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Abstract: In this paper, to enhance the toughness and heat resistance properties of polylactic acid
(PLA)/polybutylene succinate (PBS) composites, the PLA/PBS matrix was modified by different
glass fiber (GF), GF/SiO2, and GF/(Polyaluminium chloride) PAC fillers. Additionally, the effect
of filler type, filler content, components interaction and composite structure on the mechanical and
thermal properties of the PLA/PBS composites was researched. The results showed that the addition
of GF, GF/SiO2 and GF/PAC make the PLA/PBS composites appear significantly higher mechanical
properties compared with the pristine PLA/PBS composite. Among the different inorganic fillers,
the 10%GF/1%SiO2 fillers showed excellent strengthening, toughening and heat resistant effects.
Compared with the pristine PLA/PBS matrix, the tensile strength, elastic modulus, flexural strength,
flexural modulus and Izod impact strength improved by 36.28%, 70.74%, 67.95%, 66.61% and 135.68%,
respectively. Considering the above, when the weight loss rate was 50%, the thermal decomposition
temperature of the 10%GF/1%SiO2 modified PLA/PBS composites was the highest 412.83 ◦C and
its Vicat softening point was up to 116.8 ◦C. In a word, the 10%GF/1%SiO2 reinforced PLA/PBS
composites exhibit excellent mechanical and thermal properties, which broadens the application of
biodegradable materials in specific scenarios.

Keywords: polylactic acid (PLA); polybutylene glycol succinate (PBS); composites; heat resistance;
toughness

1. Introduction

With the development of the economy and society, polymer materials play an impor-
tant role in industrial production, especially in the fields of electronics, chemical industry,
and medical treatment. Since the synthesis of artificial plastics in the early 20th century,
polymer materials have been applied in different fields and have been fully optimized
and developed. At first, chemical polymers produced by the petroleum industry were
favored due to their low cost, easy production, good mechanical properties, and excellent
heat resistance [1–3]. However, due to their rapid production, petroleum-based polymer
materials have a significantly negative impact on resources, economy, and environmen-
tal security, especially in terms of environmental security, because plastics are not easy
to completely degrade spontaneously in the natural environment, especially in the case
of the large-scale use of plastic film covers and packaging, resulting in a large amount
of waste, causing serious pollution and damage to the ecosystem [4–6]. The damage
caused by industrial development to the environment and the threat to human health
costs millions of dollars to deal with every year. Therefore, the research and development
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of renewable and biodegradable plastics are attracting more and more attention [7–13].
Biodegradable materials can gradually degrade spontaneously in the natural environment,
and, finally, enter nature in the form of small molecules. As far as biodegradable materials
are concerned, polylactic acid (PLA) is widely welcomed because it has good thermoplas-
ticity and is conducive to its preparation and processing [14–16]. PLA is lactic acid (LA)
derivative produced from renewable resources such as wheat, straw, corn, and sorghum.
It is completely biodegradable and can be decomposed into water and carbon dioxide
by microorganisms [17–20]. Due to the global problem of pollution, PLA is considered
the most promising biodegradable polymer material in the market, so the application of
PLA has become a key step to improving the environment. At present, PLA has been
widely used in packaging materials, clothing, and medical devices [21–25]. However, PLA
also has obvious defects, such as its brittleness, low toughness, and poor heat resistance
when used above its glass transition temperature, so it must be improved to expand its
application. The elongation at break of PLA is less than 10% and the impact strength is
relatively poor, which limits its application in some special fields [26]. Although its tensile
strength and elastic modulus are equivalent to those of polyethylene terephthalate (PET)
and polystyrene (PS), the toughness of polylactic acid is poor, which limits its application
in plastic deformation requiring a higher stress level [27,28]. For decades, enhancing the
toughness of polylactic acid has been widely studied in academic and industrial fields. The
mechanical strength of polylactic acid should be enhanced to improve its performance and
achieve balanced mechanical properties so that it can be used more widely as a suitable
substitute for low-cost traditional petroleum-based polymers. At present, a variety of
methods and modification technologies have been developed to enhance the toughness
of polylactic acid, including plasticization [29,30], blending [31,32], copolymerization [33],
and filler [34,35]. Among them, blending modification is an economical and convenient
method to develop new high-performance composites, which combines the advantages of
many existing polymers, and the properties of the resulting composites can be adjusted by
changing the composition of the mixture. Therefore, many high toughness polymers have
been mixed with PLA to improve the toughness of the final composites [36].

At present, Zhou et al. [37] synthesized degradable polyurethane elastomer containing
poly (L-lactide) and poly (D-lactide) based on the conclusion that excellent interfacial
strength is conducive to the shear yield of unannealed samples, and used it as a toughening
modifier for the toughening modification of PLA. The test results show that the impact
strength of the composite is more than 50 kJ/m2, which is 24 times that of pure PLA.
Meanwhile, Petchwattana et al. [38] achieved the purpose of toughening polylactic acid
by blending with triglyceride and polymethylmethacrylate co ethyl acrylate, which can
improve the impact strength by nearly 23 times based on PLA. In addition, Li et al. [39]
prepared a polylactic acid/graphene oxide/acetylated lignin composite film, which in-
creased the elongation at break of PLA by 197%. However, there are rarely reports of using
the high toughness polymer PBS to mix with the PLA as the matrix and using different
inorganic fillers to synergistically enhance the toughness and heat resistance properties of
the PLA/PBS composites.

In this paper, PBS, which was easy to mix with PLA, was selected as the matrix
and modified with different inorganic fillers (GF, GF/SiO2, and GF/PAC) to study the
PLA/PBS composites’ toughness and heat-resistant properties, focusing on the effects of
different composite component content, composite component interaction and composite
structure on the mechanical and thermal properties of the composites. The tensile and
flexural properties was tested by the servo-controlled tensile testing machine, The impact
of the properties was tested by the impact test machine. The microstructure of the fracture
surface of the different PLA/PBS composites was observed by using a scanning electron
microscope. The Vicat softening point (VST) of the sample was tested with a computerized
thermal deformation temperature tester. The heat resistant properties of different PLA/PBS
composites was characterized using the TG and DSC test.
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2. Experimental
2.1. Materials

PLA (201) was provided by Zhejiang Haizheng biomaterials Co., Ltd. (Taizhou, China).
PBS (803S) was purchased from Xinjiang Lanshan Tunhe Company (Changji, China). Food
grade talc powder (talc, 1250 mesh) was obtained from Huiteng Chemical Co., Ltd. (Jinan,
China). Chain extender (adr4468) was provided by BASF Ag (Ludwigshafen, Germany).
Tributyl citrate (TBC, industrial grade) was provided by Sinochem (Jinan, China). Erucic
acid amide (ERU, super grade) was provided by Zhilian Plastic Technology Co., Ltd. (Jian,
China). Glass fiber (GF, 3 mm, 12 mm) was provided by Taixin Composite Material Co., Ltd.
(Zibo, China). Silica (SiO2, 5000 mesh) was provided by Tuoyi New Materials Co., Ltd.
(Guangzhou, China). Polyaluminium chloride (PAC, gb15892-2013) was provided by
Yongping Industrial Raw Materials Co., Ltd. (Bengbu, China).

2.2. Fabrication of Samples

Firstly, the PLA and PBS materials were put into the electric heating constant tempera-
ture blast dryer and dried at 80 ◦C for 10 h. Secondly, the mixer was used to evenly mix the
dried materials into the basic masterbatch according to a certain proportion (the proportion
of each part is PBS:PLA = 63%:27%), and then inorganic substances were added in different
proportions on the basic masterbatch according to Table 1. Thirdly, the mixed materials
were melt-blended using a parallel co-rotating twin-screw extruder (110 ◦C~185 ◦C; host
180 rpm; feed 3 rpm) and made into testable standard samples by an injection molding
machine. Finally, the obtained composites with different inorganic fillers were coded as
A1~A9.

Table 1. Material proportioning.

Sample Talc/wt% ADR4468/wt% TBC/wt% Eru/wt% GF/wt% SiO2/wt% PAC/wt%

A1 14.8 1 0.37 0.1 / / /
A2 14.8 1 0.37 0.1 5 (3 mm) / /
A3 14.8 1 0.37 0.1 10 (3 mm) / /
A4 14.8 1 0.37 0.1 5 (3 mm) 0.5 /
A5 14.8 1 0.37 0.1 10 (3 mm) 1 /
A6 14.8 1 0.37 0.1 5 (3 mm) / 0.5
A7 14.8 1 0.37 0.1 5 (3 mm) / 1
A8 14.8 1 0.37 0.1 5 (3 mm) / 3
A9 14.8 1 0.37 0.1 5 (12 mm) / 0.5

2.3. Characterization

A servo-controlled tensile testing machine (Gt-ai7000-l10, Taiwan High-speed Railway
Testing Instrument Co., Ltd., Taiwan, China) was used to test the mechanical properties of
the samples. The tensile and binding test was used according to GB 1040 and GB 1042, re-
spectively. The impact test machine (Jbs-3002, Jinan Liangong Testing Technology Co., Ltd.,
China) was used to test the impact strength of the sample. The cantilever impact test
adopted the provisions of GB/T 1843-2008, and the impact pendulum energy was 1 J. Ten
specimens were needed for each test.

The microstructure of the fracture surface of the different PLA/PBS composites was
observed by scanning electron microscope (Nano SEM 200, Fei Company, Hillsboro, OR,
USA) at an accelerating voltage of 5 kV. Before SEM observation, the fracture surface of the
specimens was sprayed with gold.

The Vicat softening point (VST) of the sample was tested with a computerized thermal
deformation temperature tester (CRS-VST, Suzhou Yanuotianxia Instrument Co., Ltd.,
China). The measurement was carried out in a silicone oil bath with a heating rate of
2 ◦C/min. The average value of the sample was calculated by three repeated tests. To
measure VST, a constant load of 10 N was applied to the rectangular specimen by a flat
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head needle with a cross-sectional area of 1 mm2, and the VST was determined when the
needle perforated the specimen to a depth of 1 mm.

TG test was carried out using a thermogravimetric analyzer (Diamond TG-DTA/Spectrum
GX, PerkinElmer, Japan/UK). Next, 5~10 g samples were taken and the temperature was
increased from 40 ◦C to 600 ◦C in a nitrogen environment at a rate of 10 ◦C/min.

A low-temperature differential scanning calorimeter (Q1000, Ta company, USA) was
used for the DSC test. Taking 5~10 g samples, the temperature was increased from 40 ◦C
to 200 ◦C in a nitrogen environment at the speed of 10 ◦C/min, then the temperature was
decreased from 200 ◦C to 40 ◦C at the speed of 10 ◦C/min, and finally the temperature was
increased from 40 ◦C to 200 ◦C at the speed of 10 ◦C/min.

3. Results and Discussion
3.1. Mechanical Properties
3.1.1. Tensile Properties

The tensile strength and elastic modulus of the different inorganic filler reinforced
PLA/PBS composites were measured by tensile experiments, as shown in Figure 1. From
Figure 1 it can be seen that the addition of GF, GF/SiO2 and GF/PAC make the PLA/PBS
composites have a significantly higher tensile strength and elastic modulus compared
to the pristine PLA/PBS composite, which was due to the high tensile properties of the
inorganic filler. For the pristine PLA/PBS composite, the tensile strength and elastic
modulus were 37.35 MPa and 1488.5 MPa, respectively. With the increasement in the glass
fiber content, the tensile strength and elastic modulus both increased. When the glass fiber
content was 10 wt%, the tensile strength and elastic modulus increased by 23.72% and
47.06%, respectively, which was due to the high tensile properties of the glass fiber itself.
When using GF/SiO2 as the combination filler to synergistically reinforce the PLA/PBS
composite, it can be seen that the tensile properties of the PLA/PBS composites showed an
enhancement trend with the increase in the proportion of SiO2, and the tensile properties
of A5 was the highest of the different PLA/PBS composites. Compared to the pristine
PLA/PBS composite, the tensile strength and modulus of A5 increased by 36.28% and
70.74%, respectively. When using GF/PAC as the combination filler to synergistically
reinforce the PLA/PBS composite, it can be seen that with the increase in PAC content, the
A7 obtained the highest tensile strength and modulus among A6~A8, which was due to the
good dispersion state of the PAC in the PLA/PBS matrix. For A8 composites, the tensile
properties were slightly lower than A7, which could be ascribed to the poor dispersion
of the high-content PAC. Furthermore, at the same glass fiber content, the A9 exhibited a
relatively higher tensile strength compared to A6, which was due to the relatively longer
glass fiber (12 mm) in the A9 composite that was in favor of the increment in the composites’
tensile strength and modulus.

3.1.2. Flexural Properties

The bending properties of different inorganic fillers reinforced PLA/PBS composites
were tested and the results were shown in Figure 2. It can be seen that compared with the
pristine A1 composite, the bending properties of GF, GF/SiO2 and GF/PAC reinforced
PLA/PBS composites were all improved, and their reinforcing effect was the same as that
on the tensile properties.

Among them, for the GF/SiO2 combined reinforced PLA/PBS composites, the bending
properties show a positive correlation with the increase in SiO2, and the addition of
10%GF/1%SiO2 has the best reinforcing effect; that is, the bending performance of the A5
composite was the highest. Compared with the matrix composite A1, the bending strength
and modulus of A5 increased by 67.95% and 66.61%, respectively. When using GF/PAC as
the combination filler to synergistically reinforce the PLA/PBS composite, it can be seen
that A7 obtained the highest flexural strength and modulus among A6~A8, which was
due to the good dispersion state of the PAC in the PLA/PBS matrix. For A8 composites,
the flexural properties were slightly lower than A7, which could be ascribed to the poor
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dispersion of the high-content PAC. Furthermore, when using the relatively longer glass
fiber (12 mm), the A9 exhibited relatively higher flexural properties compared with A6,
the reason being that the relatively longer glass fiber was in favor of the increment in the
composites’ bending properties.
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3.1.3. Impact Properties

The Izod impact strength of different inorganic fillers reinforced PLA/PBS composites
were tested and the results were shown in Figure 3. It can be seen that the impact strength
of the modified composites was significantly improved compared with that of the pristine
PLA/PBS composites, indicating that GF, GF/SiO2 and GF/PAC all possess excellent
impact strength reinforcement functions. However, there are still some differences in
impact strength between the modified composites. Among them, the 10%GF/1%PAC
reinforced PLA/PBS composite (A5) had the best improvement effect. Compared with the
pristine A1 composite, the impact strength was increased by 135.68%.

Polymers 2022, 14, x FOR PEER REVIEW 7 of 12 
 

 

 
Figure 3. Izod impact strength of different PLA/PBS composites. 

 
Figure 4. SEM images of different PLA/PBS sample’s impact fracture surface morphology: (a) A1; 
(b) A2; (c) A3; (d) A4; (e) A5; (f) A6; (g) A7; (h) A8; (i) A9. 

Figure 3. Izod impact strength of different PLA/PBS composites.

The reinforcement of the Izod impact strength can be explained by Figure 4. Figure 4
shows the SEM images of different PLA/PBS samples’ impact fracture surface morphology.
As shown in Figure 4, the fracture surface of the PLA/PBS matrix (A1) is relatively smooth,
which indicates the relatively low toughness. When the PLA/PBS matrix was reinforced
by glass fiber, some fiber fractures or holes can be seen left on the sample’s impact fracture
surface; the fiber fracture and pulling out of the polymer matrix will consume a significant
amount of impact energy when suffering impact damage. Additionally, the higher the
glass fiber content, the higher the Izod impact strength; therefore, the A3 sample has a
relatively higher Izod impact strength compared with A1 and A2. When the PLA/PBS
matrix was reinforced by GF/SiO2, with the increase in SiO2 content, the fracture surface
of the composite becomes coarser and coarser, which explains why the impact resistance of
the composite becomes stronger. When the PLA/PBS matrix was reinforced by GF/PAC,
there were still many holes and broken fibers in the fracture surface, implying improved
toughness compared with the pristine PLA/PBS composite. However, the relatively smooth
fracture surface compared with GF and GF/SiO2 reinforced PLA/PBS composites indicates
a relatively weak impact strength. The reason can be ascribed to the weak compatibility
between PAC and the polymer matrix.
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3.2. Thermal Performance Analysis

Figure 5 shows the Vicat softening point of different PLA/PBS composites. It can be
seen that the Vicat softening point of the modified composite apparently improved, and
the Vicat softening point of A2 was the highest (122.1 ◦C). For GF reinforced PLA/PBS
composites, with the increase in GF content, the Vicat softening point of the modified
composites increased at first and then decreased, reaching the highest value when the GF
content was 5wt%, which is 5.3% higher than that of the pristine PLA/PBS composite.
Although SiO2 and PAC can also improve the Vicat softening point of pure PLA/PBS
matrix, the effect is not as good as GF, and there is no obvious relationship between the
SiO2 or PAC content and the PLA/PBS composites’ Vicat softening point.

3.3. TG Analysis

It can be seen from Figure 6a that the thermal decomposition of pure PLA is completed
in one step, while the thermal decomposition of composites is completed in multiple steps.
According to the data in Table 2, Ts, T5%, T10% and T50% represent the decomposition
temperature when the initial weight loss rate of the material is 0%, 5%, 10% and 50%,
respectively. The initial decomposition temperature of pure PLA is about 327.67 ◦C, which
is higher than that of modified composites. However, it can be seen that the overall
thermal decomposition rate of pure PLA is the fastest, and when the weight loss rate
is 50% the thermal decomposition temperature is about 388.0 ◦C, which was relatively
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lower compared with the GF, GF/SiO2 and GF/PAC reinforced PLA/PBS composites.
Moreover, it can be seen from Figure 6b that the thermal stability of different composites
is A5 > A2 > A1 > PLA. The thermal decomposition process of the GF/SiO2 reinforced
PLA/PBS composite is the slowest, and the thermal decomposition temperature at a 50%
weight loss rate is about 412.83 ◦C, which is higher than the other modified composites,
indicating that the GF/SiO2 reinforced PLA/PBS composite has better thermal stability.
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Table 2. Thermal decomposition temperature of PLA and composites.

Sample Ts/◦C T5%/◦C T10%/◦C T50%/◦C

PLA 327.67 358.67 367.00 388.00
A1 294.17 345.67 357.83 398.83
A2 303.67 338.50 352.67 401.33
A5 298.17 330.33 346.17 412.83
A7 250.35 306.43 318.66 372.26

3.4. DSC Analysis

The DSC analysis of the composite was further carried out. The melting curve and
crystallization curve of the composite were shown in Figure 7a,b, respectively. Additionally,
the crystallization temperature (Tc), crystallization enthalpy (∆Hc), melting temperature
(Tm), melting enthalpy (∆Hm), cold crystallization temperature (Tcc) and cold crystallization
enthalpy (∆Hcc) of the different composites were shown in Table 3. The crystallinity (χ) of
the composites was calculated according to Formula (1) [40],

χ =
∆Hm − ∆Hcc

∆H0
m

× 100% (1)

where ∆H0
m is the melting enthalpy of pure PLA, calculated as 93.6 J/g, ∆Hm is the melting

enthalpy of the composite, ∆Hcc is the cold crystallization enthalpy of the composite [40].
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Table 3. DSC characteristic parameters of different composites.

Sample TCC/◦C ∆HCC/J·g−1 T1m/◦C ∆H1m/J·g−1 T2m/◦C ∆H2m/J·g−1 TC/◦C ∆HC/J·g−1 χ/%

A1 102.45 1.048 113.79 26.66 157.79 6.338 81.53 29.22 27.36
A2 101.07 1.403 113.39 30.75 157.52 7.236 81.58 31.52 32.35
A3 102.72 1.339 113.58 30.23 157.43 7.923 81.61 32.67 30.87
A4 102.29 1.105 113.59 25.69 157.56 6.471 80.31 28.45 26.26
A5 101.07 1.133 113.59 26.59 157.62 6.757 79.98 27.67 27.20
A6 101.76 1.275 113.98 26.79 157.74 5.865 80.30 28.85 27.26
A7 102.39 1.031 113.29 28.02 157.01 6.964 80.84 30.89 28.83
A8 101.44 1.065 114.09 27.57 157.80 6.504 82.49 29.26 28.32
A9 100.63 1.242 113.15 29.34 158.29 7.799 80.50 29.19 30.02

It can be seen from Table 3 that the crystallinity of the A1 composites is 27.36%, and
the crystallinity of the modified composites is generally higher than that of the matrix
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composites. At the same time, the crystallinity of the GF reinforced PLA/PBS composite
A2 is 32.35%, which is about 18% higher than that of the matrix composites A1, indicating
that the addition of GF has a certain nucleation effect and increases the crystallinity of
composites; the crystallinity is closely related to the heat resistance of the composites.
Generally, the better the crystallinity of the composites, the higher the heat resistance [6],
which also explains the high Vicat softening point of the A2. At the same time, the
crystallinity of A4 and A5 is slightly lower than that of matrix composites. It is speculated
that SiO2 modification has a certain interference on the movement of PLA molecular chain,
the movement ability of molecular chain decreases, and the long chain affects the regularity
of the composites, so the crystallinity decreases slightly.

It can be seen from Figure 7a that the cold crystallization peak of different PLA/PBS
composites is concentrated at about 100 ◦C, and with the addition of GF, GF/SiO2 and
GF/PAC, the melting peak of the composites gradually moves to the low-temperature
region, and the secondary melting peak at 160 ◦C appears in the curve with the increase
in temperature, which could be ascribed to the high melting point of PLA, which was in
agreement with the peak at 160 ◦C of the DSC peaks in Figure 6b. It can be seen from
Figure 7b that with the addition of GF and SiO2, the crystallization peak of the composites
shifts to the low-temperature region, but with the addition of PAC, the crystallization peak
of the composite shifts to the high-temperature region, and the degree of shift is different.

4. Conclusions

In this paper, to enhance the toughness and heat resistance properties of the PLA/PBS
composites, the PLA/PBS polymer matrix was modified by different GF, GF/SiO2, and
GF/PAC fillers. Additionally, the effect of filler type, filler content and their synergistic ef-
fect on the mechanical and thermal properties of the PLA/PBS composites was researched.
It was found that the addition of GF, GF/SiO2 and GF/PAC make the PLA/PBS com-
posites appear significantly higher regarding their tensile, flexural and impact properties
compared with the pristine PLA/PBS composite. Among the different inorganic fillers,
the 10%GF/1%SiO2 fillers showed the best mechanical properties enhancement function.
Additionally, the tensile strength, elastic modulus, flexural strength, flexural modulus and
Izod impact strength improved by 36.28%, 70.74%, 67.95%, 66.61% and 135.68%, respec-
tively. Although the A2 owns the highest Vicat softening point (122.1 ◦C) and crystallinity
(32.35%) due to the addition of GF, which has a certain nucleation effect and is in favor of
the increment in the composites’ crystallinity, the A5 composites still had relatively higher
thermal stability: when the weight loss rate was 50% the thermal decomposition temper-
ature was the highest at 412.83 ◦C, and its Vicat softening point was up to 116.8 ◦C. In a
word, the 10%GF/1%SiO2 reinforced PLA/PBS composites A5 exhibit excellent mechanical
and thermal properties, which shows their potential industrial application prospects.
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