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Abstract

The exostosin (EXT) protein family is involved in diverse human diseases. However,
the expression and prognostic value of EXT genes in human lung squamous cell car-
cinoma (LUSC) is not well understood. In this study, we analyzed the association be-
tween expression of EX7/ and EX72 genes and survival in patients with LUSC using
bioinformatics resources such as Oncomine and The Cancer Genome Atlas (TCGA)
databases, the Gene Expression Profiling Interactive Analysis (GEPIA) server and
Kaplan—-Meier plotter. Furthermore, regulatory microRNAs (miRNAs) were pre-
dicted for EXTI and used to establish a potential miRNA-messenger RNA (mRNA)
regulation network for LUSC using the ENCORI platform. We observed that EXT'/
and EXT2 expression levels were higher in LUSC than those in normal tissues.
However, only EXTI expression was significantly associated with poor overall sur-
vival (OS) in LUSC patients. Functional annotation enrichment analysis showed that
genes co-expressed with the EXT/ gene were enriched in biological processes such as
cell adhesion and migration, and KEGG pathways such as extracellular matrix recep-
tor interactions, complement and coagulation cascades, and cell death. Furthermore,
three miRNAs, hsa-mir-190a-5p, hsa-mir-195-5p, and hsa-mir-490-3p, were identi-
fied to be potentially involved in the regulation of EXT]. In summary, we identified
EXT] expression as a novel potential prognostic marker for human LUSC and the

regulatory miRNAs that could possibly contribute to the prognosis of the disease.
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1 | INTRODUCTION

Heparin sulfate proteoglycans (HSPGs) are ubiquitous com-
ponents of the extracellular matrix and play an important role
in tissue homeostasis.' Extensive research has demonstrated
that heparin sulfate (HS) is essential for signal transduction
in various processes such as cell survival, division, migra-
tion, differentiation, and cancer dev«:lopment.2 The exostosin
(EXT) family of glycosyltransferases, including EXTI and
EXT2, mediate the synthesis of HS.? Both genes that encode
exostosin glycosyltransferases (EX7/ and EXT72) function
as tumor—suppressors,4 although the molecular mechanisms
and prognostic value of exostosins (EXTs) in cancer is still
unclear.

The EXTI gene, located on chromosome 8, encodes
an endoplasmic reticulum-resident type II transmembrane
glycosyltransferase involved in the chain elongation step
of HS biosynthesis. Mutations in this gene cause the type I
form of multiple exostoses. Furthermore, EXT1 is overex-
pressed in various cancers such as adult acute lymphoblas-
tic leukemia (ALL),’ hepatocellular carcinoma (HCC)® and
breast cancer.’

Furthermore, EXT expression has been reported to be
a promising indicator of breast cancer metastasis risk® and
shown to be associated with a poor prognosis in multiple
myeloma.9

Mutations in the EXT2 gene, located on chromosome 11,
cause the type II form of multiple exostoses. In addition, dif-
ferent isoforms encoded by alternatively spliced transcript
variants are also currently known. EXT2 has been reported to
be associated with type 2 diabetes mellitus (T2DM) in some
populations10 as well as multiple osteochondromas,'!
only in humans but also in zebrafish.'?

According to the global cancer statistics in 2018, lung
cancer has the highest incidence and mortality among all
tumors.'* Non-small cell lung cancer (NSCLC) is the most
common pathological type accounting for approximately
85% of all lung cancers.'* Among NSCLCs, lung squamous
cell carcinoma (LUSC) is the second most common type of
NSCLCs, with more than 400,000 new cases per year, and
accounts for 20%-30% of NSCLCs.">!'® Despite advances
in treatment methods for LUSC, the 5-year overall survival
(OS) rate of LUSC patients in clinical stages I and II is about
40%, and that of LUSC patients in clinical stages III and IV
is less than 5%."7 Therefore, the identification of new prog-
nostic markers and therapeutic targets is important for the
clinical treatment of LUSC.

In this study, we performed a series of bioinformatics
analyses on EXT] and EXT2 in LUSC, including transcrip-
tional analysis, co-expression analysis, functional annota-
tion enrichment analysis, protein-protein interaction (PPI)
analysis, survival analysis, and constructed a miRNA-EXT
regulation network. We observed increased levels of EXT]

not

and EXT2 expression in LUSC, whereas only EXTI was
associated with poor OS prognosis in LUSC. Furthermore,
we identified three regulatory miRNAs of EXTI/, hsa-mir-
190a-5p, hsa-mir-195-5p, and hsa-mir-490-3p, which could
potentially be involved in molecular mechanisms underlying
of the disease. Our results thus provide novel insights to im-
prove the prognosis of LUSC patients.

2 | MATERIALS AND METHODS

2.1 | Bibliometric analysis

VOS viewer is primarily intended to be used for analyzing
bibliometric networks.'® In the view, the larger the number
of items in the neighborhood of a point and the higher the
weights of the items, the closer the color of the point is to
red.

2.2 | Oncomine analysis

Oncomine (Www.oncomine.org), a cancer microarray da-
tabase and web-based data-mining platform, was used to
analyze the transcription levels of EXT/ and EXT2 in dif-
ferent cancers. The mRNA expression of EXTI and EXT?2 in
clinical cancer specimens were compared with that in normal
controls, using the Student's #-test. Fold change>1.5 with p-
value <0.01 was considered statistically significant.

2.3 | UALCAN analysis

To increase the credibility of the data, we further analyzed
the transcriptional and clinical data for EXT/ and EXT2
from TCGA. The UALCAN platform (http://ualcan.path.
uab.edu) allows users to examine relative expression lev-
els of a query gene or gene set among specified tumor
sub-groups. These pre-defined tumor sub-groups include
cancer stage, tumor grade, race, or other clinicopathologic
features.'’

2.4 | CCLE analysis

The Cancer Cell Line Encyclopedia (CCLE)20 (www.broad
institute.org/ccle) project s a collaboration between the Broad
Institute, the Novartis Institutes for Biomedical Research and
the Genomics Institute of the Novartis Research Foundation
to conduct a detailed genetic and pharmacologic characteri-
zation of a large panel of human cancer models, to develop
integrated computational analyses that link distinct pharma-
cologic vulnerabilities to genomic patterns and to translate
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cell line integrative genomics into cancer patient stratifica-
tion.”! CCLE is a public database that supports genomic data
analysis and visualization of about 1000 cell lines. EXT1 and
EXT?2 expression in cancer cell lines was verified using the
CCLE datasets.

2.5 | Cell culture

Human NSCLC cells (A549, PC9, NCI-H1299, NCI-H460,
NCI-H23) and human bronchial epithelioid cells (HBE) were
cultured in Dulbecco's Modified Eagle Medium with 4.5 g/L
glucose (DMEM, Gibco BRL) containing 10% fetal bovine
serum (FBS, Gibco BRL) and 1% antibiotic/antimycotic so-
lution. Cells were maintained at 37°C in an atmosphere of
5% CO,.

2.6 | RNA extraction and quantitative real-
time PCR

Total RNA was extracted from cells using Trizol reagent
(Sangon Biotech) according to the manufacturer's instruc-
tions. For mRNAs quantification, RNA was reverse tran-
scribed to cDNA using the PrimeScript™ RT reagent Kit with
gDNA Eraser (Takara). Quantitative real-time PCR was per-
formed using cDNA primers specific for mRNA. All the real-
time PCR reactions were performed using Takara Bio's SYBR
Premix Ex Tag™ II in the BIO-RAD CFX96 Real-Time PCR
System. The 274 method was used for quantification and
fold change for target genes was normalized by internal con-
trol. The PCR reaction conditions were as follows: 95°C for
10 min followed by 40 cycles of 95°C for 5 sec, 60°C for
30 sec and 72°C for 30 sec. The expression levels were nor-
malized against those of the internal reference gene p-actin.
The following primers were used: f-actin for-
5'-CCCAGCACAATGAAGATCAA-3" and re-
verse 5'-ACATCGCTGGAAGGTGGAC-3'; EXTI
forward 5-TGCCTGTCGTCGTCATTGAA-3" and re-
verse 5 -ACGGCGTCTGTGATGATGTT-3'; EXT2 for-
ward: 5-TTATGTGTGCGTCGGTCAAGT-3’ and reverse
5'-AGGACAATGGAGAAGAGGGTG-3'".

ward

2.7 | Western blot

Western blot was carried out according to previous publi-
cations.?? The anti-EXT] (A-7) (Santa Cruz, 1:2000), anti-
EXT2 (A-2) (Santa Cruz, 1:2000), anti-Actin (Santa Cruz,
1:4000) were used as the primary antibodies. A 1:3000-5000
dilution of the HRP-linked anti-IgG (Santa Cruz) was used as
the secondary antibody.
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2.8 | Co-expressed genes

The top 100 genes co-expressed genes with EXT1 were se-
lected from the co-expressed genes datasets in the Oncomine
database, based on a cut-off of p-value <0.01 and fold change
>1.5.

2.9 | PPI networks

The STRING (Search Tool for the Retrieval of Interacting
Genes) database (https://string-db.org, version 11.0) is a
biological database designed for the construction of PPI
network of genes, based on known and predicted PPIs, and
analysis of the functional interactions between proteins.>
Analysis of the functional interactions between proteins
may provide insights into the mechanisms underlying the
development of diseases. In this study, a PPI network of
co-expressed genes was constructed using the STRING
database and an interaction with a combined score >0.4
was considered statistically significant. Cytoscape (ver-
sion 3.7.2),* an open source bioinformatics software plat-
form, was used for visualizing the molecular interaction
networks.

2.10 | GO annotation enrichment and
KEGG pathway enrichment analysis

The gene ontology (GO) resource provides a platform for
functional annotation and enrichment analysis of genes.25
KEGG (Kyoto Encyclopedia of Genes and Genomes) is a
comprehensive database of biological information designed
to assist in the interpretation of large-scale molecular data
sets.”® p < 0.05 was considered statistically significant for
GO annotation enrichment analysis and KEGG pathway en-
richment analysis.

2.11 | ENCORI database

ENCORI (Encyclopedia of RNA Interactomes; http://
starbase.sysu.edu.cn/) is an open-source platform for
studying the miRNA-ncRNA, miRNA-mRNA, ncRNA-
RNA, RNA-RNA, RBP-ncRNA, and RBP-mRNA inter-
actions from CLIP-seq, degradome-seq, and RNA-RNA
interactome data.”’ In our study, ENCORI was used to
predict miRNAs regulating EX71 and verify the correla-
tion with RNA expression. The options used in the anal-
ysis were as follows: CLIP Data: high stringency (>3),
Degradome Data: with or without data Pan- Cancer: 1
Cancer type.


https://string-db.org
http://starbase.sysu.edu.cn/
http://starbase.sysu.edu.cn/

WU ET AL.

ﬂl—Wl LEY_Cancer Medicine

Open Access.

2.12 | The Kaplan-Meier plotter

The prognostic significance of expression of identified miR-
NAs in LUSC was evaluated using the Kaplan—Meier plotter
(www.kmplot.com), an online tool for meta-analysis based
discovery and validation of survival biomarkers with data
based on gene expression and clinical data from multiple
sources. To assess the prognostic value of a specific miRNA,
patient samples are divided into two cohorts according to the
median expression of the gene (high vs. low). We obtained
the Kaplan-Meier survival plots for the shortlisted miRNAs
and assessed the association with OS in LUSC patients based
on the number-at-risk values, log rank p-value and hazard
ratio (HR) with 95% confidence intervals available for each
plot.

2.13 | Identification of candidate
miRNAs and miRNA-mRNA
regulation network

Although considerable progress has been made, identification
of differentially expressed miRNAs involved in the regula-
tion of mRNA is still critical for a complete understanding of
miRNA-mRNA regulation network in LUSC. We compared
the transcriptional levels of miRNAs in LUSC with those
in normal samples by using ENCORI database. Further, as
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EXT1 overexpression was associated with unfavorable prog-
nosis in LUSC, we hypothesize that the miRNAs regulating
EXT1 should ideally predict favorable prognosis. Predicted
miRNAs-mRNA regulation networks were visualized in
Cytoscape.

3 | RESULTS
3.1 | EXTI and EXT2 expression in LUSC
patients

There were 239 relevant literatures with EXT as the keyword
in PubMed from 2010 to 2020. As shown in Figure S1, EXT
is worth noting that tumor biomarkers are also a prominent
focus of research. Nevertheless, the expression and prog-
nostic value of EXT genes in human LUSC are not well
understood. We compared the mRNA expression of EXT]
and EXT2 in LUSC samples with those in normal samples in
the Oncomine database (Figure 1A). The expression levels
of EXTI were significantly higher (p < 0.001) in two data-
sets (the Talbot Lung and Hou Lung) as compared with nor-
mal samples (Figure 1B). However, EXT2 expression levels
were not significantly different between tumor and normal
tissues (Figure 1C). Notably, the expression of both EXT]
and EXT2 in LUSC tissues was significantly higher than
those in normal tissues in the UALCAN analysis of samples
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FIGURE 1
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1. Squamous Cell Lung Carcinoma

EXTI and EXT?2 expression in different types of cancers and LUSC (Oncomine and UALCAN). (A) Red indicates up-regulated

expression and blue indicates down-regulated expression in the tumor tissues. Higher significance is indicated by a darker shade. The number

within cells represents the number of datasets. (B and C) The expression of EXT'/ and EXT?2 in the LUSC samples in two datasets (Talbot Lung and
Hou Lung). (D and E) The expression levels of EXT'I and EXT2 were up-regulated in LUSC tissues. (EXT: Exostosin, LUSC: lung squamous cell

carcinoma)
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from TCGA database (Figure 1D and E). Statistically signifi-
cant differences were observed between tumor and normal
samples grouped based on clinical data such as age, tumor
stage, lymph node metastasis, smoking habits, histological
subtypes, and TP53-muation status (Figure 2C—H), but there
were no differences in race or gender (Figure 2A and B).

3.2 | EXTI and EXT?2 expression in NSCLC
cell lines

We included data from the Cancer Cell Line Encyclopedia
(CCLE) (www.broadinstitute.org/ccle) database to extend
our analysis to preclinical human cancer models. We ob-
served high expression of EXTI and EXT2 in NSCLC cell
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lines (Figure 3A). To validate the findings from the analysis
of microarray-based datasets, we measured the expression of
EXT mRNA and protein in five NSCLC cell lines (A549,
PC9, NCI-H1299, NCI-H460, and NCI-H23) and human
bronchial epithelioid (HBE) cells by qRT-PCR and west-
ern blot, respectively. Those results confirmed that not only
EXTI, but also EXTI expression levels were significantly
higher in NSCLC cell lines than those in the control HBE
cells (p < 0.01), consistent with the results of our analysis
(Figure 3B-D). Similarly, EXT2 was also significantly over-
expressed in all NSCLC cell lines (p < 0.01), except NCI-
H23 (Figure 3B-D). These results suggest that upregulation
of EXTI and EXT2 may be closely associated with the bio-
logical characteristics of malignant LUSC.
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FIGURE 2 EXTI and EXT2 expression in LUSC based on clinical data from the UALCAN. (A-H) EXT'] and EXT2 were significantly
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FIGURE 3 EXTI and EXT2 expression in NSCLC cell lines. (A) The cell line indicated by the red arrow is Lung-NSC. EXTI and EXT2
were overexpressed in Lung-NSC cell lines (CCLE). (B) EXT and EXT2 expression in human NSCLC cell lines. C, D: EXT and EXT2 protein
expression in human NSCLC cell lines. (**p < 0.01, *p < 0.05 as compared with the HBE cell line). (EXT, Exostosin; LUSC, lung squamous cell
carcinoma, NSCLC, Non-small cell lung cancer; CCLE, Cancer Cell Line Encyclopedia)

3.3 | Association of EXTI and EXT2
expression with prognosis in LUSC patients

The association of EXT1 and EXT2 expression with OS and
disease-free survival (DFS) in patients with LUSC was ana-
lyzed using the GEPIA server. As shown in Figure 4A, the
OS rate of patients with high EXT/ expression was signifi-
cantly lower than that of patients with low EXT expression
(p = 0.027), but the association with DFS rate was not sta-
tistically significant (p = 0.35). The association of EXT2 ex-
pression with both OS rate and DFS rate of LUSC patients
was not statistically significant (Figure 4B). Thus, survival
analysis revealed that increased EX7/ mRNA levels were
significantly associated with reduced OS in LUSC patients.

3.4 | Genes co-expressed with EXTI and
functional enrichment analysis

Based on the results of the expression and survival analysis
described above, we selected EXT for further bioinformat-
ics analysis. The top 100 genes co-expressed with the EXT
gene in LUSC were screened from the Gemma Cell Line
dataset of Oncomine database (Figure 5). A protein-protein
interaction (PPI) network was generated in the STRING pro-
tein interaction database (Figure 6A) and imported into the
bioinformatics software platform Cytoscape (Version 3.7.1)
for visualization (Figure 6B) and further analysis. Functional
annotation enrichment analysis using Gene Ontology (GO)

(Figure 7A) and KEGG pathway enrichment analysis
(Figure 7B) showed that the co-expressed genes were sig-
nificantly enriched in biological processes such as cell matrix
adhesion, cell connectivity, regulation of inflammatory re-
sponse, regulation of multi-organism processes, and regula-
tion of NIK/NF-kappaB signaling, molecular functions such
as cytokine binding, protein binding, receptor binding and
matrix adhesion and cellular components such as cell matrix
junction, membrane microstructural domain, receptor com-
plex, and adhesion spot. The most enriched KEGG pathways
included extracellular matrix receptor interaction, proteogly-
cans in cancer, complement and coagulation cascade, tumor
necrosis factor signaling pathway, and cell death among
others.

3.5 | Regulatory miRNAs and
survival analysis

MiRNAs are short non-coding RNAs that induce mRNA
silencing and destabilization by binding to specific target
sites.”® MiRNAs inversely regulate their target mRNAs
resulting in a negative correlation between miRNA and
mRNA expression.29 Therefore, potential regulatory miR-
NAs should meet the following two criteria, decreased
expression in LUSC samples and association of decreased
expression with poor prognosis in LUSC patients. The
ENCORI platform predicted a total of 42 miRNAs regulat-
ing EXTI (Table 1). Among them, 22 miRNA-EXT] pairs
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significantly associated with prognosis. (EXT, Exostosin; LUSC, lung squamous cell carcinoma; GEPIA, Gene Expression Profiling Interactive

Analysis)

were negatively correlated. The Kaplan—Meier plotter was
used to evaluate the prognostic value of the 22 miRNAs
in LUSC. Of these, the prediction of poor prognosis for
low expression in LUSC patients was significant for nine
miRNAs (Figure 8). The ENCORI pan-cancer analysis
platform was used to compare the expression of these nine
miRNAs in LUSC and normal samples. Three miRNAs
(hsa-miR-190a-5p, hsa-miR-195-5p, and hsa-miR-490-3p)

were found to be significantly downregulated in LUSC
samples (Figure 9A-C).

3.6 | MiRNA- EXTI regulation network

We established a potential miRNA-EXT! regulation net-
work based on the regulatory miRNAs of EXT/ identified by
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FIGURE 5 Genes co-expressed with EXT/. The top 100 co-expressed genes in LUSC were screened from the Gemma Cell Line dataset in the
Oncomine database (EXT, Exostosin; LUSC, lung squamous cell carcinoma)
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related pathways such as focal adhesion, ECM-receptor interaction, proteoglycans in cancer, complement and coagulation cascade, tumor necrosis

factor signaling pathway, cell death, etc. (EXT, Exostosin; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; LUSC, lung
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bioinformatics analysis using the ENCORI database and vis-
ualized it in Cytoscape (Figure 9D). Thus, the establishment
of a potential regulatory network of miRNA- EXT] may be
prognostics biomarkers and a therapeutic target.

4 | DISCUSSION

Dysregulation of the EXT/ gene has been reported in many
cancers, including multiple osteochondroma (MO),30 breast
cancer,” ALL*' and HCC.® To the best of our knowledge, the
association of EXT1 expression with LUSC has not been re-
ported. This is the first study to explore the prognostic value
of EXT1 mRNA expression in LUSC. Our findings add to the
current knowledge and may contribute towards improving
treatment options and increase the accuracy of prognosis for
patients with LUSC. It is reported that 70% to 90% MO cases
are caused by pathogenic mutations in the EXT/ or EXT2
genes, and EXTI is more frequently mutated than the EXT2
gene.32 Furthermore, EXT1 regulates the NOTCH path-
way in an FBXW7-dependent manner in ALL.> Moreover
EXTI-dependent HS structure is involved in modifying
tumor-stroma interactions through altering stromal TGF-31
expression in human A549 carcinoma cells.™

Our study of transcriptional data from Oncomine,
UALCAN, TCGA and CCLE revealed increased levels of
EXTI and EXT?2 expression in LUSC samples and cell lines.
There were significant differences between tumor and normal
samples grouped in age, tumor stage, lymph node metastasis,
smoking habits, histological subtypes, and TP53-muation
status. Notably, the difference in expression levels between
cancer and adjacent normal tissues was statistically signif-
icant only for of EXT1 in the Talbot Lung and Hou Lung
datasets. Furthermore, EXT1 mRNA and protein expression
was significantly overexpressed in the five NSCLC cell lines
studied (A549, PC9, NCI-H1299, NCI-H460, NCI-H23), as
compared with HBE cells, whereas EX72 mRNA and pro-
tein expression was significantly overexpressed in all except
the NCI-H23 cell line. Survival analysis showed that patients
with high EXTI expression had unfavorable OS prognosis.
These results suggest that the overexpression of EXT1 could
be a novel potential prognostic marker in LUSC.

We mapped the top 100 genes co-expressed with EXT/ into
the STRING database and obtained the PPI network to identify
the interactions between these genes. A functional enrichment
and analyze was carried out to further understand the role of
genes co-expressed with EXT1 in LUSC. The GO enrichment
analysis results indicated that these genes are primarily involved
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TABLE 1 Correlation between miRNA-EXT1 pairs identified by ENCORI database
No. miRNA Coefficient-R p-Value
1 hsa-miR-126-5p —0.153 8.47E-04
2 hsa-miR-153-3p —0.013 7.82E-01
3 hsa-miR-155-5p —0.111 1.53E-02
4 hsa-miR-15b-5p —0.025 5.83E-01
5 hsa-miR-16-5p —0.171 1.75E-04
6 hsa-miR-190a-5p —0.017 7.18E-01
7 hsa-miR-190b —0.173 1.55E-04
8 hsa-miR-195-5p —0.025 5.94E-01
9 hsa-miR-200c-3p —0.024 6.01E-01
10 hsa-miR-3064-5p —0.002 9.71E-01
11 hsa-miR-374c¢c-5p —0.085 6.44E-02
12 hsa-miR-375 —0.348 5.50E-15
13 hsa-miR-448 —0.032 4.91E-01
14 hsa-miR-4701-5p —0.027 5.63E-01
15 hsa-miR-488-3p —0.061 1.85E-01
16 hsa-miR-490-3p —0.13 4.64E-03
17 hsa-miR-513b-5p —0.018 7.00E-01
18 hsa-miR-514a-5p —0.011 8.12E-01
19 hsa-miR-579-3p —0.005 9.10E-01
20 hsa-miR-580-3p —0.083 7.02E-02
21 hsa-miR-616-3p —0.092 4.41E-02
22 hsa-miR-664b-3p —0.015 7.52E-01
23 hsa-miR-129-5p 0.071 1.20E-01
24 hsa-miR-149-5p 0.312 3.32E-12
25 hsa-miR-15a-5p 0.003 9.56E-01
26 hsa-miR-199a-5p 0.169 2.10E-04
27 hsa-miR-199b-5p 0.213 2.78E-06
28 hsa-miR-200b-3p 0.016 7.30E-01
29 hsa-miR-28-5p 0.028 5.49E-01
30 hsa-miR-3140-3p 0.067 1.42E-01
31 hsa-miR-339-5p 0.004 9.24E-01
32 hsa-miR-382-3p 0.228 4.98E-07
33 hsa-miR-429 0.005 9.07E-01
34 hsa-miR-4524a-5p 0.084 6.70E-02
35 hsa-miR-455-3p 0.199 1.25E-05
36 hsa-miR-4766-3p 0.036 4.29E-01
37 hsa-miR-503-5p 0.003 9.47E-01
38 hsa-miR-588 0.026 5.72E-01
39 hsa-miR-655-3p 0.132 3.92E-3
40 hsa-miR-665 0.188 3.90E-05
41 hsa-miR-708-5p 0.157 5.82E-04
42 hsa-miR-944 0.369 9.47E-17
in biological processes such as cell adhesion and migration. including, extracellular matrix-receptor interaction, proteogly-

Furthermore, KEGG pathway enrichment analysis revealed cans in cancer, the complement and coagulation cascade, tumor
that the co-expressed genes were enriched in multiple pathways necrosis factor signaling pathway, and cell death, among others.
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patients with low expression of miRNAs had a poor prognosis. (EXT, Exostosin; LUSC, lung squamous cell carcinoma; miRNA, microRNA)

In particular, GO and pathway enrichment analysis indicated
that the co-expressed genes were significantly enriched in focal
adhesion. It is well documented that focal adhesion and cell ad-
hesion play a key role in cancer invasion and metastasis.***’
Thus, our findings show that EX7'] may be involved in the inva-
sion and metastasis of LUSC.

MicroRNAs (miRNAs) are short non-coding RNAs

with regulatory functions in various biological processes

including cell differentiation, development and oncogenic
transformation.® Numerous studies have shown that miR-
NAs bind to the mRNA transcripts of protein-coding genes,
inhibiting their translation or leading to mRNA degradation.
We used the ENCORI platform to predict the miRNAs reg-
ulating EXT1 and found 42 miRNAs, listed in Table 1, of
which 22 were down-regulated in LUSC. Furthermore, we
analyzed OS and DFS associated with the expression of these
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candidate miRNAs was down-regulated in tumor tissues (ENCORI). (D) miRNA-EXT regulation network (Cytoscape). The expression of
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22 miRNAs. Negatively regulated miRNA-mRNA pairs have
been reported to significantly contribute to the initialization
and development of different types of cancers.”’ ™ We iden-
tified three significantly down-regulated miRNAs, hsa-miR-
190a-5p, hsa-miR-195-5p, and hsa-miR-490-3p, with good
prognostic value.

Functionally, hsa-miR-190a-5p has been reported to act as
a tumor suppressor in multiple malignancies. miR-190a-5p
expression levels are significantly decreased in the cancer
group compared with the normal group, and overexpression
of miR-190a-5p inhibits cell proliferation and invasion and
promotes apoptosis in cancers such as cervical cancer, neuro-
blastoma, and breast tumors.**** A recent study showed that
smoking-induced dysregulation of hsa-miR-190a-5p was sig-
nificantly associated with epithelial-mesenchymal transition
(EMT) and carcinogenesis.43

Furthermore, hsa-miR-195-5p has also been demonstrated
as a tumor suppressor in many human cancers, including
renal cell carcinoma, gastric cancer, ovarian cancer, pancre-
atic cancer, melanoma, HCC, and colorectal cancer.**° The
expression of miR-195-5p is decreased in NSCLC tissues and

cell lines and significantly associated with the TNM stage,
tumor size and lymph node metastasis, while being correlated
with poor prognosis in NSCLC patients. Functional analysis
has revealed that overexpression of miR-195-5p suppressed
cell proliferation, promoted cell cycle arrest and apoptosis in
NSCLC significantly.”!

Several studies have also demonstrated similar behavior
for hsa-miR-490-3p, wherein decreased expression of the
miRNA was significantly associated with tumorigenesis of
human cancers, such as ovarian carcinoma,52 colorectal can-
cer,>>>* glioma,55 prostate cancer,”® esophageal squamous
cell carcinoma,”” HCC ** and increased expression of the
miRNA inhibited cellular growth, suppressed cellular migra-
tion and invasion.

Overall, our findings are consistent with previous studies
and indicate that the three miRNAs identified in this study,
hsa-miR-190a-5p, hsa-miR-195-5p and hsa-miR-490-3p,
play an important role in the inhibition of malignant tumors.
Thus, we have established a potential miRNAs-EXT1 reg-
ulation network that may be associated with prognosis in
LUSC.
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In summary, based on the bioinformatics analyses pre-
sented in this study, we suggest EXT] as a novel potential
prognostic marker for LUSC and present the miRNAs regu-
lating EXT1 which could be involved in carcinogenesis. We
hope that our findings will benefit future studies and improve
the prognosis of LUSC patients.
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