

covariance to the response. This is achieved through maximizing the squared covariance 

between Vi(d) and the response, yi, with the constraint that all components are mutually 

orthogonal (31). This takes the place of the eigendecomposition used for FPCA, described in 

equation 3. The iterative algorithm used to compute the FPLS components was described 

previously (33). When FPLS is used for dimensionality reduction of the DVH data, β(d) can 

be interpreted as a data-driven weighting function for the importance of each dose level in 

causing severe toxicity. It is important to consider that, as this is a data-driven approach, the 

weighting function is an estimate of the “true weighting function” over the range of available 

data and is influenced by the structure (ie, distribution in dose-volume space) of the 

available data. MSC was performed for the FPLS analysis in the same manner as for FPCA. 

The FPCA and FPLS analyses were bootstrapped with 2000 replicates to assess the 

uncertainty in the shapes of the components.

The optimal FPCA and FPLS components (those producing the lowest MSC) were used as 

basis functions as input into functional logistic regression (34, 35) models (functional 

principal component—logistic regression [FPC-LR] and functional partial least squares—

logistic regression [FPLS-LR]) along with the (nonfunctional) clinical covariates. The 

functional logistic regression model describes the probability of patient i having severe 

toxicity, P(yi = 1), and is given by:

(11)

using the substitution for the functional linear model described in equation 7, where α is the 

intercept and  are the nonfunctional covariates with regression coefficients . 
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Maximum likelihood estimation of the regression coefficients was performed using 

iteratively reweighted least squares.

Model comparisons

The predictive performance and generalizability of the models (addressing aim 1) were 

assessed in terms of discrimination, calibration, and overall performance on internal 

validation, as well as additionally for the dysphagia models on external validation. The 

discriminative abilities of the models were assessed using the AUC. Calibration was 

evaluated by the slope and intercept of a logistic regression model of the actual toxicity 

against the predicted probability of severe toxicity (36, 37). Overall model performance was 

measured using the Brier score (BS) (38). It is defined as:

(12)

where pt is the predicted probability, yt is the actual outcome, and N is the number of 

predictions. The score takes a value between 0 and 1, with lower values indicating better 

performance.

For the internal validation, the performance metrics were “corrected for optimism” using 

bootstrapping with 2000 replicates (39). The optimism-corrected performance metrics, 

Mcorrected, were calculated by:

(13)

where Mapparent is the performance metric, for example, AUC, calculated using all of the 

training data to both fit the model and evaluate its performance, and the optimism, O, is 

given by:

(14)

where B is the number of bootstrap replicates, Mb,boot is the performance metric calculated 

using the bootstrap dataset b to both fit and evaluate model performance, and Mb,orig is the 

performance of the model fit using the bootstrap dataset b evaluated on the original dataset. 

This provides an unbiased estimate of internal validity, penalizing for over-fitting. Model 

hyper-parameter tuning, such as the selection of the amount of penalization for the PLR 

models and the selection of components and penalization for the FDA models, was 

performed for each bootstrap replicate. This prevents any “data leakage” from the training 

data into the internal validation data. The dysphagia models were used to predict severe 

dysphagia probability for the external validation cohort. Those predictions were compared to 

the actual PEG-dependence data for the cohort and the same performance metrics calculated. 

The uncertainties of the odds ratios (addressing aim 2) were assessed by calculating 
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bootstrapped 95% confidence intervals with 2000 replicates. Statistical analysis was 

performed using the statistical computing R language version 3.2.4 (40) and the fda.usc 

version 1.2.2 (41), glmnet version 2.0 (42), rms version 4.5 (43) and val.prob.ci.2 (44) 

packages.

Results

For FPCA, the variances in the DVH data explained by the first 5 FPCA components were 

80.8%, 12.5%, 3.7%, 1.2%, and 0.6% for mucositis and 70.8%, 14.5%, 5.6%, 4.4%, and 

1.6% for dysphagia. For FPLS, the variances explained by the first 5 FPLS components were 

78.1%, 16.9%, 2.0%, 2.5%, and 0.6% for mucositis and 76.2%, 8.6%, 11.2%, 2.7%, and 

1.3% for dysphagia. The model selection resulted in the first 2 components being selected 

for the FPCA and FPLS mucositis models and only the first component being selected in 

both of the dysphagia FDA models. Penalization of 1342 was chosen by the model selection 

for the mucositis FPCA model, 0 for the mucositis FPLS model, and 1350 for both of the 

dysphagia FDA models.

Figure 1 shows the first FPCA and FPLS components for the mucositis and dysphagia 

models. Bootstrapping the FPCA and FPLS indicated that the shapes of the first FPCA and 

FPLS components were very similar irrespective of the random sample of patients selected. 

There was a general trend that the FPCA and FPLS loadings increased with increasing dose 

and sharply decreased to 0 at the maximum dose. The FPCA components indicate that the 

variation between patients in the volume of OAR irradiated to a certain dose level increased 

with increasing dose level. The same trend in the FPLS components indicates that higher 

doses were more strongly associated with severe toxicity. The decrease in the first FPCA and 

FPLS component loadings at around 1.8 Gy (Fig. 1) for the dysphagia training data is 

indicative of reduced variation in this region of the DVHs between patients. This is likely to 

be because most of the variation in the pharyngeal mucosa dose distribution between 

patients is related to the variation in volume of overlap of the 2 different planning target 

volumes (whose prescription dose levels correspond to the positions of the 2 peaks in the 

FPCA and FPLS components) with the pharyngeal mucosa.

For the PLR, FPC-LR, and FPLS-LR modeling, oropharynx or oral cavity and no concurrent 

chemotherapy were removed as covariates to prevent perfect collinearity (correlation 

matrices are shown in Appendix E; available online at www.redjournal.org). Odds ratios for 

other primary disease sites are thus relative to oropharynx or oral cavity, and odds ratios for 

concurrent chemotherapy are relative to no concurrent chemotherapy.

Regarding aim 1, the predictive performance of the 3 different mucositis and dysphagia 

models, as assessed by internal and external (for dysphagia) validation, is displayed in Table 

1. The mucositis models had modest (PLR and FPLS-LR) or modest to good (FPC-LR) 

discriminative ability [using the interpretation previously described (45)] on internal 

validation. The discriminative abilities and overall performances of the FPC-LR and FPLS-

LR models were marginally better than the PLR model. Calibration was relatively poor for 

all of the models, with the FPC-LR and FPLS-LR models overfitting the data (calibration 

slope <1) and the PLR model underfitting the data (calibration slope >1). The underfitting 
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exhibited by the PLR models was likely due to over-shrinkage of the regression coefficients 

by the LASSO penalization caused by high multicollinearity. It should be noted that the 

“correction for optimism” may have improved the calibration of the PLR models, as they 

underfit the data.

The discrimination and calibration of the dysphagia models were better than the mucositis 

models. All 3 dysphagia models had good discriminative ability on internal validation. The 

discriminative abilities of all 3 models increased on external validation, with the PLR model 

showing good to excellent discrimination and the FPC-LR and FPLS-LR models showing 

excellent discrimination. The overall performance of all of the models was similar, both on 

internal validation and on external validation. Calibration of all of the models on internal 

validation was modest, with the PLR model under-fitting the data and the FDA models 

overfitting the data. The FPC-LR and FPLS-LR models had substantially better calibration 

than the PLR model on external validation. The FPLS-LR model had marginally better 

calibration than the FPC-LR model on external validation. A logistic calibration curve for 

the external validation of this model is shown in Figure 2. The curve lies close to the identity 

line, indicating good model calibration on external validation.

Concerning aim 2, the results of the bootstrapped penalized and functional logistic 

regression odds ratios are shown in Tables 2-4. The odds ratios for the covariates in the PLR 

models were often set to 1 by the LASSO penalization. In the mucositis and dysphagia PLR 

models, none of the covariates was significantly associated with severe toxicity. Conversely, 

there was a significant association between the first FPLS component and severe toxicity in 

the mucositis and dysphagia FPLS-LR models. The first FPCA components were not 

significantly associated with severe mucositis or dysphagia. Compared with the first FPLS 

components, slightly less weight was given to the higher doses (Fig. 1). It should be noted 

that the sign of the FPCA component loadings is arbitrary, so the fact that the odds ratios are 

<1 does not indicate that there is an inverse correlation between RT dose and severe toxicity.

None of the clinical covariates was significantly associated with toxicity in the mucositis 

models. Concurrent cisplatin was significantly associated with severe acute dysphagia in the 

FPC-LR and FPLS-LR models but not in the PLR model. None of the clinical covariates 

was significantly associated with severe toxicity in either of the PLR models.

Discussion

Our results show that FPC-LR and FPLS-LR produced models with marginally better 

discrimination and overall performance than PLR and superior calibration (aim 1). They also 

show that FPCA and FPLS are appropriate methods to provide robust estimates of dose-

response associations, to inform RT planning, in the presence of highly correlated DVH data 

(aim 2). We, therefore, encourage the use of FDA methods in future NTCP modeling 

studies. We suggest that our externally validated dysphagia FPLS-LR model is suitable for 

clinical decision support. To our knowledge, it represents the severe acute dysphagia model 

with the best predictive performance to date. Previous models of severe dysphagia during or 

shortly after RT that measured discrimination had AUC values of 0.62 (46) and 0.74 (47). 

These studies did not perform external validation. The mucositis FPC-LR model had the best 
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performance on internal validation and should be externally validated to determine its 

potential to aid clinical decision making. Both models are available at https://github.com/

jamiedean/fda-ntcp-models.

The shapes of the first FPLS components indicate that both severe mucositis and dysphagia 

are most strongly associated with the volume of the oral cavity or pharyngeal mucosa 

receiving high and intermediate fractional doses (greater than approximately 1.0 Gy). 

Therefore, RT planning interventions aiming to minimize the incidence of severe acute 

mucositis and dysphagia should minimize the volumes of oral cavity and pharyngeal mucosa 

receiving high and intermediate fractional doses, without compromising other aspects of the 

plan, such as target coverage. Although this is intuitively unsurprising, many RT planning 

protocols, such as Radiation Therapy Oncology Group (RTOG) 0912, RTOG 0920, and 

RTOG 1216, set planning objectives based on OAR mean doses, which give equal 

importance to low doses and high doses. This suboptimal approach is likely taken because of 

the common use of mean dose to achieve dimensionality reduction in studies aiming to 

elucidate dose-response relationships. The first FPCA components, which are unsupervised, 

had similar shapes to the first FPLS components, which are supervised, suggesting that, for 

this dataset, the variation in severity of toxicities is related to the variations in the DVHs. 

This suggestion is further supported by the fact that the MSC for FPCA selected the first 

FPCA component (the one describing the most variation in the DVH data). This will not 

necessarily be the case for all datasets. The variations in the bootstrapped first FPLS 

components are slightly wider than those of the first FPCA components (Fig. 1) because of 

the presence of patients who did not follow the general dose-response trend (ie, received 

lower doses but had severe toxicity and vice versa). The substantial penalization of the PLR 

odds ratios (many often being set to 1) shows the limitations of using PLR models to infer 

associations between correlated dosimetric covariates and toxicity, and hence, we do not 

recommend its use in this context. Unlike the FDA models, the PLR models were unable to 

identify that high doses, greater than approximately 1.0 Gy/fraction, had higher correlations 

with toxicity than low doses, as would be intuitively expected.

The FDA models were also able to identify an association between concurrent cisplatin and 

severe acute dysphagia. The associations between cisplatin and dysphagia in the PLR model 

were not significant. This may be due to the fact that concurrent chemotherapy was 

correlated with the DVH metrics because of patients with parotid gland primary tumors 

(who receive unilateral, rather than bilateral, irradiation and, hence, lower pharyngeal 

mucosa doses) not receiving concurrent chemotherapy. The number of patients receiving 

concurrent carboplatin or a combination of cisplatin and carboplatin was low (Appendix C; 

available online at www.redjournal.org), leading to large uncertainties in the odds ratios for 

those covariates. The FDA models featured large uncertainties for the odds ratios of clinical 

covariates that were highly correlated with other covariates or which applied to small 

numbers of patients. It should be noted that the regression coefficients of the clinical 

covariates were not penalized in the FDA models.

There have been very few previous attempts to apply FDA to NTCP modeling (15, 48, 49). 

These have used either spline basis functions (48, 49) or FPCA (15). To our knowledge, this 

study represents the first application of FPLS to NTCP modeling. Many previous NTCP 
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modeling studies have not addressed the problem of the high uncertainties of the model 

regression coefficients caused by multicollinearity. Investigators who have recognized this 

limitation have avoided the multicollinearity problem by reducing the data describing 

heterogeneous dose distributions to simple summary metrics, such as mean or maximum 

dose. However, this leads to suboptimal recommendations for RT planning. For example, 

using mean dose to optimize or assess RT plans gives equal weight to all dose levels, 

whereas preferentially minimizing the volume of an OAR receiving high doses rather than 

low doses is, in fact, likely to result in a lower toxicity incidence.

A limitation of our approach is that, as the technique is an empirical data—driven method, 

there are decreases in the weighting function describing the relative importance of each dose 

level with increasing dose, which does not have a biophysical rationale. This should be 

carefully considered when interpreting dose-response associations from these components. 

This limitation could be overcome through adopting a Bayesian approach whereby prior 

knowledge is provided to the model dictating that, with increasing dose level, the weighting 

function can only remain constant or increase and not decrease. Mathematically, this would 

take the form of a monotonically increasing prior function (48). The slight difference in the 

dysphagia scoring systems between the training and external validation cohorts may have 

reduced the performances of the models on external validation. However, the models 

performed at least as well on external validation as internal validation. The relatively small 

size of the external validation cohort should also be considered a potential limitation.

In the future, FPCA or FPLS could be applied to the 3D dose distribution (rather than the 

DVH) (15), either to a single OAR or to the entire dose grid, encompassing multiple OARs. 

This would allow associations between spatial aspects of the dose distribution and toxicity to 

be explored. This would require accurate mapping of the 3D dose distributions onto a 

common reference.

Conclusions

FPC-LR and FPLS-LR models of severe acute mucositis had marginally better 

discrimination than PLR on internal validation. FDA models of dysphagia had marginally 

improved discrimination and substantially superior calibration compared with PLR on 

external validation, indicating potential advantages for clinical decision support. FPCA and 

FPLS enable robust estimates of dose-response associations in the context of correlated dose 

data. This permits understanding of the most beneficial OAR dose-volume levels, Vx to 

reduce in RT planning. Minimizing the volumes of the oral cavity and pharyngeal mucosa 

receiving high and intermediate doses is expected to reduce the incidence of severe acute 

mucositis and dysphagia. We recommend that FDA methods be applied to future NTCP 

modeling studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Summary

Normal tissue complication probability modeling using logistic regression (LR) suffers 

from bias and uncertainty in the presence of highly correlated radiation therapy dose data. 

Consequently, robust estimates of the dose levels most strongly associated with toxicity 

and, potentially, predictive performance are limited. To overcome this limitation, 

functional data analysis, which describes the dose-volume histogram as a continuous 

curve, was applied to modeling of severe acute mucositis and dysphagia and compared 

with LR. Functional data analysis models showed slightly better predictive performance 

and more robust dose-response estimates than LR.
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Fig. 1. 
First functional principal component (left column) and first functional partial least squares 

component (right column) for mucositis training (top row), dysphagia training (middle row), 

and dysphagia external validation (bottom row) data bootstrapped with 2000 replicates. Each 

line represents 1 bootstrap sample. The functional principal components show the variance 

in the patient dose-volume histograms over the range of dose levels. The functional partial 

least squares components show the covariance between the patient dose-volume histograms 

and toxicity outcomes over the range of dose levels. Note that the components for the 
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validation data set are shown for comparison with the training data and were not used in any 

of the model training or validation tasks.

Abbreviations: FPCA = functional principal component analysis; FPLS = functional partial 

least squares regression.
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Fig. 2. 
Logistic calibration curve of the functional partial least squares—logistic regression 

dysphagia model predictions against actual toxicity outcome for the external validation data. 

The relative frequency distribution of the raw predicted probabilities, along with the actual 

outcome (where 0 indicates non-severe dysphagia and 1 indicates severe dysphagia), is 

displayed at the bottom of the figure.
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Table 1

Predictive performance of mucositis and dysphagia models on internal validation (corrected for optimism by 

bootstrapping with 2000 replicates) and external validation (for dysphagia models)

Model AUC Brier score Calibration slope Calibration intercept

Mucositis

 PLR 0.65 0.21 1.6 −0.67

 FPC-LR 0.69 0.19 0.45 0.47

 FPLS-LR 0.67 0.20 0.40 0.49

Dysphagia*

 PLR 0.74/0.81 0.20/0.18 1.2/2.5 −0.15/−0.96

 FPC-LR 0.76/0.83 0.19/0.18 0.59/0.79 0.21/−0.04

 FPLS-LR 0.75/0.83 0.20/0.18 0.56/0.79 0.22/0.00

Abbreviations: AUC = area under receiver operating characteristic curve; FPC-LR = functional principal componentelogistic regression; FPLS-LR 
= functional partial least squares—logistic regression; PLR = penalized logistic regression.

*
For the dysphagia models, the metrics of predictive performance are given as internal validation/external validation.
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Table 2

Odds ratios for penalized logistic regression models

Covariate

Mucositis model Dysphagia model

Odds ratio 95% CI Odds ratio 95% CI

Intercept 2.512 0.016-12.43 0.360 0.007-2.583

Male 1.000 1.000-2.554 1.000 1.000-1.945

Age 1.000 0.971-1.006 1.000 0.980-1.000

Definitive RT 1.000 0.110-1.000 1.000 0.544-1.000

Induction chemotherapy 1.000 0.410-1.166 1.000 1.000-2.089

Cisplatin 1.000 1.000-3.464 1.277 1.000-3.230

Carboplatin 1.000 0.361-4.015 1.000 1.000-4.278

Cis-carbo 1.000 0.136-1.769 1.000 0.989-2.930

Hypopharynx or larynx 1.000 1.000-14.71 1.000 1.000-2.203

Nasopharynx or nasal cavity 1.000 0.905-6.190 1.000 0.247-1.000

Unknown primary 1.000 0.022-1.000 1.000 0.945-1.210

Parotid 0.814 0.231-2.546 0.600 0.208-1.000

V020 1.000 1.000-1.119 1.000 1.000-1.031

V040 1.000 0.891-1.000 1.000 1.000-1.014

V060 1.000 1.000-1.032 1.000 1.000-1.003

V080 1.000 1.000-1.050 1.000 1.000-1.023

V100 1.000 0.934-1.000 1.000 1.000-1.029

V120 1.000 1.000-1.084 1.019 1.000-1.044

V140 1.000 0.917-1.000 1.000 1.000-1.019

V160 1.000 1.000-1.038 1.000 1.000-1.011

V180 1.002 1.000-1.085 1.000 0.997-1.009

V200 1.000 0.949-1.007 1.000 1.000-1.019

V220 1.000 1.000-1.098 1.008 1.000-1.031

V240 1.000 0.616-1.154 1.000 1.000-1.025

V260 1.000 1.000-1.000 1.000 1.000-1.000

Abbreviations: Cis-carbo = 1 cycle of cisplatin followed by 1 cycle of carboplatin; RT = radiation therapy; 95% CI = 95% confidence interval 
calculated by bootstrapping model fitting with 2000 replicates; Vx = volume of organ receiving x cGy of radiation per fraction.
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Table 3

Odds ratios for functional principal component—logistic regression models

Covariate

Mucositis model Dysphagia model

Odds ratio 95% CI Odds ratio 95% CI

Intercept 12.89 1.035-1.734×109* 1.616 0.142-77.46

Male 1.535 0.637-4.088 1.675 0.533-4.880

Age 0.991 0.951-1.029 0.988 0.943-1.027

Definitive RT 0.254 2.679×10−9-1.773 0.997 0.080-7.541

Induction chemotherapy 0.487 0.070-1.960 1.100 0.210-7.670

Cisplatin 2.251 0.745-9.540 4.255 1.077-19.86*

Carboplatin 1.320 0.142-7.314×107 4.429 0.685-8.332×107

Cis-carbo 0.311 7.815×10−9-2.531×107 2.238 0.319-4.587×107

Hypopharynx or larynx 4.371 0.512-143.9 1.723 0.193-1.881×107

Nasopharynx or nasal cavity 2.370 0.308-1.096×108 0.263 0.026-1.223

Unknown primary 0.136 3.042×10−9-3.707 0.859 0.077-3.876×106

Parotid 1.387 0.103-40.37 1.135 0.068-18.72

DVH FPC1 0.997 0.993-1.007 0.996 0.990-1.008

DVH FPC2 1.003 0.992-1.009 - 0.992-1.003

DVH FPC3 - 0.996-1.003 - 0.995-1.000

DVH FPC4 - 0.987-1.010 - 0.991-1.006

DVH FPC5 - 0.971-1.033 - 0.991-1.006

Abbreviations: Cis-carbo = 1 cycle of cisplatin followed by 1 cycle of carboplatin; DVH FPCx = functional principal component x of dose-volume 
histogram data; RT = radiation therapy; 95% CI = 95% confidence interval calculated by bootstrapping model fitting with 2000 replicates.

The sign of the functional principal component loadings is arbitrary, so the fact that the odds ratios are <1 does not indicate that there is an inverse 
correlation between RT dose and severe toxicity.

*
Statistically significant at α = .05 level.
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Table 4

Odds ratios for functional partial least squares—logistic regression models

Covariate

Mucositis model Dysphagia model

Odds ratio 95% CI Odds ratio 95% CI

Intercept 12.90 0.961-2.424×1010 1.634 0.128-104.4

Male 1.539 0.620-4.757 1.661 0.472-4.719

Age 0.991 0.947-1.033 0.988 0.942-1.029

Definitive RT 0.260 7.707×10−11-1.245 0.975 0.046-7.831

Induction chemotherapy 0.484 0.064-2.442 1.100 0.222-7.866

Cisplatin 2.246 0.728-11.33 4.235 1.083-20.88*

Carboplatin 1.315 0.110-1.051×108 4.393 0.580-8.424×107

Cis-carbo 0.313 8.668×10−9-3.303×107 2.245 0.324-4.247×107

Hypopharynx or larynx 4.169 0.506-484.8 1.677 0.168-1.998×107

Nasopharynx or nasal cavity 2.336 0.350-1.457×108 0.266 0.028-1.250

Unknown primary 0.132 2.020×10−9-95.47 0.903 0.092-2.895×106

Parotid 1.408 0.097-56.81 1.196 0.071-27.80

DVH FPLS1 1.004 1.002-1.017* 1.005 1.001-1.016*

DVH FPLS2 1.002 1.000-1.047 - 1.000-1.041

DVH FPLS3 - 1.000-1.110 - 1.000-1.009

DVH FPLS4 - 1.000-1.107 - 1.000-1.009

DVH FPLS5 - 1.000-1.085 - 1.000-1.009

Abbreviations: Cis-carbo = 1 cycle of cisplatin followed by 1 cycle of carboplatin; DVH FPLSx = functional partial least squares component x of 
dose-volume histogram data; RT = radiation therapy; 95% CI = 95% confidence interval calculated by bootstrapping model fitting with 2000 
replicates.

*
Statistically significant at α = .05 level.
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