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Abstract

using strand specific data.

should be well aware of the caveats of that approach.

Background: Strand specific RNA sequencing is rapidly replacing conventional cDNA sequencing as an approach for
assessing information about the transcriptome. Alongside improved laboratory protocols the development of
bioinformatical tools is steadily progressing. In the current procedure the lllumina TruSeq library preparation kit is
used, along with additional reagents, to make stranded libraries in an automated fashion which are then sequenced
on lllumina HiSeq 2000. By the use of freely available bioinformatical tools we show, through quality metrics, that the
protocol is robust and reproducible. We further highlight the practicality of strand specific libraries by comparing
expression of strand specific libraries to non-stranded libraries, by looking at known antisense transcription of
pseudogenes and by identifying novel transcription. Furthermore, two ribosomal depletion kits, RiboMinus and
RiboZero, are compared and two sequence aligners, Tophat2 and STAR, are also compared.

Results: The, non-stranded, lllumina TruSeq kit can be adapted to generate strand specific libraries and can be used
to access detailed information on the transcriptome. The RiboZero kit is very effective in removing ribosomal RNA
from total RNA and the STAR aligner produces high mapping yield in a short time. Strand specific data gives more
detailed and correct results than does non-stranded data as we show when estimating expression values and in
assembling transcripts. Even well annotated genomes need improvements and corrections which can be achieved

Conclusions: Researchers in the field should strive to use strand specific data; it allows for more confidence in the
data analysis and is less likely to lead to false conclusions. If faced with analysing non-stranded data, researchers
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Background

The transcriptome has long been studied by reverse tran-
scribing single stranded RNA into double stranded cDNA
and assessed with assays such as PCR [1,2], microarrays
[3,4] or massively parrallel sequencing [5,6]. By assessing
gene expression through cDNA the strand information of
the RNA is lost. With the advent of many strand specific
RNA library preparation protocols increasing number
of RNA sequencing experiments are generating stranded
RNA sequencing data [7-9]. Without strand information
it is difficult to determine correct gene expression from
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overlapping genes; i.e. genes that have the same location
in the genome, at least partly, but are transcribed from
opposite strands. Knowing the strand information of the
cDNA is essential to determine from which of the over-
lapping genes the RNA originates from. Such overlapping
genes in mammalian genomes, while not frequent, are
more common than previously thought [10,11] and they
are widespread in genomes of other species, especially
those with small and compact genomes [12].

Increasing exploration of the transcriptome has led to
discoveries of multitude of various RNA species [13]. Of
particular interest with regards to strand information is
antisense RNA (asRNA) which is a transcribed RNA that
is complementary, i.e. on the opposite strand, to another
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gene, usually a protein coding gene. Thus by definition all
antisense genes are overlapping genes. The most straight-
forward regulatory function of asRNA is its ability to
hybridize to its existing sense mRNA and hinder transla-
tion of that particular mRNA molecule. This, however, is
just one function of many and asRNA encompasses many
different types of RNA [14]. A relatively newly discovered
feature of asRNA is the antisense transcription of pseu-
dogenes [15,16]. Pseudogenes, evolutionary remnants of
gene duplication, were long thought to be silent and non-
functional. Still, while prokaryotes rapidly lose pseudo-
genes from their genomes, complex multicellular animals
like mammals often retain their pseudogenes, suggesting
evolutionary conservation and thus function. Evidence is
now mounting towards various regulatory functions of
pseudogenes [17].

A handful of protocols have been published which retain
the strand information of the RNA with varying degree
of success and labor intensity. In 2009 Parkhomchuk
et al. [7] published a strand specific library protocol
which has since become popular among such protocols
being both relatively simple and effective. The protocol
is called dUTP second strand marking method, or dUTP
method for short, and consists of using dUTPs instead
of dTTPs during the synthesis of the second strand in
the cDNA synthesis step during sample preparation. Then
prior to PCR amplification the uracil in the second strand
is degraded using Uracil-N-Glycosylase (UNG). With the
second strand partly degraded only the first strand is
amplified in the subsequent PCR. This particular strand
specific protocol was evaluated as superior in terms of
simplicity and data quality in a benchmark study of strand
specific protocols [18].

In the current study we modulate specific steps in a scal-
able transcriptome preparation method [19] to combine
the strand specific dUTP method [7] and the Illumina
TruSeq RNA sample preparation kit (# RS-122-2001) into
an automated strand specific RNA sequencing protocol.
By preparing libraries from different cancer cell lines
we show that the stranded protocol is reproducible and
compares well to its non-stranded counterpart [19] and
requires little extra hands on time in sample prepara-
tion. From our sequencing data we compare the perfor-
mance of two sequence aligners; Star [20] and Tophat2
[21]. In contrast to the published method [19] we use
ribosomal depletion instead of poly adenylation selec-
tion to enrich RNA and here we evaluate two riboso-
mal depletion kits; RiboMinus (Ambion®) and RiboZero
Gold (Epicentre). We then highlight some advantages of
stranded libraries by performing a differential expres-
sion analysis between strand specific and non-stranded
libraries and note how this procedure can be used to
probe the annotation of the genome. In conclusion, we
turn our attention to high coverage strand specific data
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to further explore stranded features of the transcriptome;
we validate the antisense transcription of the pseudogene
PTENP1 which has been shown to be involved in the
regulatory network of the expression of the gene PTEN
[16], and we report novel transcription in the U20S cell
line.

Results

Sample preparation

Apart from the ribosomal depletion step and as described
in [19] (and in Methods), all other sample preparation
steps; carboxylic acid (CA) purification, cDNA synthesis
and library preparation, were carried out on a Magnatrix™
1200 Biomagnetic Workstation (MBS) (Nordiag ASA,
Oslo, Norway), which is equipped with a 12 tip head suit-
able for preparing 12 samples in parallel. The stranded
protocol differs from the non-stranded protocol in two
ways; First, during cDNA synthesis a CA purification step,
carried out on the MBS, is introduced after the first strand
synthesis after which the second strand synthesis contin-
ues as normal except the nucleotide mix includes dUTPs
instead of dTTPs. This CA purification step is necessary
to remove all the dTTPs prior to second strand synthesis.
Second, after library preparation [19,22], a second strand
digestion step is added. This step ensures that only the first
strand survives the subsequent PCR amplification step
and hence the strand information of the libraries. Each
of these additional steps add 45-60 minutes to the total
preparation time, with about 15-20 min of those being
hands on. Additional file 1 shows the main automated
steps of sample preparations and highlights the difference
between the non-stranded method and the strand specific
method.

In total there were 15 libraries prepared, 12 strand spe-
cific and 3 non-stranded. All libraries returned a high
yield; 78.1 ng/ul and 110.4 ng/ul on average for the strand
specific and non-stranded libraries respectively. All the
libraries had comparable mean fragment length; 259 bp
and 245 bp on average for the strand specific and non-
stranded libraries, respectively. Additional file 2 shows the
concentration and the mean fragment length of each of
the 15 libraries.

Sequencing

All libraries were sequenced on the Illumina HiSeq 2000
generating 100 bp paired end reads. The 15 libraries were
divided into 5 groups depending on how they were pre-
pared as shown in Table 1. In Table 1 the Group ID
shows the RNA source (A431, U251 or U20S), the enrich-
ment method (RiboMinus or RiboZero) and the library
type (strand specific or non-stranded). Also shown in
Table 1 is the average number of raw read pairs generated
in the sequencing. The raw sequencing reads are avail-
able at the NCBI Sequence Read Archive under accession
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Table 1 Overview of library groups

Raw read pairs

Group No. Group ID* Libraries (millions)
Group 1 A431_RMSS 1-2 17.0£0.1
Group 2 U251_RMSS 3-5 18.7 £2.7
Group 3 U20S_RMSS 6-8 16.7 £04
Group 4 U20S_RMNS 9-1 158 £0.5
Group 5 U20S_RZSS 12-15 230.2£58

Grouping of libraries according to RNA enrichment and library type along with
the average number, and the standard error, of raw read pairs in each group.
[*RM = enriched with RiboMinus, RZ = enriched with RiboZero, SS = strand
specific, NS = non-stranded. A431, U251 and U20S denote different cell lines].

SRP043027 (SRA, http://www.ncbi.nlm.nih.gov/Traces/
sra/).

Trimming and mapping

Read alignment was performed by Tophat v2.0.4 [21] and
Star v2.3.10 [20] on raw reads and on quality reads, i.e.
reads that had been through adapter removal and qual-
ity trimming (see Methods). Tophat mapped 59.8% of the
raw reads on average compared to 88.2% for Star. For
the raw reads the average mapping speed, measured in
mapped read pairs per second, was 542 for Tophat com-
pared to 50000 for Star. The percentage of raw reads
discarded from analysis by the quality trimming step step
was 0.71, 0.40, 0.97, 0.50 and 3.66 for Groups 1, 2, 3, 4
and 5 respectively. Tophat mapped 74.6% of the quality
reads on average compared to 94.3% for Star. For the qual-
ity reads the average mapping speed, measured in mapped
read pairs per second, was 701 for Tophat compared to
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64900 for Star. Thus, Star is nearly one hundred times
faster than Tophat.

Graphical representation of these mapping attributes,
mapping percentage and mapping speed, for both align-
ers and a comparison between the handling of raw data
and quality data is shown in Figure 1. For these attributes
Star outperforms Tophat in all instances. Also, the quality
trimming improves the alignment yield, not only in rel-
ative terms but in absolute terms as well (see Additional
file 3), and the mapping speed. Based on these results
all further downstream analysis was based on the quality
trimmed data aligned with Star.

Quality control metrics

The robustness of the protocol and the quality aspects of
the data were evaluated using the 15 libraries generated
from the human cell lines (libraries 1-15) through differ-
ent metrics; ribosomal RNA in data, strand specificity,
duplication rate, gene body coverage and expression cor-
relation. Details from some of these analyses can be found
in Additional file 3.

Ribosomal contamination

To evaluate the efficiency of the ribosomal depletion, the
rRNA reads in each library were quantified. On aver-
age the libraries treated with RiboMinus contained 65.7%
rRNA compared to only 2.24% for the libraries treated
with RiboZero. Figure 2a shows the average percentage of
rRNA reads in each library group.

Strandedness of libraries
Figure 2b shows the average strand specificity of
each library group. Here, strand specificity means the

a) Alignment yield for raw data and trimmed data
100

H Raw data
E Trimmed data

Alignment yield (%)

Tophat Star

Figure 1 Alignment yield and mapping speed. Mapping yield a) and mapping speed b) for the aligners Tophat and Star, performed both on raw
data and quality data. The mapping efficiancy and mapping speed improves using the quality data for both aligners. Star outperforms Tophat both
in alignment yield and in mapping speed. Note that the alignment speed is plotted on a log scale.

g

Alignment speed for raw data and trimmed data

Il Raw data
E Trimmed data

Alignment speed (read pairs per second)

Tophat Star



http://www.ncbi.nlm.nih.gov/Traces/sra/
http://www.ncbi.nlm.nih.gov/Traces/sra/

Sigurgeirsson et al. BMC Genomics 2014, 15:631 Page 4 of 13
http://www.biomedcentral.com/1471-2164/15/631

a) Ribosomal RNA in sequencing data b) Strandedness of libraries

100
| I
.III I

(&) ()]
o o
| |

Ribosomal RNA (%)
w B
o o
| |

Strand specificity (%)

N
o
|

-
o
|

A431 U251 U20S U20S U20S A431 U251 U20S U20S U20S
RMSS RMSS RMSS RMNS RZSS RMSS RMSS RMSS RMNS RZSS
C)  Quantification of duplicate reads d) Gene body coverage
8 —
60 —
A
A
A m
50 . é
E, |
R 40 A 3
2 AN g !
© A 5 |
S 30 5 !
= Qo '
8 N E . |
3 t 2 4 ; Library Group ID:
S04 4 ™ 3 | —— A431_RMSS (53.1%)
I | —— U251_RMSS (53.5%)
= ' —— U20S_RMSS (51.8%)
£ ! —— U20S_RMNS (53.3%)
104 A S ! —— U20S_RZSS (51.4%)
o 2 - :

A431 U251 U20S U20S U20S \ \ \ \ \ \
RMSS RMSS RMSS RMNS RZSS 0 20 40 60 80 100

5' ——- gene body ——- 3' (%)

Figure 2 Quality control metrics for human cell line libraries. a) rRNA content in libraries treated with RiboZero is 2.24% on average while rRNA
content in libraries treated with RiboMinus is 65.7% on average. Error bars denote standard error. b) The strand specificty of strand specific libraries is
96.6% on average; the libraries treated with RiboMinus have slightly higher strand specificity than the libraries treated with RiboZero. The
unstranded libraries have strand specificity of 50.0%. c) The duplication rate varies between the libraries. The higher duplication rate of the libraries
treated with RiboZero compared to the libraries treated with RiboMinus can partly be explained by the much higher sequencing depth of those
libraries. The hollow triangles represent the duplication rate of the downsampled data (see text for details). d) All libraries show even gene coverage.
The percentages in parenthesis is the percentage of reads that map closer to the 3" end than to the 5 end. [RM = RiboMinus, RZ = RiboZero, SS =
strand specific, NS = non-stranded].
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percentage of times the read matches the annotation
correctly according to how the library was made. For
dUTP libraries the first read in a read pair must be
reversed so it matches the annotation while the sec-
ond read matches the annotation directly. For the strand
specific libraries treated with RiboMinus (library groups
1-3) the average strand specificity is 97.4% while for the
strand specific libraries treated with RiboZero (library
group 5) the average strand specificity is 95.1%. This
difference was found to be statistically significant (Stu-
dent’s t-test, p < 0.05). The average strand specificty for
the non-stranded libraries (library group 4) is 50.0% as
expected.

In general, these results show that the protocol works
and in particular that the CA purification step is successful
in removing dTNPs after the first strand synthesis.

Duplication quantification

Figure 2c shows the average percentage of duplicates
identified for each library group. There is some vari-
ation in duplication frequency in the libraries espe-
cially between library groups. The libraries treated with
RiboZero show higher duplication rate, 52.5% on aver-
age, than the libraries treated with RiboMinus, 22.4%
on average. This difference was thought to be related to
the difference in sequencing depth. To verify that, the
RiboZero data was downsampled to 15 million reads and
the duplication rate quantified again. The duplication rate
decreased from 52.5% to 37.0% when using the downsam-
pled data and thus the high duplication rate can only be
explained partly by the high sequencing depth. The dupli-
cation rate for this downsampled data is shown as hollow
symbols in Figure 2c.

Due to the risk of inaccurately identifying reads orig-
inating from highly expressed genes as duplicates, the
duplicate reads were not removed prior to differential
expression analysis.

Gene coverage and read distribution

Figure 2d shows the read coverage, normalized for the
different read depths, and averaged over each library
group. No discernable difference can be seen between
the libraries and they all show even coverage across the
gene body. Additional file 4 shows, for each group, how
the reads are distributed to exons, introns and intergenic
regions. Analysis of variance (ANOVA) revealed no sig-
nificant difference in the read distribution between the
groups.

Expression correlation

To further assess the robustness of the libraries the
correlation of expression values between replicates was
quantified. The mean Pearson correlation of the 16
possible correlations within replicates was R?> = 0.96.
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Correlation plots and the Pearson correlation value for
each correlation is shown in Additional file 5.

Differential expression - strand specific vs. non-stranded
data

The only difference between libraries in group 3 and
group 4 is that the libraries in group 3 are strand spe-
cific, generated using the current approach, while the
libraries in group 4 are non-stranded, generated using
the approach in [19]. In order to explore the differences
between these library types a differential expression (DE)
analysis was carried out beween these groups; first by
downsampling each library so that they contain equal
amount of reads, then by acquiring read counts per gene
using htseq-count [23] and finally using these read counts
as input for the DE analysis using DESeq v1.10.1 [24].

Of the 62893 annotated genes (protein coding and non-
coding) 41065 do get assigned low or no expression in
all of the six libraries. Of the remaining 21828 genes
245 are found to be significantly differentially expressed
genes, hereafter referred to as DEGs. Of these 245 DEGs
69 have higher expression in the non-stranded libraries
while 176 DEGs have higher expression in the stranded
libraries. Intriguingly the division of DEGs into pro-
tein coding genes and non coding genes is different
depending on whether the DEGs have a higher expres-
sion in the non-stranded data or in the stranded data.
So, for the 69 DEGs which show higher expression in
the non-stranded data 24 are protein coding and 45 are
non-coding while for the 176 DEGs which show higher
expression in the stranded data 136 are protein coding
and 40 are non coding. This expression profile is shown in
Figure 3.

To find out why these DEGs arise, coverage plots for
a selection of the DEGs with the lowest p-values, were
analysed and compared to the annotation used for count-
ing by htseq-count. All DEGs investigated that have a
higher expression in the stranded data compared to the
non-stranded data have overlapping annotation which
results in many reads mapping to those genes being
labeled as ambiguous for the non-stranded data and hence
resulting in low expression. Explanation for DEGs with
higher expression in the non-stranded data compared to
the stranded data is not as straightforward but scrutiny
revealed three dominant reasons for these DEGs; i) the
DEGs have overlapping features that are unnannotated,
ii) the DEGs are annotated in the wrong direction or
iii) the DEGs have antisense intronic transcripts that get
wrongly assigned to them. Additional file 6 shows cov-
erage plots of selected DEGs along with their annotation
and explanations for why these DEGs arise in this com-
parison and Additional file 7 lists all the genes found to
be significantly differentially expressed in this differential
expression analysis.
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Figure 3 Differential expression profile when comparing the strand specific libraries to the non-stranded libraries. All green dots are
protein coding genes found to be signficantly differentially expressed and all red dots are non coding genes found to be signficantly differentially
expressed. pcRNA: protein coding RNA, ncRNA: non-coding RNA.

This analysis also demonstrates how essential it is
to have strand specific libraries for compact genomes
with high abundances of overlapping genes since without
strand specificity a large proportion of the genes would be
labeled as ambiguous.

Transcriptome assembly - strand specific vs. non-stranded
data

For each library in group 3, 4 and 5 two transcript assem-
blies were made using Cufflinks [25]. The first, termed
raw assembly, used all mapped reads while the other,
termed novel assembly, used only those reads that did
not map to the ensembl reference annotation (version
GRCh37.72). Then the assemblies within each group were
merged together using Cuffmerge [25]. In addition, library
5 was assembled again without supplying Cufflinks with
the information that it was strand specific thus generating
a pseudo non-stranded assembly.

From these assemblies it was found that strand spe-
cific data generates fewer transcripts compared to non-
stranded data and the average transcript length is usually
shorter for the strand specific data as compared to the
non-stranded data. The same holds true when comparing
the assemblies between library group 5 treated as strand

specific to library group 5 treated as non-stranded. An
overview of the assembly results is shown in Additional
file 8.

Antisense transcription of the pseudogene PTENP1
The antisense transcription of the pseudogene PTENP1
has previously been reported and suggested to play a role
in the regulation of the gene PTEN [16]. From the high
coverage data of the U20S cell line (Library Group 5) this
antisense transcription was verified and further evaluated.
The coverage plot in Figure 4 shows clear antisense
expression of the PTENP1 pseudogene. The RefSeq
database has this antisense transcript annotated as a gene
with one isoform containing four exons as shown in the
uppermost annotation track in Figure 4 (PTENPI1-AS).
The Ensembl database, however, does not have this anti-
sense transcript annotated but it does have two genes
annotated further downstream as shown in the Ensembl
annotation track in Figure 4. The new annotation pre-
sented here, based on the raw assembly results from
library group 5, is shown at the bottom annotation track
in Figure 4 which suggests two new isoforms of the
antisense gene PTENP1 one of which includes a new
exon (PTENP1-AS2). This new exon overlaps the two
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Figure 4 Antisense RNA of PTENP1. Antisense transcription of the pseudogene PTENP1. The RefSeq annotation includes only one isoform (top
annotation track) while the Ensembl annotation does not have this transcript annotated. Our data, based on Cufflinks assembly, suggest two
alternative isoforms for this transcript labeled PTENP1-AS2 and PTENP1-AS3. The PTENP1-AS2 isoform includes a novel exon, higlighted by a red
arrow, which overlaps ensembl annotation of other genes. It is suggested here that this ensembl annotation is wrong and that these genes are part
of the PTENP1-AS gene. *The Cufflinks assembly shown here has been cleaned up a bit. For the direct output delivered by Cufflinks see Additional

annotated genes from the Ensembl annotation indicat-
ing that they may be, not seperate genes, but part of the
PTENPI1 asRNA.

Using an annotation which included the RefSeq isoform,
PTENP1-AS, and our two new isoforms, PTENP1-AS2
and PTENP1-AS3, the isoform expression levels were
evaluated with Cufflinks. PTENP2-AS is expressed with
an average FPKM value of 0.64 but the other isoforms,
PTENP1-AS and PTENP3-AS, showed no expression
according to Cufflinks.

Novel expression in U20S

Identification of novel genes was attempted by using the
novel assembly from library group 5. By counting the
mapped reads towards this novel assembly the most highly
expressed genes were investigated. Many of the assembled
transcripts were evidently intron transcripts and others
matched the current annotation, at least partly. Other
transcripts were potentially novel genes.

One interesting example are two overlapping novel
genes on chromosome 17: 25380000-25500000. Figure 5
shows this region along with the annotations from
Ensembl and the prediciton by Cufflinks. Currently the
only known annotation in this region is the pseudogene
TUFMP1 (ENST00000581294) but the data shown here
clearly indicates more transcriptional activity, originating
from both strands. The open reading frame of these novel
transcripts indicates that they are non-coding. Comparing
the transcription of the locus between the three cell lines

shows that this transcription is exclusive to the U20S cell
line (see Additional file 9).

Two other interesting findings can be found in the
Additional files; a U20S cell specific transcription on
chromosome 6, possibly a pseudogene, is shown in
Additional file 10, and ubiquitous transcription of chro-
mosome 14, which is currently annotated as two genes but
our data suggests it is two exons of one gene, is shown in
Additional file 11.

Discussion

Sample preparation

We have modified an existing non-stranded automated
RNA library protocol into a protocol that generates strand
specific libraries by using the Illumina TruSeq kit in com-
bination with other reagents. This may be useful for other
researchers who use the Illumina TruSeq kit and want
to make strand specific libraries. However, Illumina has
now released a new kit; TruSeq Stranded Total RNA Sam-
ple Prep Kit (# RS-122-2201), which combines RiboZero
rRNA depletion with a strand specific method similar to
the dUTP method. It should be possible to fully automate
that protocol on the MBS for generating 12 samples in par-
allel or on the Agilent Bravo for a higher throughput of 96
samples in parallel.

Trimming and mapping
We showed that quality trimming and adapter removal
improves the alignment yield and mapping speed, both
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Figure 5 Novel expression in U20S. Novel, cell specific, expression on chromosome 17. The coverage plot shows transcriptional activity, color
coded to reflect the strand of origin. In the Ensembl database this region has one annotated pseudogene. The data here indicate high
transcriptional activity from both strands. Shown at the bottom is the annotation as suggested by Cufflinks. *The Cufflinks assembly shown here has
been cleaned up a bit. For the direct output delivered by Cufflinks see Additional file 13.

for Tophat and Star. We set the quality threshold to 20
on the Phred scale and then removed any pairs that con-
tained reads shorter than 20 bp after trimming. By setting
the parameters differently this improvement might be dif-
ferent. For example by increasing the quality threshold
it is likely that the mapping percentage will increase but
that will not neccessarily improve the mapping in absolute
terms since many more reads would be discarded prior
to mapping. Due to trimming, some of the quality reads
are shorter than the raw reads which could explain the
improvement in mapping speed of the quality data over
the raw data.

We also showed that Star outperforms Tophat in align-
ment yield and mapping speed. This is in accordance with
previous reports on alignment yield [20,26] and mapping
speed [20]. There are other features where these two align-
ers differ which are not investigated here but a recent and
thorough comparison of various spliced aligners can be
found in [26].

Quality control metrics

We showed that the RiboZero Gold kit far outperforms
the RiboMinus kit in removing ribosomal molecules from
RNA samples. It should be noted that the RiboMinus kit
is now no longer available for purchase and has been
replaced by RiboMinus v2. We show a 2.2% rRNA contam-
ination in the RiboZero treated samples which is better
efficiency than previously showed in a comparison study
[27].

Duplication quantification

The markedly higher amount of duplicate reads in the
RiboZero libraries compared to the RiboMinus libraries
can partly be explained by the much higher sequenc-
ing depth of those samples. Still, all the libraries show a
considerably high duplication rate. We believe that this
can be explained by too many PCR cycles in the libary

preparation but in the protocol the number of PCR cycles
was fixed at 15. We have now altered the protocol to
include a qPCR analysis step to measure the Ct value (con-
centration threshold in qPCR) which better determines
the amount of PCR cycles needed for each library during
preparation.

Differential expression - strand specific vs. non-stranded
data

We compare our current, strand specific, approach to a
previously, non-stranded, approach [19] and show that
genes get determined as differentially expressed when
comparing strand specific data to non-stranded data,
from otherwise identical samples. Out of 21828 expressed
genes we identify 245 of them, or around 1.1%, to be
differentially expressed.

We further showed that these genes arise in a system-
atic manner in such a way that overlapping genes that
are annotated get underrepresented in the non-stranded
data and genes that have a faulty annotation can get over-
represented in the non-stranded data. Also, genes in the
non-stranded data can get overrepresented due to intronic
transcripts from the opposing strand.

This highlights the importance of having strand spe-
cific libraries in order to be better able to make cor-
rect assumptions from the data. It also emphasizes the
need for accurate and verified annotation which, cur-
rently, even for human is erronous and incomplete. By
comparing stranded and non-stranded data it is pos-
sible to probe the areas of the annotation that need
attention. This also shows, in the absence of strand spe-
cific data, that researchers need to be extra attentive
when interpreting results from overlapping loci in the
genome.

It should be noted that this method may not be
sensitive enough to pick up all antisense behavior, for
example if the overlap between the two strands is only
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a small proportion of the transcribed genes, and evi-
dently more than 1.1% of the genome features antisense
transcription.

Transcriptome assembly

From the transcriptome assembly we show that the strand
specific data produces fewer transcripts than the non-
stranded data. Also, strand specific data usually produces
shorter transcripts. This may indicate that assemblies
from non-stranded data generates more false positives
than does strand specific data.

It must be stressed though that Cufflinks is far from
perfect and tends to generate many questionable tran-
scripts as can be seen from the transcripts we removed
(see Additional files 12 and 13) and the many transcripts
assembled from library group 5 (see Additional file 8).
Cufflinks also has many different parameters that can be
tweaked which can effect the results signficiantly. Assem-
bling transcripts is a difficult task and is not the major
focus of the current study. Nevertheless, Cufflinks proved
useful as a guide for the asemblies we present and to high-
light one of the many differences between strand specific
and non-stranded data.

Conclusions

The Illumina TruSeq library preparation kit can, with
modifications, be used to make strand specific libraries.
The RiboZero kit is excellent in removing rRNA
molecules from total RNA and the Star aligner is ideal for
big datasets and/or when time is a factor in the analysis
and we show that quality trimming can improve map-
ping efficiency. There is a good selection of freely available
bioinformatical tools for RNA sequencing analysis many
of which have an option to indicate whether the data is
strand specific or non-stranded. Thus there is, computa-
tionally, not much difference in analysing strand specific
data compared to analysing non-stranded data. Further-
more, none of these tools are specialized for handling
strand specific data nor are any of them at a disadvan-
tage when applied to strand specific data. However, data
from strand specific libraries is more reliable than data
from unstranded libraries and can correctly evaluate the
expression of asRNA and other overlapping genes as well
as the direction of intronic reads. The annotation of the
human genome is comparatively thorough and correct but
still in need for verification, correction and improvement,
all of which can be achieved with strand specific RNA
sequencing.

Methods

For many of the different analysis we use various freely
available command line tools. The command line for
selected tools is given in Additional file 14.
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Ethics approval statement

The study uses three well established cancer cell lines
available from certified providers; U251 (Professor Bengt
Westermark, Uppsala University), A431 (DSMZ) and
U20S (ATCC-LGC). The cell lines were cultured as sug-
gested by the providers and as previously described [28].

Experimental design

For the evaluation of the protocol 15 libraries were used
whose attributes are showed in Table 2. Libraries 1-2, 3-5
and 6-15 were made from RNA from the cell lines A431,
U251 and U20S respectively. The RNA for libraries 1-
11 was enriched with RiboMinus (Ambion®) while RNA
for libraries 12-15 was enriched with RiboZero (Epicen-
tre). Libraries 1-8 and 12-15 were prepared in a strand
specific manner while libraries 9-11 were prepared in a
non-stranded manner.

From these libraries the data was explored in distinct
steps as outlined in Figure 6. Briefly, all the libraries were
sequenced on Illumina HiSeq 2000 generating 100 bp
paired end reads. The reads were then quality trimmed
before being mapped to the genome. After mapping, the
data from the human cell lines were analyzed through var-
ious quality control metrics before being further explored
by differential expression analsysis, verifying antisense
transcription of PTENP1 and identifying novel transcrip-
tion in the U20S cell line.

Sample preparation

The cell lines A431 (skin carcinoma), U251 (brain
glioblastoma) and U20S (bone osteosarcoma) were culti-
vated, grown and harvested as described earlier [28]. The
RNA was extracted using the RNeasy Mini Kit (Qiagen)
according to the manufacturer’s protocol. Quality of RNA
samples was assessed using BioAnalyzer 2100 and a Qubit
quantification fluorometer. All RNA samples used were of
high quality (RIN > 9) and with a concentration between
400 ng/ul and 800 ng/ul. Libraries were constructed as
explained above and shown in Table 2. The amount of
input material for all libraries was 2 g of total RNA.

The library preparation protocol

The automation was set up on a Magnatrix TM 1200
Biomagnetic Workstation (NorDiag ASA, Oslo, Norway)
which is equipped with a 12 tip head and is capable of
running custom made scripts. The robot features an in tip
magnet processing and a Peltier unit (4-95 C) where the
reactions were performed.

Our automatic strand specific RNA sequencing library
preparation protocol is an adaptation of the dUTP sec-
ond strand marking protocol utilizing the automation of
the Illumina TruSeq protocol along with purification steps
using CA beads. The details of the dUTP protocol have
been described previously in [7,18] and the automation of
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Table 2 Libraries used and their attributes
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Library no. Library ID RNA source RNA enrichment Library type
Library 1 A431_RMSS_R1 A431 cell line RiboMinus Strand specific
Library 2 A431_RMSS_R2 A431 cell line RiboMinus Strand specific
Library 3 U251_RMSS_R1 U251 cell line RiboMinus Strand specific
Library 4 U251_RMSS_R2 U251 cell line RiboMinus Strand specific
Library 5 U251_RMSS_R3 U251 cell line RiboMinus Strand specific
Library 6 U20S_RMSS_R1 U20S cell line RiboMinus Strand specific
Library 7 U20S_RMSS_R2 U20S cell line RiboMinus Strand specific
Library 8 U20S_RMSS_R3 U20S cell line RiboMinus Strand specific
Library 9 U20S_RMNS_RT1 U20S cell line RiboMinus Non-strand specific

Library 10 U20S_RMNS_R2 U20S cell line RiboMinus Non-strand specific
Library 11 U20S_RMNS_R3 U20S cell line RiboMinus Non-strand specific
Library 12 U20S_RZSS_R1 U20S cell line RiboZero Strand specific
Library 13 U20S_RZSS_R2 U20S cell line RiboZero Strand specific
Library 14 U20S_RZSS_R3 U20S cell line RiboZero Strand specific
Library 15 U20S_RZSS_R4 U20S cell line RiboZero Strand specific

the Illumina TruSeq protocol along with the carboxyl acid
(CA) purification steps are described in [19,22].

Briefly, the steps of our strand specific protocol are: first
strand ¢cDNA synthesis; CA purification; second strand
synthesized using dUTPs instead of dTTPs; end reapair,
A-tailing and adaptor ligation; second strand digestion
with UNG; PCR amplification; and CA purification. A

flow diagram, highlighting the main differences between
the non-stranded and strand specific protocols, is shown
in Additional file 1.

Clustering and sequencing
The clustering was performed on a cBot cluster gen-
eration system using a HiSeq paired-end read cluster

RNA enrichment
¢DNA synthesis
Library preparation

Sample Preparation

RNA extraction

Cell line: A431
Cell line: U251
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Sequencing
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Trimming 4+ Mapping
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Figure 6 Flowchart giving an overview of the experimental design.
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generation kit according to the manufacturer’s instruc-
tions. All libraries were sequenced on an Illumina HiSeq
2000 as paired-end reads to 100 bp. Base conversion was
done using Illumina’s OLB v1.9.

Trimming and mapping

The raw sequencing data were processed through a
quality trimming process before being mapped to the
genome. The reads were mapped to the GRCh37.72 pri-
mary assembly of the human genome (ensembl.org) using
both Tophat2 v2.0.4 [21], and STAR v2.3.10 [20] and their
results and performance compared (see Results). To eval-
uate the effects of trimming on mapping the reads were
mapped both before and after trimming. When reads
mapped to multiple locations only the primary hits were
retained.

For the quality and adapter removal the utility program
Trim Galore! [29] was used. Trim Galore! is a wrap-
per script that makes use of the trimming tool cutadapt
[30]. Possible adapter sequences, based on the Illumina
TruSeq Adapter index sequences, were removed from the
reads. The reads were then quality trimmed, with a quality
threshold of 20 on the Phred scale, and if either read from
a pair was shorter than 20 bp after trimming that pair was
removed from the analysis.

Quality Control Metrics
Selected scripts from the quality control package
RSeQC [31] were used to assess quality metrics from
the data; split_bam.py for ribosomal quantification,
infer_experiment.py for strand specificity and gene-
Body_coverage.py for gene coverage. The duplication rate
was quantified using MarkDuplicates from Picard [32].
To count read expression the program htseq-count [23]
was used. It uses a gene transfer format (GTF) annota-
tion file, downloaded from the Ensembl database (version
GRCh37.72), as a reference and and assigns reads to a fea-
ture (a gene), or labels them as matching to no feature or
as ambiguous if it matches more than one feature and it
cannot determine which one it is. Genes that have fewer
number of reads than the total number of assigned reads
divided by one million were labeled as lowly expressed.
If a gene had zero or low expression in both datasets
being compared, such as in correlation and differential
expression analysis, that gene was omitted from that com-
parison. This filtering step was included to try and reduce
false positives in the comparisons [33]

Differential expression - strand specific vs. non-stranded
data

For the differential expression (DE) analysis the filtered
output from htseq-count was used as an input for the
R package DESeq [24]. Prior to counting, all samples
in the DE analysis were downsampled to 4.5 million
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sequences to ensure equal amount of reads in all libraries
being compared. The downsampling was carried out using
DownsampleSam from Picard tools [32]. All genes with
a p-value of 0.05 or below after Benjamini-Hochberg
ajdustment were labeled as differentially expressed genes
(DEGs). Using the annotation from the Ensembl database
the DEGs were categorized into protein coding genes and
non-coding genes. The IGV genome browser [34] was
used for visualization of selected DEGs.

Transcriptome assembly - strand specific vs. non-stranded
data

The assembly was carried out using Cufflinks [25] to gen-
erate two kinds of assemblies; raw assembly and novel
assembly. For the raw assembly all mapped reads were
used and no reference annotation was used to guide
the assembly. All parameters were kept at default val-
ues except for the stranded libraries the parameter ‘-
library-type’ was set to ‘fr-firststrand. After the assembly
the assemblies within each group were merged using
Cuffmerge.

For the novel assembly the mapped reads were split,
using split_bam.py from RSeQC [31], into two bam files;
the reads that matched the annotations and the ones that
did not match the annotation. Then only those reads that
did not match the annotation were used as input for Cuf-
flinks. To further ensure the assembly of novel transcripts
the current annotation was masked from the assembly
using the *-M’ option.

Antisense transcription of PTENP1

The IGV genome browser was used to visualize the cov-
erage of the PTENPI locus along with annotations from
RefSeq and Ensembl. From the raw assembly from group
5 new annotation for the PTENP1 asRNA was constucted.
This new annotation was then used to evaluate its isoform
expression.

Novel annotation in U20S

Htseq-count was used to determine the expression of
the novel assembly from library group 5. Then the cov-
erage plots of the highest expressed ‘novel’ genes were
investigated using the IGV browser. Many of the alleged
‘novel’ genes turned out to be intronic transcripts wrongly
assembled as exons and others overlapped current anno-
tation. Manual searching, however, revealed potentially
novel expression with a selected few represented in this
study.

Availability of supporting data

All the raw sequencing reads have been submitted to
the NCBI Sequence Read Archive and are available
under accession SRP043027 (SRA, http://www.ncbi.nlm.
nih.gov/Traces/sra/).
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