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Abstract: Despite rigorous endeavors, existing attempts to handle type 2 diabetes (T2DM) are still a
long way off, as a substantial number of patients do not meet therapeutic targets. Insulin resistance in
skeletal muscle is discerned as a forerunner in the pathogenesis of T2DM and can be detected years
before its progress. Studies have revealed the antidiabetic properties of Carica papaya (C. papaya),
but its molecular mechanism on insulin receptor substrate-1 (IRS-1)/Akt signaling mechanisms
is not yet known. The present study aimed to evaluate the role of C. papaya on IRS1 and Akt in
high-fat-diet–streptozotocin-induced type 2 diabetic rats and also to analyze the bioactive compounds
of C. papaya against IRS-1 and Akt via in silico analysis. Ethanolic extract of the leaves of C. papaya
(600 mg/kg of body weight) was given daily for 45 days postinduction of T2DM up to the end of
the study. Gluconeogenic enzymes, glycolytic enzymes, gene expression, and immunohistochemical
analysis of IRS-1 and Akt in skeletal muscle were evaluated. C. papaya treatment regulated the levels
of gluconeogenic and glycolytic enzymes and the levels of IRS-1 and Akt in skeletal muscle of type 2
diabetic animals. In silico studies showed that trans-ferulic acid had the greatest hit rate against the
protein targets IRS-1 and Akt. C. papaya restored the normoglycemic effect in diabetic skeletal muscle
by accelerating the expression of IRS-1 and Akt.

Keywords: Carica papaya; insulin receptor substrate-1; Akt; skeletal muscle; insulin signaling;
molecular dynamics

1. Introduction

The incidence of type 2 diabetes mellitus (T2DM) has stretched to epidemic levels
globally, which has led to a substantial impact on human life and health economics. Despite
significant efforts, currently accessible treatments and preventive measures for T2DM are
far from ideal, and a significant number of patients do not achieve treatment objectives [1].
Hence, much research and efforts still lie ahead to comprehend the pathogenesis of T2DM
and reduce the advancement of prediabetes to diabetes [2]. A rising demand for handling
T2DM has been demonstrated in recent years, and this demand still persists.

Insulin resistance in skeletal muscle is an early impairment in the pathogenesis of
T2DM and can be identified years before the onset of this metabolic syndrome [3]. Al-
most 80% of circulating glucose after a postprandial meal is taken up by the cardinal site,
skeletal muscle. The glucose passes from the extracellular matrix to the cell membrane,
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and subsequently, with the aid of glucose transporters, it is ingested into the cell. Intracel-
lular metabolism regulates the glucose gradient to improve the transport of glucose [4].
Impairment in glucose uptake and disposal in skeletal muscle ultimately lead to defects
in whole-body glucose uptake due to diminished insulin-stimulated glycogen synthesis
led by flaws in glycogen synthase and glucose transport [5]. An inactive way of life and
hyperalimentation mark a rise in free fatty acids and inflammatory cytokines that cause
inflammation and oxidative impairment, diminishing the potential of skeletal muscle in
response to insulin needs [4,6]. Endothelial malfunction and deposition of matrix proteins
occur in skeletal muscle due to hyperalimentation, subsequently modifying insulin sig-
naling and thus altering normal metabolism in glucose absorption [4,7]. Free radicals of
reactive oxygen and nitrogen species reduce antioxidant levels and alter other biomolecules,
eventually oxidizing proteins, lipids, and nucleic acids. Toxic derivatives are set off, elicit-
ing endothelial cell damage and tissue dysfunction in type 2 diabetes, reducing the cell’s
potential to react to stimuli [8–10].

Once insulin binds with its receptor, tyrosine residues are autophosphorylated, causing
tyrosine phosphorylation of IRS-1 and IRS-2, which leads to associating and triggering the
phosphatidylinositol-3 kinase (PI3K) enzyme [11]. PIP3 increases as a result of subsequent
phosphorylation and activation of the p110 subunit, which in turn regulates the activity
of phosphoinositide-dependent kinase-1 (PDK-1). Protein kinase B/Akt is triggered to
phosphorylate AS160, which enables GLUT4 to bind to the sarcolemma by either diminish-
ing the tethering of the GLUT4 vesicle by TUG proteins or by enhancing Rab proteins to
induce GLUT4 vesicle translocation to the sarcolemma [6,12]. The veracity of the IRS-1/PI-3
kinase/Akt pathway is effectively upheld for normal insulin-affected glucose uptake in
skeletal muscle [6,13].

Serine/threonine residue phosphorylation occurs instead of tyrosine phosphorylation
in the state of insulin resistance and in due course alters downstream effectors such as Akt
and atypical PKC, subsequently diminishing the translocation of GLUT4 and reducing
glucose uptake [14]. Insulin resistance can occur due to fat accumulation in skeletal muscle
due to the imbalance of uptake and oxidation of fatty acids, subsequently causing metabolic
inflexibility [15]. Normal individuals bank on fat oxidation under fasting conditions and
shift effortlessly to revert carbohydrate oxidation to insulin stimulation, which is mislaid in
the insulin resistance state [16].

Hyperglycemic-induced oxidative stress triggers serine-threonine kinases such as
IKKβ that sequentially phosphorylate IR and IRS-1 and in succession downregulate PI3K
initiation to instigate insulin resistance [17,18]. Insulin-regulated IRS tyrosine phosphoryla-
tion is vital in insulin signaling. One of the targets to induce insulin resistance and IRS-1 at
a low ebb is viewed in obese and insulin-resistant individuals [19,20]. In skeletal muscle,
IRS-1-dependent insulin signal activity prevails over IRS2 to sustain metabolism [21]. IRS-1
is highly mutant, and these alterations reduce IRS-1 phosphorylation and insulin-induced
PI3K activity, which induces debilitated insulin action [21–23]. There are various factors,
such as free fatty acids, inflammatory cytokines, ROS, and hyperinsulinemia, that hike the
different serine kinases that can hinder IRS-1 activity. These manifest insulin resistance
due to upregulation of gene expression by triggering the inflammation process and nuclear
factor kappa B (NF-kB) [19,23,24].

Akt plays a major part in insulin-initiated glucose absorption, glycogen synthesis,
and even cell growth and survival. Threonine 308 is phosphorylated by phosphoinositide-
dependent protein kinase 1 (PDK1) and is followed by phosphorylation at serine 473
by PI3K via mTOR complex 2 to activate Akt for GLUT4 translocation and glucose up-
take [25,26]. Previous studies have shown that knockdown of Akt1 or Akt 2 can result in
insulin resistance and glucose intolerance. Akt diminishes the transcriptional activity of
FOXO1 and reduces glucose levels [27,28].

Therefore, targeting factors and receptors related to skeletal muscle insulin action can
help improve insulin resistance in type 2 diabetes to prevent further progression. Medicinal
plants are scrutinized meticulously in handling diabetes mellitus in order to evade the after
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effects of modern medicine. In our previous study, we focused on the effect of Carica papaya
(C. papaya) on insulin signaling targets such as IR and GLUT4 in skeletal muscle of type 2
diabetes, as well as in silico analysis of the bioactive compounds of C. papaya against IR
and GLUT-4, its enhancement in glucose uptake, and decrease in insulin resistance. The
present study concentrated on the effect of C. papaya on IRS-1 and Akt in vivo and in silico to
understand the role of C. papaya in insulin signaling and gene expression analysis in skeletal
muscle of high-fat-diet (HFD)–streptozotocin-induced T2DM experimental Wistar rats.

2. Materials and Methods
2.1. Chemicals and Reagents

All chemicals, reagents, and primers used in this study were procured from Sigma
Chemical Company (St. Louis, MO, USA), Crystal Chem Inc. (Elk Grove Village, IL, USA),
MP Biomedicals (Santa Ana, CA, USA), Invitrogen (United States), New England Biolabs
(NEB) (United States), Promega (United States), and Eurofins Genomics India Pvt Ltd.
(Bangalore, India).

2.2. Collection of Plant Material

Leaves of C. papaya were collected from Kerala. They were shade dried and powdered.
The material was authenticated by the National Institute of Siddha, Chennai (Certificate
No.: NISMB4392020).

2.3. Animals

Adult male Wistar albino rats (150–180 days old) were maintained under standard
environmental conditions of standard temperature and specific humidity (21 ± 2 ◦C), a
continual 12 h dark and 12 h light cycle, according to the Institutional Animal Ethical
Committee. They were fed a standard pellet diet and water ad libitum at Central Animal
House, Saveetha Dental College and Hospital, Chennai, Tamil Nadu. The present work was
approved according to current guidelines (IAEC No.: BRULAC/SDCH/SIMATS/IAEC/08-
2021/071, dated 21 August 2021).

2.4. Induction of T2DM

A high-fat diet (HFD) (66% typical rat feed, 3% cholesterol, 1% cholic acid, and 30%
coconut oil) was catered to the rats for 4 weeks. After 4 weeks of high-fat-diet (HFD) feeding,
rats were injected intraperitoneally with a low dose of streptozotocin (STZ) 35 mg/kg
(Sigma Aldrich, St. Louis, MO, USA) [29]. Following the next two days of STZ injection,
rats with a fasting blood glucose level (>120 mg/dL) were considered for the experiment.
Diabetic rats were allowed to feed HFD and sucrose water during the study.

2.5. Experimental Design

Rats were randomly divided into 5 groups of 8 rats each.
Group 1—Control rats; Group 2—Diabetic rats; Group 3—Diabetic rats +600 mg/kg

bwt ethanolic extract of C. papaya for 45 days; Group 4—Diabetic rats +50 mg/kg bwt of
metformin for 45 days; Group 5—Control +600 mg/kg bwt ethanolic extract of C. papaya
for 45 days.

On the last day of the experiment, the animals were sedated with sodium thiopentone
(40 mg/kg body weight); blood was drawn via cardiac puncture, and sera were sepa-
rated and stored at −80 ◦C. Blood was removed from the organs by injecting 20 mL of
isotonic sodium chloride solution through the left ventricle. The gastrocnemius muscle
was dissected instantly and taken for the following parameters.

2.6. Determination of Gluconeogenic Enzymes
2.6.1. Glucose-6-Phosphatase Assay

The method of Koide and Oda was employed to evaluate glucose-6-phosphatase [30].
A 0.3 mL volume of citrate buffer, 0.5 mL of substrate, and 0.1 mL of homogenate tissue
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were incubated for 1 h at 37 ◦C. Then, 10% TCA was added to halt the reaction following
the approach of Fiske and Subbarow [31]. The value of absorbance was taken at 640 nm.

2.6.2. Fructose-1,6 Bisphosphatase Assay

The method of Gancedo and Gancedo was used [32]. Incubation for the final mixture
(2.3 mL) contained Tris-HCl buffer, substrate, magnesium chloride, potassium chloride,
EDTA, and tissue homogenate for 15 mins at 37 ◦C. Then, 10% TCA halted the reaction.
Later estimation followed the Fiske and Subbarow method [31].

2.7. Determination of Glycolytic Enzymes

Hexokinase (HK) activity was assessed using the method described by Brandstrup et al. [33].
HK produced glucose 6-phosphate and ADP from ATP and D-glucose, respectively. When
the o-toluidine reagent was applied, the remaining glucose reacted and produced a green
color that could be seen at 640 nm. Enzyme’s activity was calculated as mol glucose phos-
phorylated/h/mg of protein. The approach of Valentine and Tanaka was used to measure
the pyruvate kinase (PK) tissue activity [34]. As an initial point, pyruvate production from
phosphoenolpyruvate was used. Dinitrophenyl hydrazine was added, and the color that
emerged at 520 nm was evaluated to estimate the amount of pyruvate released. Values
were denoted as µmol pyruvate formed/min/mg protein.

2.8. mRNA Expression Analysis
Total RNA Isolation, cDNA Conversion, and Real-Time PCR

Using a TRIR kit, total RNA was separated into five groups. The reverse transcriptase
kit was obtained from Eurogentec (Seraing, Belgium). cDNA was made from 2 µg of total
RNA. The sequence of the primers used in this study is given in Table 1. The reference gene
used is β-actin. Genes were amplified in a real-time PCR system (Stratagene MX 3000P,
Agilent Technologies, 530l, Stevens Creek Blvd, Santa Clara, CA 95051, USA) under the
following reaction conditions: initial denaturation at 95 ◦C for 5 min followed by 40 cycles
of 95 ◦C for 30 s, 59–60 ◦C for 30 s and 72 ◦C for 30 s. Relative quantification was calculated
from the melt and amplification curves analysis.

Table 1. Primer sequence.

S. No Gene Name Primer Sequence Reference

1 Rat βactin Sense primer: 5′-AAG TCC CTC ACC CTC CCA AAA G-3′

Antisense primer: 5′-AAG CAA TGC TGT CAC CTT CCC-3′ [35]

2 IRS-1 Sense primer: 5′-GCC AAT CTT CAT CCA GTT GCT-3′

Antisense primer: 5′-CAT CGT GAA GAA GGC ATA GGG-3 [36]

3 Akt
Sense primer: 5′-GGA AGC CTT CAG TTT GGA TCC CAA-3′

Antisense primer: 5′-AGT GGA AAT CCA GTT CCG AGC
TTG-3′

[37]

2.9. Immunohistochemical Analysis

Sections of skeletal muscle of about 4 µm from experimental animals were deparaf-
finized and rehydrated with xylene and ethanol at progressively lower percentages. Speci-
mens were mixed with sodium citrate buffer (1 M, pH 6.0–6.2) and microwaved for three
cycles of 5 min each, separated by 1 min. Slides were then washed for 5 min with 1 M PBS
for endogenous blocking. In a dark, humid chamber, peroxidase activity was performed
for 10 min with 30% H2O2, followed by a 5 min wash with 1 M PBS. Slides were cleaned
twice with PBS for 5 min each after being blocked with 2% bovine serum albumin (BSA).
IRS-1 and Akt primary antibodies were used, and they were diluted 1:100 before being
treated with the sections. Specimens were incubated with horseradish peroxidase (HRP)
in a humid chamber for 45 min, followed by washing for 5 min with 1 M PBS. By using
the 3,3′-diaminobenzidine (DAB) substrate chromogen 3.3 (100 mg, Sigma, United States),
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1.2 mL of 30% H2O2, and 120 mL of PBS for 6 min at 37 ◦C, the final product was revealed
and then rinsed in water for 5 min.

2.10. Statistical Analysis

Mean ± standard error mean (SEM) was obtained by the triplicate analysis results
of the investigations conducted on control and treatment rats. Experimental data were
estimated by means of one-way ANOVA and Duncan’s multiple range test using GraphPad
Prism Version 5 to detect substantial variances between mean values. Values with p < 0.05
were considered statistically significant.

2.11. Molecular Docking
2.11.1. Compound/Ligand Preparation

The structures of the selected phytoconstituents from C. papaya (Table 2) were obtained
in the structural data format (SDF) from the PubChem database. These SDF files were then
produced using the “prepare ligands” module of DSBDS software and filtered using the
“Filter by Lipinski Rules” module. This procedure eliminated duplicate entries, computed
isomers. and tautomers and created and reduced 3D conformations. BIOVIA is a product
of Dassault Systèmes.

Table 2. List of selected compounds from C. papaya.

S. No. Compound Name

1 Caffeic_acid
2 Chlorogenic_acid
3 Kaempferol
4 Quercetin
5 Rutin
6 p-coumaric_acid
7 trans-ferulic_acid

2.11.2. Protein Preparation

The PDB was used to download the structures of the human IRS-1 (PDB ID: 1K3A)
and Akt (PDB ID: 3QKM) After removing all water molecules, the missing hydrogen atoms
were supplied using CHARMm force field’s Prepare protein module.

2.11.3. Molecular Docking Procedure

Molecular docking investigations were conducted using the Discovery Studio module
Ligand Fit. The primary stage in docking was protein preparation, and entire ligands were
docked into the active area of the receptors. A flood-filling algorithm was used to seek
active sites. The active site was demarcated as the portion of the receptor that is within
12 of the ligand’s geometric centroid. A total of 10 poses were formed during docking,
and the prime poses were chosen based on the docking score values obtained after energy
minimization utilizing smart minimization and a molecule’s optimal orientation in the
active site. The formula for calculating the docking score is as follows. A consensus scoring
system was developed because a single docking score may not be enough to detect active
compounds. LigScore1, LigScore2, Jain, Piecewise Linear Potential (PLP1 and PLP2), and
Potential of Mean Force (PMF) were used. The active compounds were chosen using a
consensus-scoring algorithm and their H-bond interaction with the receptor.

2.12. Molecular Simulation and Dynamics
Molecular Simulation and Dynamics Study of Proposed Compounds and IRS-1 and
Akt Complex

All atom MD simulations were run for 100 ns on all receptors in their free state (apo), as
well as docked complexes at 300 K using the GROMOS 54A7 force field in the GROMACS
simulation program [38]. The Discovery Studio platform was used to search for and add
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missing residues in the receptor coordinate file. The apo and docked complexes were
solvated in a cubic box (size 1.0 nm) and neutralized with sodium ions using the SPC
water model. The PRODRG server was used to build an MD-based ligand topology file
for the docked complex [39]. With 1500 ps, the steepest descent approach was utilized
to achieve energy minimization. The system temperature was initially fixed to 0 K and
subsequently rose to 300 K over the equilibration phase. After that, an equilibration
period of 100 ps with constant volume was achieved under periodic boundary conditions
with a stable pressure of 1 bar. Graphs were generated using MD simulation data using
Xmgrace [40]. For all systems, the final MD run lasted 100 ns, and the resulting trajectories
were assessed using GROMACS’s specialized modules. To analyze the stability of the
simulation, the root mean square deviation and root mean square fluctuation values,
as well as the solvent accessible surface area (SASA) and radius of gyration (RG), were
calculated using GROMACS simulation software.

3. Results
3.1. Estimation of Gluconeogenic Enzymes and Glycolytic Enzymes

Figure 1a,b shows that the action of glucose-6-phosphatase and fructose-1,6 bispho-
sphatase was considerably high in Group 2 diabetic rats. Treatment with C. papaya in
Group 3 exhibited high values close to normal, similar to that of the metformin-treated rats
in Group 4. Group 5 dealt with C. papaya and in no way showed any significant differences.
Figure 2a,b represents the activities of hexokinase and pyruvate kinase in control and exper-
imental rats. When compared to Group 1 rats, skeletal muscle of diabetic rats had decreased
pyruvate kinase and hexokinase activity. In Group 3 diabetic rats, treatment of C. papaya
significantly elevated (p < 0.05) the levels of HK and PK, as well as in metformin-treated
rats in Group 4.

Nutrients 2022, 14, 4181 7 of 17 
 

 

  
(a) (b) 

Figure 1. Outcome of ethanolic extract of C. papaya on (a) glucose-6-phosphatase and (b) fruc-
tose-1,6 bisphosphatase levels in control and diabetic rats. Each bar illustrates the mean ± SEM of 
eight rats, with p < 0.05 demonstrating significant differences between the groups: a—control; 
b—diabetes; c—diabetic rats administered with ethanolic extract of C. papaya; d—diabetic rats 
treated with metformin. 

 
(a) (b) 

Figure 2. Outcome of ethanolic extract of C. papaya on (a) hexokinase and (b) pyruvate kinase levels 
in control and diabetic rats. Each bar illustrates the mean ± SEM of eight rats, with p < 0.05 demon-
strating significant differences between the groups: a—control; b—diabetes; c—diabetic rats ad-
ministered with ethanolic extract of C. papaya. 

3.2. Effect of C. papaya on mRNA Expression of IRS-1 and Akt 
The effect of C. papaya on mRNA expression on IRS-1 in skeletal muscle of all the five 

groups in the experimental study is portrayed in Figure 3a. There was a substantial de-
crease in the gene expression levels of IRS-1 in diabetic group rats. However, the treat-
ment with C. papaya boosted IRS1 gene expression in skeletal muscle at par with the 
treatment of metformin. In skeletal muscle, Akt increased glycogen synthesis by activat-
ing glycogen synthase. In this study, Group 2 skeletal muscle had greatly reduced Akt 
gene expression. Interestingly, C. papaya administration revoked the gene levels of Akt, as 
shown in Figure 3b, even in the metformin treatment. No major alterations in Akt levels 
were seen in Groups 1 and 5. These results infer the capability of C. papaya to escalate the 
signaling of insulin in skeletal muscle of diabetic animals. 

Glucose-6-Phosphatase

Con
tro

l

Diab
ete

s

Diab
+ C

.pap
ay

a

Diab
+ M

etf
orm

in

Con
tro

l+ C
.pap

ay
a

0.0

0.5

1.0

1.5 a

bcd

ab
ab

U/
m

g 
pr

ot
ei

n

Fructose-1,6 bisphosphatase

Con
tro

l

Diab
ete

s

Diab
+ C

.pap
ay

a

Diab
+ M

etf
orm

in

Con
tro

l+ C
.pap

ay
a

0.0

0.5

1.0

1.5

a

bcd
ab abcU/

m
g

pr
ot

ei
n

Figure 1. Outcome of ethanolic extract of C. papaya on (a) glucose-6-phosphatase and (b) fructose-
1,6 bisphosphatase levels in control and diabetic rats. Each bar illustrates the mean ± SEM of
eight rats, with p < 0.05 demonstrating significant differences between the groups: a—control;
b—diabetes; c—diabetic rats administered with ethanolic extract of C. papaya; d—diabetic rats treated
with metformin.
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Figure 2. Outcome of ethanolic extract of C. papaya on (a) hexokinase and (b) pyruvate kinase
levels in control and diabetic rats. Each bar illustrates the mean ± SEM of eight rats, with p < 0.05
demonstrating significant differences between the groups: a—control; b—diabetes; c—diabetic rats
administered with ethanolic extract of C. papaya.

3.2. Effect of C. papaya on mRNA Expression of IRS-1 and Akt

The effect of C. papaya on mRNA expression on IRS-1 in skeletal muscle of all the five
groups in the experimental study is portrayed in Figure 3a. There was a substantial decrease
in the gene expression levels of IRS-1 in diabetic group rats. However, the treatment with
C. papaya boosted IRS1 gene expression in skeletal muscle at par with the treatment of
metformin. In skeletal muscle, Akt increased glycogen synthesis by activating glycogen
synthase. In this study, Group 2 skeletal muscle had greatly reduced Akt gene expression.
Interestingly, C. papaya administration revoked the gene levels of Akt, as shown in Figure 3b,
even in the metformin treatment. No major alterations in Akt levels were seen in Groups 1
and 5. These results infer the capability of C. papaya to escalate the signaling of insulin in
skeletal muscle of diabetic animals.
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Figure 3. (a) IRS-1 mRNA expression levels in ethanolic extract of C. papaya in control and diabetic
rats; (b) Akt mRNA expression levels in ethanolic extract of C. papaya in control and diabetic rats.
Each bar demonstrates the mean ± SEM of eight rats, with p < 0.05 showing significant differences
between the groups: a—control; b—diabetes.

3.3. Evaluation of Immunohistochemical Changes in Skeletal Muscle

Figure 4a–e represents the immunohistochemical changes in experimental and control
rats. Group 2 animals showed decreased expression of IRS-1 in skeletal muscle. These levels
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were enhanced by the treatment of C. papaya, as seen in Group 3. Group 4 rats also exhibited
a significant increase in IRS-1 expression in metformin treatment. Group 5 rats did not
show any considerable changes. Figure 5a–e shows the Akt protein expression in the five
groups studied. The diabetic group displayed lowered expression in skeletal muscle, and
treatment with C. papaya improved the expression of Akt in a similar manner. Similarly,
treatment with metformin showed a significant increase in Akt expression. The control rats
treated with C. papaya did not show any significant changes in protein expression.
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Figure 4. Protein expression of IRS-1 using an immunohistochemical assay (magnification: ×100):
(a) control rats; (b) type 2 diabetic rats; (c) type 2 diabetic rats treated with C. papaya (600 mg/kg
b.wt); (d) type 2 diabetic rats treated with metformin (50 mg/kg, b.wt); (e) control rats treated with
C. papaya (600 mg/kg b.wt).
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3.4. Molecular Docking

The proposed compounds were screened with the help of Discovery Studio software
for their binding potentials on targets such as IRS-1 and Akt. The 3D structures of the targets
were obtained from the RCSB Protein Data Bank. The results of this docking investigation
revealed that the selected compounds have significant interaction with the target proteins.
The protein–ligand complex’s stability was assessed using two key criteria: (1) the greatest
binding energy and (2) the number of ligand interactions with the active site residues.
Table 3 lists the docking details of all ligands with the target proteins. While docking into
the active site, a ligand can experience van der Waals, hydrogen bonding, hydrophobic,
and electrostatic interactions. According to the literature, binding energy plays a larger
influence in predicting the optimum binding mode than the number of contacts. The
traditional H bond (HB) (which is more prevalent) and hydrophobic contacts are more
effective than the others. In our previous study, the results of ADME prediction were carried
out in accordance with Lipinski’s rule of five. Rutin and chlorogenic acid failed to satisfy
Lipinski’s rule of five, so we cannot consider these two compounds for further analysis.
Table 3 shows the distinct binding pocket amino acid residues that are associated with
the phytocompounds. The binding energy and number of interactions clearly show that



Nutrients 2022, 14, 4181 9 of 17

selected compounds have a higher affinity for target proteins. The best three compounds
for each target protein were chosen based on binding energy and interaction. Figures 6
and 7 show the interaction of the best compounds with each target protein.

Table 3. Binding affinity assessment based on docking score of proposed natural compounds and
selected target proteins.

S. No Compound Name
Lig

Score1_Drei
Ding

Lig
Score2_Drei

Ding
PLP 1 PLP 2 JAIN PMF Docking

Score

IK3A

1 Trans-ferulic acid 1.64 3.37 38.93 36.6 −1.2 34.9 37.161

2 Quercetin 2.69 3.56 52.33 58.2 −0.84 52.63 49.741

3 Kaempferol 0.32 1.75 52.03 65.41 0.75 67.22 49.413

4 Rutin 3.33 4.24 109.67 113.31 1.14 73.52 103.327

5 p-coumaric acid No interaction

6 Chlorogenic acid 3.96 4.6 75.2 75.63 −0.37 64.06 71.235

7 Protocatechuic acid No interaction

8 Caffeic acid No interaction

3QKM

1 Trans-ferulic acid 1.02 0.14 64.19 71.24 2.36 −8.12 58.136

2 Quercetin −18.41 −31.47 9.64 54.3 5.87 −37.75 0.656

3 Kaempferol −16.08 −28.66 12.82 52.39 6.57 −27.04 4.939

4 Rutin No interaction

5 p-coumaric acid 0.26 −0.99 55.11 62.57 3.43 7.61 50.999

6 Chlorogenic acid No interaction

7 Protocatechuic acid No interaction

8 Caffeic acid −2.19 −4.55 54.21 59.96 3.52 −2.24 51.777
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3.5. Molecular Simulation and Dynamics Study of Docked Complex
3.5.1. Molecular Dynamic Simulation of IRS-1

Atomic RMSDs of the C atoms in an IRS-1–ligand complex, including kaempferol
(red) and quercetin (green), as well as trans-ferulic acid (blue), were plotted in a time-based
pattern, in addition to apo form (black) of IRS-1 protein, in a time-dependent manner
(Figure 8a). Figure 8a showcases the stable nature of the apo form of IRS-1 after IRS-1
complexes with all compounds. Compared to other complexes, kaempferol only showed
mild RMSD at 85 ns, after which it attained a stable form. Figure 8b shows the RMSF
graph of IRS-1 with selected compounds. This plot shows that all the compounds showed
stable form except trans-ferulic acid. Trans-ferulic acid showed a huge variation at the
1075 residues position, after which it attained a stable conformation. The evaluation of RG
value for apoproteins and compounds (Figure 8d) was completed in order to investigate
the binding impact of ligand to protein on compactness. RG values in the lower range
indicate a strong association between the ligand and the protein, but the RG value of a
stably folded protein is consistent. This plot demonstrated that the protein displayed a
slight change of about 48–50 ns, after which it reached a stable state. In protein folding
studies, the SASA of a protein is investigated as a critical element in the stability of protein,
and it is found to be important. In this study, we determined the SASA values for the apo
form of IRS-1 and for the proteins associated with each of the compounds, and the results
are presented in Figure 8c.

3.5.2. Molecular Dynamic Simulation of Akt

According to Figure 9a, the MD simulation was carried out for a total time of 100 ns,
and the trajectories are for the relative mean square deviation (RMSD) plot. apoprotein
(black), caffeic acid (red), p-coumaric acid (green), and trans-ferulic acid (blue) are depicted
in the illustration for a time scale of 100 ns. The RMSD of apoprotein showed a stable form
throughout the dynamic simulation time. This plot showed that caffeic acid and p-coumaric
acid fluctuated in a milder way, but trans-ferulic acid fluctuated at 75–85 ns; after that, it
attained a stable conformation. Figure 9b shows the RMSF graph of docked complexes.
Caffeic acid and p-coumaric acid did not show any abnormal fluctuation throughout the
simulation time, but trans-ferulic acid showed a fluctuation at the 350–370 and 450 positions
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of amino acid residues. An additional measure of protein stability and compactness during
MD tests can be found in the atoms’ RMSD from the protein centroid, which is called
the radius of gyration (RG). Figure 9d shows the frequency of distribution of the values
computed in each timestep for each simulation of the complexes. This plot showed that
p-coumaric acid and trans-ferulic acid fluctuated at 48–100 ns of the simulation. The SASA
profile of the compounds and receptor complex was equal throughout the simulation,
indicating that the proteins have good interaction with the target protein (Figure 9c).
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4. Discussion

The consumption of a high-fat diet leads to the development of diabetes mellitus,
which progressively affects metabolic organs such as the liver, skeletal muscle, and adipose
tissue. This results in an increase in glucose, cholesterol, triglycerides, and LDH and a
decrease in HDL, causing hyperglycemia. In T2DM, hyperinsulinemia is closely associated
with dysregulated insulin secretion and chronically elevated insulin levels in the blood-
stream [41]. The induction of streptozotocin affects beta cell function and results in an
abnormal insulin structure that eventually fails to bind with insulin receptors in the cells
of target organs. This can pave the way to decrease the binding of the insulin receptor to
insulin receptor substrates and thereby decrease downstream signaling pathways such as
the PI3K, Akt, and AS 160. The translocation of GLUT4 transporters is reduced, eventually
triggering lowered glucose uptake, causing reduced glucose metabolism [42]. In the present
study, ethanolic extract of C. papaya administered to experimental rats improved insulin
sensitivity in skeletal muscle of high-fat-diet–streptozotocin-induced T2DM.

Under normal conditions, insulin regulates glycolysis and gluconeogenesis, which
initiates glucose uptake and oxidation in peripheral organs such as muscle and adipose
tissues for the maintenance of normal blood glucose levels [43]. In diabetic conditions, the
activity of enzymes related to these pathways fluctuates often, along with changes in glu-
cose oxidation in metabolic organs that in turn induce insulin resistance in these organs [44].
Glucose-6-phosphatase and fructose-1,6 bisphosphatase are the key enzymes of gluco-
neogenesis. Activation of these enzymes is due to the state of insulin deficiency because,
under normal conditions, insulin functions as a suppressor of gluconeogenic enzymes.
The increase in the activity of gluconeogenic enzymes in T2DM produces hydrogen and
combines with NADP+ to make NADPH and promote lipogenesis, which leads to higher
blood glucose levels [45]. In our study, the levels of glucose-6-phosphatase and fructose-1,6
bisphosphonates were seen to be significantly elevated in the gastrocnemius muscles of
diabetic animals. Administration of C. papaya to the diabetic rats decreased these enzymatic
levels close to that of the metformin group. Similarly, in a study by Kanadi et al. [46], the
seeds of C. papaya were found to eliminate potassium-bromate-induced alterations in the
levels of glucose-6-phosphatase and fructose-1,6 bisphosphatase in rodent kidneys. A
study evaluating the hypoglycemic property of Centella asiatica was conducted by Oyenihi
and coworkers [47] to investigate the carbohydrate enzyme fructose-1,6 bisphosphate in
skeletal muscle of rats and displayed that the activity of fructose-1,6 bisphosphate was
increased by 23% with the administration of Centella asiatica in the diabetes-induced rats.
Additionally, isopulegol was also studied for its hypoglycemic property in the liver of
diabetes-induced rodents by Kalaivani et al. [48]. The present study demonstrated for the
first time the action of C. papaya on gluconeogenic enzymes viz. glucose-6-phosphatase
and fructose-1,6 bisphosphatase in skeletal muscle of high-fat-diet–streptozotocin-induced
diabetic rats.

Insulin secretion and the metabolic processes of different cells are normally influenced
by glycolysis. HK and PK are key enzymes of glycolysis, and their deficiency can result in
reduced glycolysis and reduced uptake and utilization of glucose for energy production,
which can lead to insulin resistance [45,49]. In our present study, HK and PK were decreased
in high-fat-diet–streptozotocin-induced diabetic rats due to faulty insulin signaling. The
administration of C. papaya elevated the levels of these glycolytic enzymes in skeletal
muscle of diabetic rats when compared to the metformin group. Pari et al. [50] mentioned
that the phytocompound coumarin also had a similar property that increased the levels
of glycolytic enzymes in diabetic rats as compared to that of the control group. Likewise,
Gothandam et al. [51] showed elevated levels of glycolytic enzymes in diabetic skeletal
muscle by theaflavins. Our study showed that the antidiabetic properties of C. papaya
may be due to its phytochemical potential to reduce blood glucose and regulate insulin
signaling [52].

Insulin signaling plays a vital role in the control of a wide range of biological processes
such as glucolipid homeostasis, predominantly via action on metabolic organs [53]. Tyrosine
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autophosphorylation of the β-subunit, which occurs as a result of insulin binding to
the insulin receptor, phosphorylates other substrates and triggers a signaling cascade to
oxidize glucose for energy production. Disturbances in these signaling pathways can
lead to insulin resistance [54]. A high-fat diet disrupts insulin signaling by affecting
glucose and lipid homeostasis, which changes the regular functioning of insulin signaling
molecules and results in insulin resistance [55]. Specifically, in skeletal muscle, where 80%
of glucose oxidation takes place, insulin signaling molecule alteration may reflect more
when compared to other organs such as the liver and adipose tissue [56].

IRS-1, which is specific in peripheral tissues such as skeletal muscle and adipose tissue,
plays a significant role in insulin signaling pathways. In diabetic conditions, the insulin
binds to the insulin receptor inefficiently, leading to serine phosphorylation of IRS-1 instead
of tyrosine phosphorylation, which lowers IRS-1 activation, leading to decreased activation
of downstream insulin signaling molecules such as PI3 kinase, Akt, and AS160 [57]. Our
study showed for the first time the action of C. papaya on insulin signaling molecules
such as IRS-1 in skeletal muscle of high-fat-diet–streptozotocin-induced diabetic rats. This
study demonstrated that the mRNA levels of IRS-1 in the diabetic group are lowered when
compared to the control group. Diminished IRS-1 activity may be due to the altered action
of gluconeogenic and glycolytic enzymes, which in turn caused less binding of the insulin
receptor to IRS-1. This subsequently reduced the activation of Akt. Zhang et al. [58] showed
upregulation of mRNA levels of IRS-1 by fucoxanthin administration in diabetic skeletal
muscle. Another study conducted by Cai et al. [59] showed enhanced gene expression levels
of IRS-1 by Folium Mori in T2DM skeletal muscle. The treatment with C. papaya showed an
increase in the levels of IRS-1 compared to metformin and displayed the mechanism in its
antidiabetic nature.

A high-fat diet-induced state of insulin resistance also regulates the activation of Akt,
a serine-threonine kinase that controls cellular signaling pathways. This current study
showed the action of C. papaya on Akt in skeletal muscle of the high-fat-diet–streptozotocin-
induced diabetic rats. This study demonstrated that the mRNA levels of Akt in the diabetic
group are lowered when compared to the control group, whereas the C. papaya-treated
group showed a significant change in mRNA levels, indicating C. papaya contains phyto-
chemicals that enhance insulin signaling molecules such as Akt for further normal glucose
uptake and oxidation. The phytocompound saponins in Panax notoginseng regulates the
mRNA levels of Akt in skeletal muscle of T2DM mice according to Guo et al. [60]. Likewise,
Jung et al. [61] reported that the treatment with asprosin improved insulin sensitivity by
upregulating levels of insulin receptor substrate 1 and Akt phosphorylation. The high-
fat-diet condition influenced these insulin signaling molecules, which further affected the
translocation of GLUT4 through AS160, causing a decrease in glucose uptake that results in
decreased glucose oxidation in peripheral tissues [62]. The above reports in our study hint
at the possible signaling mechanism by which C. papaya exerts its antidiabetic property.

The antidiabetic property of C. papaya and its enhancement on the IRS-1 and Akt are
strengthened by immunohistochemical studies. In our study, the treatment with C. papaya
was effective in boosting up these protein targets involved in the insulin signaling pathway
comparable to that of metformin and thereby increased insulin sensitivity in skeletal muscle.
In diabetic skeletal muscle, the effect of staining of these molecules was very much reduced
when compared to control rats. Wang et al. [63] reported increased IRS-1 degradation in the
fatty tissue of a type 2 diabetic rodent model, and they suggested a faulty glucose uptake
due to defective GLUT4. Li et al. [64] demonstrated that treatment with dioscin regulated
the levels of IRS-1 and Akt close to the normal group thIt triggered the insulin signaling.
The effect of ethanolic extract of C. papaya in regulating the gluconeogenic and glycolytic
enzymes, as well as in the enhancement of mRNA levels of IRS-1 and Akt, could possibly
be explained in the immunohistochemical staining in our study.

The discovery of active molecules from natural sources has risen to prominence as a
critical component of drug discovery. The docking and dynamic studies in our work were
conducted to count on the compound’s antidiabetic efficacy at the target level. However,
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for binding affinity analysis, the scores were transferred from the table browser view
of Discovery Studio for the top-ranked docked complex. We identified and proposed
antidiabetic peptides for oral administration, employing an in silico method in our work.
Trans-ferulic acid had the greatest hit rate against the protein targets IRS-1 and Akt, which
may act as adjuvant drugs to tackle T2DM with lesser or no complications and need to be
validated by wet-lab investigations.

5. Conclusions

C. papaya has the capability to normalize blood glucose levels in diabetic rats, and
it was shown to reinstate the insulinemic effect in diabetic skeletal muscle by boosting
IRS-1 and Akt levels. The novelty of this study is that we are the first to describe the
conceivable role of C. papaya on insulin signaling molecules such as IRS-1 and Akt in a
high-fat-diet–streptozotocin T2DM model. Furthermore, we also proposed via molecular
docking and dynamics that trans-ferulic acid of C. papaya docked well with IRS-1 and
Akt. The results of in silico studies also supported our experimental studies. Therefore,
considering the above findings, it is evident that C. papaya may be a reassuring drug for
T2DM management.
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