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Infectious disease (ID) physicians and ID pharmacists commonly confront therapeutic questions relating to
antibiotic resistance. Randomized controlled trial data are few and meta-analytic-based approaches to develop
the evidence-base from several small studies that might relate to an antibiotic resistance question are not sim-
ple. The overriding challenge is the sparsity of data which is problematic for traditional frequentist methods,
being the paradigm underlying the derivation of ‘P value’ inferential statistics. In other sparse data contexts,
simulation methods enable answers to key questions that are meaningful, quantitative and potentially relevant.
How these simulation methods ‘work’ and how Bayesian-based methods, being not ‘P value based’, can facilitate
simulation are reviewed. These methods are becoming increasingly accessible. This review highlights why sparse
data is less of an issue within Bayesian versus frequentist paradigms. A fictional pharmacokinetic study with
sparse data illustrates a simplistic application of Bayesian and simulation methods to antibiotic dosing. Whether
within epidemiological projections or clinical studies, simulation methods are likely to play an increasing role in
antimicrobial resistance research within both hospital and community studies of either rare infectious disease or
infections within specific population groups.

‘You know the greatest danger facing us is ourselves, an ir-
rational fear of the unknown. But there’s no such thing as the
unknown — only things temporarily hidden, temporarily not
understood’. Starfleet Captain, James Tiberius Kirk [Star Trek;
Season One, Episode 10; ‘The Corbomite Manoeuvre’]

Introduction

Antibiotic-resistant bacteria are responsible for significant morbid-
ity and mortality, as well as escalating economic costs.1 Early and
appropriate antimicrobial therapy, one of the key elements of
managing patients with known or suspected infection, becomes
an increasing and evolving challenge in the age of antimicrobial re-
sistance. With decreased susceptibility to current antimicrobials,
and a lack of new agents with novel mechanisms of action, infec-
tious diseases (ID) physicians and ID pharmacists face the increas-
ing challenge of selecting optimal and effective regimens for
patients with resistant infections using limited data. The purpose
of this review is to broadly outline Bayesian and simulation
methods that might help meet these data challenges together
with a tutorial demonstration of their application. Also, several
examples of the widening research and clinical applications of
these methods towards research relating to antibiotic resistance
generally are provided.

RCT data, a luxury?

The limited availability of robust randomized controlled trial (RCT)
data to guide treatment decisions has long been problematic in
many areas of infectious diseases, as with medicine generally.
Moreover, RCTs that address therapeutic aspects relating to anti-
biotic resistance, are rare. Two examples of recently published
RCTs, the ARREST trial2 and the MERINO study,3 help to illustrate
the rare and exceptional nature of these types of studies.

The ARREST trial2 addressed the question of whether adjunctive
rifampicin would provide additional benefit over standard antibiot-
ic therapy for adults with Staphylococcus aureus bacteraemia. This
trial recruited patients from 26 UK hospital groups. It is notable
that prior to this study, published in 2018, the RCT evidence base in
relation to the optimal management of S. aureus bacteraemia was
based on fewer than 1500 patients recruited to 16 controlled trials
of antimicrobial therapy.4 MRSA bacteraemias were not excluded
from the ARREST trial but, with MRSA bacteraemias constituting
only 47 of the 758 (6%) bacteraemias, any inference for optimal
management of MRSA bacteraemias from this study is limited.

The MERINO study3 was an RCT of piperacillin/tazobactam ver-
sus meropenem to evaluate the use of piperacillin/tazobactam as
carbapenem-sparing therapy in patients with bloodstream infec-
tions (BSI) caused by ceftriaxone-resistant Escherichia coli or
Klebsiella pneumoniae. This RCT recruited hospitalized patients
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from 26 sites in nine countries. Of note, the prior evidence was
somewhat inconclusive as a propensity matched comparison of
150 patients with ESBL-producing E. coli and K. pneumoniae BSI
treated empirically with piperacillin/tazobactam versus a carbape-
nem in a multicentre study undertaken in Singapore found similar
30 day mortality among the two groups.5

The findings of these two RCTs are valuable and each pro-
gressed the evidence base from what had been available before.
The ARREST RCT found that adjunctive rifampicin provided no over-
all benefit over standard antibiotic therapy in adults with S. aureus
BSI. The MERINO RCT findings did not support piperacillin/tazobac-
tam compared with meropenem for these patients with BSI
caused by ceftriaxone-resistant E. coli or K. pneumoniae. Of note,
neither S. aureus bacteraemia nor ESBL BSI are rare infections and
both studies recruited across a wide network. However, despite
this, patient recruitment to both studies was slow, taking 4 years in
each case.

These examples illustrate the difficulties in obtaining RCT
data even for common infections among broadly selected
patients prospectively recruited across multiple sites. In many
cases, the evidence for antibiotic-resistant infections is based
on either subgroups of prospective studies or retrospective case
series from single centres. Obtaining data relating to the treat-
ment of multidrug-resistant infections, niche patient popula-
tions, such as those with altered renal function, critical illness
and patients outside usual adult age and weight intervals, will
be especially challenging.

Meta-analysis

Given the difficulty and cost in mounting large robust RCTs, what
other approaches are there? To some extent, the application of
various methods of meta-analysis enable the results from multiple
smaller RCTs that have examined similar topics to be summed to
provide a broader evidence base.6,7 There are several challenges
here, the main one being whether a sufficient number of truly
comparable quality RCTs can be identified. The minimum number
of studies required is debatable but generally at least ten studies
are required to adequately appraise the amount of heterogen-
eity among the study results. Generating a summary with fewer
than ten studies carries the risk of conveying a false sense
of homogeneity.7 A good meta-analysis will estimate the het-
erogeneity associated with the results and acknowledge that
heterogeneity is the reality of the world outside of RCTs. If pa-
tient level data are available, it might be possible to undertake
a patient level meta-regression. When there are at least ten
studies available, it becomes possible to estimate the
contribution of various study-level factors to variation in the
study results using meta-regression techniques.

Network meta-analysis (NMA) is emerging as a technique to en-
able indirect comparisons of multiple interventions that have not
been studied head-to-head within any one RCT. A key assumption
of NMA is the transitivity between trials. Transitivity is generally
an untestable assumption. There are other challenges. For ex-
ample, a recent NMA to evaluate the comparative effectiveness
of fifteen antimicrobial treatments used for drug-resistant
Acinetobacter baumannii pneumonia in 2118 critically ill
patients within 23 studies illustrates some of the challenges.8

Only four of the included studies were RCTs. The accuracy and
classification of drug-resistant A. baumannii pneumonia likely
varied between the studies. The safety profiles of the treat-
ments were not evaluated due to insufficient data. Novel thera-
pies and combination therapies could not be evaluated due to
the lack of opportunity to add these to the network.8

The above difficulties in undertaking meta-analyses of any
type, need to be appreciated. Moreover, in addition to these limita-
tions, for studies of antibiotic resistance, the subgroups of patients
with resistant infections within larger RCTs may or may not have
been reported. Even where they have been reported, there may be
unrecognized confounding from other risk factors between patient
populations with susceptible versus resistant infections. For ex-
ample, the relative attributable mortality associated with MRSA
bacteraemia versus MSSA bacteraemia is controversial. An early
meta-analysis of 31 published studies reported a significant in-
crease in hospital mortality associated with MRSA bacteraemia
(OR, 1.93; 95% CI, 1.54–2.42) although the results were associated
with significant heterogeneity.9–13 However, the length of hospital
stay (LOS) likely differs for patients with the different bacteraemia
types and this might be an unrecognized confounder (Figure 1)
that may be difficult to adequately control for. Likewise, the LOS
may also confound the relationship between the mortality risk
associated with vancomycin-resistant enterococcal bacteraemia
versus vancomycin-susceptible enterococcal bacteraemia.14 A
multi-state study of a Scottish hospital cohort of patients acquiring
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Figure 1. The relationship between mortality proportion among patients
with S. aureus bacteraemia versus length of hospital stay (LOS) among
groups of patients with either methicillin-resistant S aureus (MRSA;
closed symbols) or methicillin-susceptible S. aureus (MSSA; open sym-
bols) bacteraemia, as reported in 12 studies for which data on LOS was
available (Table S1). The size of each group is represented by the corre-
sponding size of the symbols (,30, 31–50, 51–109, 110–299, and .300
patients, respectively, from smallest to largest;). Data for recent studies
by Blot et al.12 [B] and Wolkewitz et al.13 [W] are indicated. This Figure is
modified from an original in Hurley,11 with permission from the
publisher.
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S. aureus bacteraemia whilst in hospital found that MRSA was
acquired approximately 7 days later than MSSA bacteraemia. As a
consequence, the increased mortality associated with MRSA ver-
sus MSSA bacteraemia became non-significant after accounting
for differences in temporal exposures and competing risks.13

The curse of sparse data

The above examples illustrate some traditional approaches to
addressing key therapeutic questions where there is limited study
data. However, in relation to therapeutic questions specific to anti-
biotic resistance, sufficient data simply may not be available.
Sparse data is a limiting issue in many areas, not just in relation to
therapeutic questions specific to antibiotic resistance. Where
sparse data is limiting, simulation techniques together with
Bayesian inference may be used to fill the gap. Understanding
these methods is not simple for most ID practitioners. As a starting
point, the two prevailing inferential data analysis paradigms, the
Frequentist and the Bayesian, need to be described and contrasted
(Table 1).15–17

The frequentist paradigm

Most ID practitioners will be familiar with the traditional frequentist
paradigm which underlies the methodology for deriving P values
as commonly used in RCTs and also meta-analyses (Table 1). The
methodology originated in the early 20th century when all statis-
tical analysis was undertaken ‘long hand’ and was geared towards
null hypothesis significance testing to support binary inference
decisions. That is, the null hypothesis was either accepted or
rejected. Improving computing facilities in the second half of
the 20th century facilitated the calculation of confidence inter-
vals (CI) using the same analytic methods on pocket calculators
and, more recently, personal computers. Frequentist methods
have become established as the traditional analytic approach,

and they will remain in common use, with software for their cal-
culation being widely available.

Frequentist methods conceptualize the uncertainty in the data
sample in the context of a long-run view of repeated imaginary
samples. The fundamental limitation within frequentist methods
is that they cannot provide the probability of any specific result
despite the P value and the 95% CI being commonly misinter-
preted in this way. The correct interpretation of a 95% CI is that if
the same experiment were repeated many times with confidence
intervals computed for each experiment, then 95% of those inter-
vals would be expected to contain the ‘true’ mean. Note that this
relates to the location and imprecision in where the true mean
MIGHT be located. Moreover, this expectation relates to the mean
value, not to the location of individual observations of potential
interest.

A further limitation of frequentist methods is that a P value
which is judged ‘significant’ for the primary finding of any study
gives no indication of the certainty of the result. Many studies may
provide findings that, while statistically significant, may not be ro-
bust due to the small numbers of patients studied. This is an issue
for small randomized studies but more so for non-randomized
studies due to possible imbalances in unrecognized confounders.
This uncertainty can be quantified by a fragility index, which is
defined as the minimum number of patients whose status if
changed from a non-event (not experiencing the primary end
point) to an event (experiencing the primary end point) would ren-
der the study results statistically insignificant.18 A smaller fragility
index indicates a less robust RCT result. For example, a recent study
of oral vancomycin prophylaxis (OVP) for patients requiring sys-
temic antibiotic therapy randomly assigned 50 patients to OVP ver-
sus 50 to no prophylaxis. The findings that zero of 50 patients (0%)
receiving OVP versus 6 of 50 (12%) developed healthcare facility–
onset Clostridioides difficile infection led to a conclusion that OVP
appeared to be protective (P"0.03, Fisher’s exact test).19 This re-
sult has a fragility index of only one because if one of the fifty

Table 1. Comparison of frequentist and Bayesian methods

Key elements Frequentist Bayesian

Underlying assumptions

Observed data is: From an imaginary repeatable random sample A ‘singleton’

Model parameters are: Unknown but fixed across imaginary repeat samples Random conditional on prior and observed data

Estimate of interest Point estimate of parameter Distribution of parameter

Estimation method Various, application specific Bayes’ rule

Input Limited to data at hand Incorporates data at hand with prior knowledge

and beliefs

Typical output Estimate of a mean (or median) value Estimate is a posterior distribution

Representation of imprecision

in estimate of interest

Confidence interval Credible interval

Sparse data Problematic for parametric methods Generally, not as problematic

Computation Iterative or non-iterative closed-form equations More complex and simulation usually required to

‘bypass’ intractable integrals

Validation Assumption checking required Model checking required

Inference Based on presumption of infinite imaginary resampling

from the same data model

Based on posterior distribution derived from

the prior knowledge and beliefs with data at hand
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patients (2%) receiving OVP had developed healthcare facility-
onset C. difficile infection, the P value would now become no lon-
ger significant (P"0.11, Fisher’s exact test) on a recalculation. By
contrast, with several hundred patients in each of the ARREST2 and
the MERINO3 studies, these were powered for the derivation of ro-
bust findings using frequentist methods.

The Bayesian paradigm

Bayesian methods solve several obstacles problematic for fre-
quentist methods arising from sparse and fragile data by aug-
menting the observed data with prior knowledge. ID practitioners
may be less familiar with the Bayesian than the frequentist para-
digm. However, Bayesian logic is largely intuitive and resembles
how ID physicians make diagnostic inferences.16 For example, in
formulating a clinical diagnosis of possible measles for a patient
presenting with a fever and a rash, there are two approaches. A
physician with a frequentist approach would consider only the
patient’s clinical features as they might correspond to descriptions
of the various potential candidate diagnoses as catalogued in a
medical textbook. Using only this information, an ID physician
using a frequentist perpsective would make a confident diagnostic
inference as to whether the diagnosis was measles or was not
measles as follows. For the next hypothetical 100 patients with a
fever and rash syndrome identical to the presenting patient, the
diagnosis made by the frequentist ID physician would apply to 95
and would not apply to 5. However, the frequentist ID physician
would not be able to state to which 95 among this hypothetical
century the diagnosis was applicable nor whether the presenting
patient in question was one of the 95 to which the diagnosis was
applicable or one of the 5 to which it was not applicable. Moreover,
this prediction would rest on an assumption that the most appro-
priate textbook had been consulted.20 By contrast, an ID physician
using a Bayesian perspective would considerably modify the prob-
abilities of the candidate diagnoses with knowledge that a mea-
sles outbreak was current in the community. The knowledge of a
measles outbreak is key information but is external to the patient.
The Bayesian ID physician will integrate both the patient-specific
and the external information in an intuitive way creating a pre-
sumptive diagnosis of measles based on a subconscious probabil-
ity estimate.

In the measles diagnosis analogy, the Bayesian ID physician’s
sub-conscious probability estimate has been shaped by a sublim-
inal calculation. This calculus underlies Bayesian analysis and is
formalized as the ‘Bayes factor’ or ‘Bayes rule’.17 The Bayes factor
in this example is ratio of the diagnostic probability of measles
with versus without the knowledge that there is a measles out-
break in the community. For example, the Bayesian ID physician
might (subliminally) estimate the probability of measles for the
specific individual patient in question, as being between say 2% to
5% with this estimate increasing to a likelihood of 90% to 95% in
the presence of a known measles outbreak in the community.
These estimates, with and without knowing that an outbreak is ex-
tant could be termed in Bayesian parlance, ‘The prior’ and ‘The pos-
terior’, respectively. Of note, in the Bayesian paradigm, the prior
and posterior estimates are each usually range estimates rather
than point estimates of probability. Estimates informed by greater
amounts of prior data will be narrower (more precise) than vague
estimates based merely on a ‘hunch’.

The Bayesian paradigm, and the ‘Captain Kirk’ style of thinking,
has been noted at the intersection of critical care and ID patient
management within the context of modelling the response to
novel therapies for patients with sepsis.21 This intersection is also
where the difficult therapeutic questions relating to antimicrobial
resistance are commonly encountered.21–24

In the Bayesian paradigm, the observed data is taken to be a
‘singleton’ and stands in contrast to the frequentist paradigm
which assumes that the data arises as part of repeated imaginary
sampling. This data ‘singleton’ gains inferential meaning when
placed within the context of prior knowledge. In this way, Bayesian
techniques conceptualize any uncertainty as incomplete know-
ledge, somewhat as implied by the remark from Star Trek’s
Captain Kirk, as quoted above. By contrast, frequentist methods
struggle with sparse data because there is no recourse to external
data.

Limitations

Bayesian statistics, which rely on a user-supplied prior, have been
criticized for lacking the objectivity of frequentist statistics, which
rely only on the observed data subject to some underlying
assumptions.16 The counterpoint to this is that Bayesian analysis
makes any subjectivity explicit, whereas with traditional frequent-
ist methods there may be ‘hidden’ subjectivity and fragility within
the untested assumptions underlying the analytic model used.15

The computational complexity of Bayesian and simulation
methods is much less of a limitation with the increasing power of
personal computers.

The concepts outlined above will be illustrated using a simpli-
fied case study which is not specific to antimicrobial resistance.
The case study relates to the use of Bayesian methods to facilitate
the prediction of the probability of target attainment (PTA) of an
antimicrobial regimen from a sparse dataset of plasma concentra-
tions observed in a small study.

A PK/PD case study

The optimal dosing of antibiotics for individual patients is a key
therapeutic strategy for ID physicians and ID pharmacists.
Moreover, optimal dosing for niche patient groups (such as those
with altered renal function, critical illness and patients outside
usual adult age and weight intervals) is challenging and needs to
be addressed. Typically, the available data is limited. The concepts
and the technology underlying the literature on population phar-
macokinetic/pharmacodynamic (PK/PD) methods have evolved
and these methods are possibly confusing.25–27

There are at least three common measures derived from popu-
lation PK/PD methods in relation to the MIC of the antibiotic of
interest versus the bacterial agent of interest. These are: (1) the
percentage of the dosing-time interval that a drug concentration
remains above the MIC; (2) the ratio of the maximal drug concen-
tration to the MIC; and (3) the ratio of the AUC to the MIC. In other
contexts, across the broad range of antimicrobial agents, other
serum levels may apply. For example, in the context of HIV sup-
pression, the question may relate to maintaining antiretroviral
trough levels, being the lowest level during the dosing interval,
above an acceptable nadir (which is a level below which the risk

Review

4 of 10



of failure of suppression of viral replication is too high) despite
the possibility of missed doses.28

Whatever the measure, the fundamental question is usually
‘what is the PTA that our antibiotic dosing regimen will achieve in
relation to the MIC in this patient population?’. The MIC treatment
target is typically that of the defined antibiotic versus either com-
mon causative pathogens for the infection syndrome or the MIC
versus specific bacterial isolates. Answering the PTA question
requires an ability to forecast the relationship between serum
levels achieved with antibiotic dosing within our target patient
group versus the MIC treatment target over the dosing interval.

A fictitious pharmacokinetic study

Methods to address the PTA question will be illustrated using data
from a small PK/PD study of ‘Corbomite’, a fictional antibiotic
(Figure 2; Table S2 available as Supplementary data at JAC-AMR
Online). The study has observed plasma levels at six timepoints fol-
lowing a defined dose of Corbomite administered to six individuals
(Figure 2a). This data has been generated using random numbers
as described in the Supplement data. To simplify, the adsorption
and protein binding issues are ignored and a one-compartment
model with exclusive renal clearance is assumed. The six individu-
als might be either normal healthy adult volunteers within a Phase
1 study or they might be patients meeting specific inclusion criteria
receiving the antibiotic as therapy. That there are only six subjects
simplifies the example here. However, the reality is that data avail-
able for a particular patient group is often limited. For example,
most PK/PD studies of have 60 or fewer subjects and key studies
may have fewer than 20.29

Data issues

The fictitious pharmacokinetic study data illustrates several issues
that require thought. Fundamentally, how do we extrapolate from
such sparse data to answer the PTA question for the niche popula-
tion of which the six individuals are representative? The strengths
and limitations of available inference methods and simulation
techniques need to be considered.

With the sparse data and the PTA question at hand, frequentist
methods have several limitations. With only six observations per
timepoint, whether the data is normally distributed is uncertain
and with only six timepoints, whether the time course is linear,
log-linear, or follows some other distribution is unclear. The six indi-
viduals have been sampled repeatedly and their observations will
be correlated (Figure 2b). By contrast, sampling of six randomly
selected individuals from the broader population at each time-
point, would produce data that is less precise with wider 95% CIs.
In one sense, this correlation is a nuisance to the analysis.
However, this correlation is pertinent to our PTA question and
ideally our analysis should allow for it.

The use of 95% CIs to summarize the data as a whole
(Figure 2c) is a typical use of frequentist methods. However, these
confidence intervals cannot be used to forecast drug levels in pos-
sible future individual patients. The confidence limits represent the
uncertainty in the population mean estimate were we to repeat
this same study with the same dosing in the same subjects mul-
tiple times.

Multi-level non-linear models could be used to model the corre-
lated data for the six individuals. These models are mixed in that
they might include either or both of fixed and random effects.
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Figure 2. Time course of serum concentration of ‘Corbomite’ from a fictional pharmacokinetic study presented as raw data (Figure 2a, left), as corre-
lated data (Figure 2b, middle) and as a linear regression of the whole data with 95% CIs (Figure 2c, right). The horizontal line at 4 is the therapeutic
target and the individual symbols correspond to individual fictional subjects.
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Fixed effects is a term that would describe the six individuals as
being of special note or identifiable within the analysis, whereas
random effects is a term that would describe the six individuals as
being merely representative of the broader population from which
they have been drawn. Being multi-level, they attempt to estimate
the variability in this broader population that is additional to that
observed among the six individuals, although as in the meta-
analysis examples, with fewer than ten observations the true vari-
ability in the broader population is likely to be underestimated. The
intent here is analogous to the intent underlying hierarchical mod-
els in the meta-analysis of published results of studies of diagnos-
tic tests30,31 and the application of multi-level techniques to
cluster randomized controlled trials.32 In each case, the intent of
these methods is to use the available data to estimate for a
broader population, for which the available data is taken to be rep-
resentative. With only six individuals in the fictional study, we can-
not be certain that this intent will be met.

Simulation methods

One simple generally applicable simulation technique is the
bootstrap, which is used to derive robust statistics whenever the
actual shape or form of the distribution underlying any limited
data is uncertain. The bootstrap principle is that our best guess for
the underlying distribution is contained within the six observations
we have. If we created a large sample containing only these six
observations each replicated many times, 500 replicates for ex-
ample, and then made random draws each of six observations
from this large sample, we would have samples each containing
various combinations of the original observations with each obser-
vation appearing once, more than once or not at all in these repli-
cate samples. In this simple data set, the mean and 95% CIs
derived for Corbomite levels at the first (60 min) timepoint with
(6.9; 6.2–7.5) versus without (6.9; 6.0–7.8) bootstrap sampling of
the six observations are similar. The use of the bootstrap for our
sample illustrates a simple and widely used simulation technique
which enables the derivation of robust statistics. However, for the
PTA question, the bootstrap does not solve the inferential limita-
tions that arise with the application of frequentist methods to this
sparse data.

Bayesian methods

So what simulation methods might help address the PTA question
here? We may have prior knowledge that Corbomite serum levels
at 60 min after comparable dosing in similar settings are typically
5 (95% CI; 3–7). A Bayesian analytic approach will integrate this in-
formation, termed ‘the prior’ with the observed study data to give
a result termed ‘the posterior’. For simple data, this may not re-
quire simulation. The mean of this simulated posterior will be
located between the mean of the prior and the mean of our
observed data with the exact location dependent on the relative
weighting of each within the analysis. For the example here, the
posterior for the Corbomite serum levels at the 60 min timepoint is
6.6 (95% credible interval; 5.5–7.3), which falls between the
observed concentration and the prior. Note that each of these enti-
ties, the prior, the posterior and the study data, represent data as
statistical distributions rather than as point estimates. In this way,
the posterior is able to answer the PTA question with a probablity

estimate relevant to the individual members of our target popula-
tion. This is represented as a 95% credible interval, which, in con-
trast to the 95% confidence interval, has the valid interpretation
of containing 95% of the population values. Alternatively, we
could derive an interval between the 2.5% and 97.5% percentiles
of the posterior data by bootstrapping to derive an interval con-
taining 95% of the observations. These 95% credible and
bootstrap-derived intervals are derived by stochastic processes
and, in contrast to a confidence interval, will often not be symmet-
rical and will vary slightly with repeated simulations. Where simu-
lation is used to produce the posterior, even for the integration
of the prior and the data at a single timepoint, as here, the simula-
tion is slightly more complex than the simple random sampling
underlying the bootstrap. Typically, .1000 simulations might be
required.

However, we can do better. We may have knowledge of
Corbomite pharmacokinetics which, for the purposes of demon-
stration, is determined to be unusually simple. This fictional anti-
biotic undergoes renal clearance with zero order elimination
kinetics, that is a constant amount (e.g. so many milligrams) of
drug is eliminated per unit time, and the volume of distribution is
limited to the intravascular space. Hence, measures of renal func-
tion together with indices of intravascular space, such as height
and weight, would serve as a logical basis to model the variation in
Corbomite serum levels in a simulated population of several thou-
sand patients using indices similar to our patient group of interest.
These multiple predictive indices, including estimates of between-
individual variation, each have separately defined underlying stat-
istical distributions. Deriving a posterior by integrating these vari-
ous parameters will require simulation techniques that are
substantially more complex.

Monte Carlo simulation techniques provide approximate solu-
tions to intractable quantitative model-based problems using the
results from repeated simulations of the model with the input ran-
domly varying each time. Monte Carlo simulation differs from trad-
itional simulation in that the model parameters are treated as
stochastic or random variables, rather than as fixed values.33

Stanislaw Ulam, a mathematician, conceived the method to enu-
merate by simulation the number of possible outcomes of the card
game ‘solitaire’ using newly developed computers developed for
the United States nuclear project during World War II.34

Monte Carlo Markov chain (MCMC) is a technique that conjoins
random sampling (Monte Carlo) in sequence according to an algo-
rithm (Markov chain). More specifically, MCMC generates the
results that form the posterior in sequence by a random process
satisfying the Markov property being that the next result over thou-
sands of simulations depends only on the current result and not on
any of the previous results. In this way the MCMC will optimally
generate the posterior, which otherwise is an unknowable
distribution, one result at a time. How the MCMC generates the
posterior is best understood from watching two moving image
demonstrations available online.35,36

Executing an MCMC is computer intensive and 5000 iterations
would generally be regarded as a minimum. How many iterations
might be required depends on the efficiency of the MCMC and the
complexity of the posterior distribution that is being generated.
Also note that by generating results in sequence, the MCMC creates
some autocorrelation between the results in the posterior distribu-
tion. This autocorrelation is highest within the initial iterations of
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any simulation and typically, the first 1000 simulations, termed
the ‘burn in’, are usually discarded. Some MCMC sampling algo-
rithms may be more efficient than others, but all require model
checking.

Figure 3 shows the result of a simulation model of the PK/PD
study as described in Figure 2 using a prior which indicates our pre-
existing knowledge of the slope and intercept values. This simula-
tion will require model checking for all three estimated parame-
ters; the slope (Figure 4 and Figure S1), the intercept (Figure S2)
and the variance (Figure S3).

Figure 4 demonstrates the model checking of the slope param-
eter generated in association with the previous simulation. This
checking is undertaken by reference to graphical diagnostics gen-
erated as part of running the MCMC algorithm to ensure that the
MCMC has converged (Figure 4a), that the algorithm has ad-
equately explored the parameter space (Figure 4b), and there is
minimal residual autocorrelation following the ‘burn in’ (Figure 4c)
within the posterior distribution. If not, a larger ‘burn in’ may be
required. That the density obtained after the first half (5000 itera-
tions) of the simulation is similar to that obtained after the second
half and overall (10 000 iterations) suggest that a sufficient num-
ber of iterations was executed (Figure 4d). More so than frequentist
methods, model checking is essential for all parameters generated
by MCMC simulation to ensure that we ‘know’ our hitherto ‘un-
known’ posterior within our Bayesian analysis.

At the end of this model building, simulation and model check-
ing, the model is ready to be validated using additional data
derived from observation. The validation data is used to assess the
goodness of fit of the simulation model data by visual predictive
checking. Most simply, this is done by overlaying the serum con-
centrations of the validation data versus the model-generated

data. A good fit would be indicated by observing the validation
data to fit within the 95% credible intervals of the model data. This
would serve to validate the model. This type of analysis is an ex-
ample of ‘confronting the model with the data’.37,38 Using simula-
tions from this validated model enables forecasting the
relationship between serum levels of Corbomite for our population
of interest in relation to the MIC of interest and the PTA question
can be answered.

This example illustrates several limitations of simulation meth-
ods. Firstly, there needs to be a well-defined model on which to
base the simulation. There may even be more than one candidate
model. For example, even for an extensively studied antibiotic
such as gentamicin, models that are one-, two-, and even three-
compartment have been described.39 Secondly, simulation results
may be influenced by the starting values and how long to run a
simulation is difficult to define. The diagnostics for convergence,
beyond a simple visual inspection of the trace plot, are not simple.
Complex models may require multiple concurrent MCMC chains
with a comparison of the results derived from the different chains.

Emerging applications

The concepts underlying the PTA question are also applicable to a
range of ID-related research questions that are otherwise difficult
to address. These concepts are most useful for rare diseases or
outcomes. Bayesian analysis can be applied to questions where
the available data is sparse. By contrast, in this context, traditional
frequentist methods, being dependent on large-sample approxi-
mation as a key underlying assumption, may suffer from sparse
data bias.40

The application of Bayesian methods is not limited to the PTA
question. For example, Bayesian techniques can use historical
study data to inform the setting of non-inferiority margins for clin-
ical trials of antibiotics,41 where to set MIC breakpoints for new
antibiotics42 and can address safety issues such as the question of
whether the mortality risk associated with cefepime use for
patients with febrile neutropenia is unsually high.43

Within the hospital setting, there are examples relating to
hospital-based infections such as the application of MCMC and
Bayesian methods to predict causative pathogens and target anti-
biotic therapy for patients with ventilator-associated pneumonia44

and to infer hospital transmission dynamics from imperfect data.45

There are increasing examples relating to the incidence rates of
infectious diseases and antibiotic resistance in community studies.
MCMC-based modelling has been used to identify factors other
than Zika virus infection that might help map the spread of micro-
cephaly in Brazilian municipalities,46,47 and how Wolbachia-infected
mosquitoes could best be targeted to reduce dengue virus trans-
mission in Indonesia.48 Another example used a multi-state model
of tuberculosis together with a model-based PK/PD approach to in-
crease the power to forecast drug activity as part of expediting the
clinical evaluation of tuberculosis drug development.49

In an application to the study of antibiotic resistance epidemi-
ology, Bayesian methods have been used to define and quantify a
progressive increase in the MIC (termed MIC creep) within the non-
resistant population within Salmonella enterica over a period of
15 years of surveillance. This creep would not otherwise have been
evident from the MIC values as dichotomized into susceptible and
resistant, as conventionally reported.50
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Figure 3. MCMC simulation of serum levels of Corbomite for the entire
time course of a fictional pharmacokinetic study as described in Figure 2.
The prior (solid blue line) has a y intercept at 12 and a slope of #1.3x.
The simulated ‘observations’ are the open symbols and these have been
derived by addition of random noise to a line having a y intercept at 8
and a slope of #0.9x (solid red line). The first ten MCMC simulations from
the posterior are represented by the thin regression lines (grey). Note
that these ten lines do not align with the ‘observations’ but have slope
and intercept values that are between those of the prior and the
‘observations’.
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These examples illustrate the increasing use of simulation in
combination with Bayesian methods to address ID research ques-
tions that would otherwise be difficult to address. Moreover, they
represent examples of confronting models with data, to enable
answers to key research and policy questions that are meaningful,
quantitative and potentially relevant.51
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