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Abstract

Cortical atrophy is a defining feature of Alzheimer's disease (AD), often detectable

before symptoms arise. In surface-based analyses, studies have commonly focused

on cortical thinning while overlooking the impact of loss in surface area. To capture

the impact of both cortical thinning and surface area loss, we used anatomically con-

strained Multimodal Surface Matching (aMSM), a recently developed tool for map-

ping change in surface area. We examined cortical atrophy over 2 years in cognitively

normal subjects and subjects with diagnoses of stable mild cognitive impairment, mild

cognitive impairment that converted to AD, and AD. Magnetic resonance imaging

scans were segmented and registered to a common atlas using previously described

techniques (FreeSurfer and ciftify), then longitudinally registered with aMSM.

Changes in cortical thickness, surface area, and volume were mapped within each

diagnostic group, and groups were compared statistically. Changes in thickness and

surface area detected atrophy at similar levels of significance, though regions of atro-

phy somewhat differed. Furthermore, we found that surface area maps offered

greater consistency across scanners (3.0 vs. 1.5 T). Comparisons to the FreeSurfer

longitudinal pipeline and parcellation-based (region-of-interest) analysis suggest that

aMSM may allow more robust detection of atrophy, particularly in earlier disease

stages and using smaller sample sizes.
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1 | INTRODUCTION

Alzheimer's disease (AD) is a debilitating neurodegenerative condition

affecting 10% of Americans age 65 or older (Alzheimer's Association,

2020). The disease often progresses from early clinical symptoms, such

as lapses in memory, apathy, and depression, to more severe symptoms

including behavior changes, confusion, and difficulty with basic functions
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such as speaking, swallowing, and walking (Alzheimer's

Association, 2020). The onset of AD is insidious, with years between ini-

tial biochemical changes and the onset of clinically apparent symptoms

(Brookmeyer, Abdalla, Kawas, & Corrada, 2018). This pattern of slow

progression offers a window for early detection and has raised the need

for noninvasive methods of tracking AD-related changes.

Magnetic resonance imaging (MRI), which can be used to monitor

the cortical changes that accompany AD, has become a useful tool in

addressing this need (Chandra, Dervenoulas, Politis, & ADNI, 2019;

Femminella et al., 2018). Three-dimensional reconstructions derived

from MRI allow for analysis of cortical anatomy, and surface-based

methods of analyzing these reconstructions have proven beneficial

(Clarkson et al., 2011; Glasser et al., 2013; Robinson et al., 2018).

Within the surface-based methodologies, previous studies have often

examined changes in cortical thickness as a marker of atrophy in AD

(Belathur Suresh, Fischl, Salat, & ADNI, 2018; Clarkson et al., 2011;

Cuingnet et al., 2011; Mattsson et al., 2018; Ossenkoppele et al.,

2019). However, in this study we propose that vertex-wise mapping

of cortical surface area changes, in addition to cortical thickness

changes, could offer an improved method of tracking cortical atrophy

over time.

A recently developed tool, anatomically constrained Multimodal

Surface Matching (aMSM), has been shown to enable more accurate

tracking of physical cortical changes over time, in a single subject

(Robinson et al., 2018). aMSM constrains local deformations of the

anatomical surface to realistic behavior, based on the mechanical

properties of brain tissue, producing detailed, vertex-wise maps of

change in surface area. This methodology has previously been

used to track cortical growth (Garcia et al., 2018), but it has not

yet been leveraged to measure patterns of cortical atrophy. As loss

of cortical volume is dependent on both changes in thickness and

changes in surface area, detailed maps of surface area loss, in com-

bination with maps of cortical thinning, offer the ability to better

characterize degenerative changes occurring across the cor-

tex in AD.

In this study, we used MRI data from the Alzheimer's Disease

Neuroimaging Initiative (ADNI) to test the utility of aMSM in accu-

rately detecting patterns of cortical atrophy. Using aMSM, we mapped

changes in both thickness and surface area over 2 years in individual

subjects with diagnoses of cognitively normal (CN), stable mild cogni-

tive impairment (MCI-S), mild cognitive impairment which converted

to AD (MCI-C), and AD. First, each diagnostic group was evaluated to

identify patterns of atrophy in terms of thickness, surface area, and

volume loss. Then, comparisons between groups were used to identify

diagnostically relevant differences in atrophy. To compare our approach

to existing methodologies, we repeated our analysis using the

FreeSurfer longitudinal pipeline (Reuter, Schmansky, Rosas, &

Fischl, 2012) and region-of-interest (ROI) analysis. Next, to examine the

precision of aMSM-generated measures of atrophy across imaging

methods, we compared atrophy maps from a subset of subjects who

were scanned using two different acquisition protocols (3.0 vs. 1.5 T

scanners). Finally, to evaluate the ability of aMSM to identify trends in

atrophy across a range of sample sizes, we performed four parallel

analyses using diagnostic groups made up of 12, 24, 48, and 90 subjects

per group.

2 | MATERIALS AND METHODS

2.1 | Data

Data used in the preparation of this article were obtained from the

ADNI database (adni.loni.usc.edu). ADNI was launched in 2003 as a

public–private partnership, led by Principal Investigator Michael

W. Weiner, MD. The primary goal of ADNI has been to test whether

serial MRI, positron emission tomography (PET), other biological

markers, and clinical and neuropsychological assessment can be com-

bined to measure the progression of MCI and early AD. For up-to-

date information, see www.adni-info.org.

2.2 | Subject selection

All subjects who participated in ADNI1 and underwent both baseline

and 2-year 3.0 T MRI scans were considered for inclusion in the pri-

mary analysis of this study. Age of subjects at the beginning of the

study ranged from 55 to 90. All participants were required to have a

study partner able to independently evaluate their functioning, be flu-

ent in either English or Spanish, and be willing and able to participate

in testing procedures and longitudinal follow-up.

In ADNI1, cognitively normal subjects were defined as having

Mini-Mental State Exam (MMSE; Folstein, Folstein, & McHugh, 1975)

scores ranging from 24 to 30 and a Clinical Dementia Rating (CDR;

Morris, 1993) of 0. They were not depressed and did not suffer from

MCI or dementia. MCI subjects had MMSE scores ranging from 24 to

30, a memory complaint, memory loss as measured on Wechsler

Memory Scale Logical Memory II (Wechsler, 1987), a CDR of 0.5, and

minimal impairment in other cognitive domains. Subjects in the mild

AD group had MMSE scores ranging from 20 to 26, a CDR of 0.5 or

1.0, and met National Institute of Neurological and Communicative

Disorders and Stroke-Alzheimer's Disease and Related Disorders

Association (NINCDS-ADRDA; McKhann et al., 1984) criteria for

probable AD.

To ensure that all subjects were scanned on the same scanner at

baseline and 2-year follow-up, only subjects from standardized analy-

sis sets were considered (Wyman et al., 2013). From this cohort, we

identified subjects with baseline and 2-year 3.0 T scans. Subjects were

removed from analysis if their baseline or 2-year scan failed at any

point in MRI processing, including segmentation or registration. To

test for significant differences in age, education, gender, race, ethnic-

ity, study site, and MRI scanner manufacturer between diagnostic

groups, one-way ANOVA or the exact multinomial test of goodness-

of-fit were used as appropriate.

While our primary analysis focuses on 3.0 T MRI scans, ADNI1

1.5 T scans were utilized to further validate our methodology. In

ADNI1, only a quarter of subjects were scanned at 3.0 T, while all
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subjects were scanned on 1.5 T MRI scanners. This provided a large

pool of additional subjects to supplement our primary, small cohort.

ADNI1 subjects included in the standardized analysis sets (Wyman

et al., 2013) who had baseline and 2-year follow-up 1.5 T scans were

considered for this analysis. Subjects were excluded if MRI processing

failed at any point, including segmentation or registration.

2.3 | MRI acquisition and segmentation

MRI scans were collected according to the ADNI1 MRI protocol,

which included back-to-back 3D magnetization prepared rapid gradi-

ent echo (MP-RAGE) scans and B1 calibration scans when applicable

(Jack et al., 2008). To increase standardization of images taken at dif-

ferent sites, postacquisition system-specific corrections were per-

formed to address image artifacts (Jack et al., 2008). Corrected

artifacts include image geometry, intensity nonuniformity, and image

intensity (Jack et al., 2008).

Cortical reconstruction and volumetric segmentation were per-

formed with FreeSurfer, version 6.0.0, as described in prior publica-

tions (Dale, Fischl, & Sereno, 1999; Dale & Sereno, 1993; Fischl

et al., 2002; Fischl et al., 2004; Fischl et al., 2004; Fischl & Dale, 2000;

Fischl, Liu, & Dale, 2001; Fischl, Sereno, & Dale, 1999; Fischl, Sereno,

Tootell, & Dale, 1999; Han et al., 2006; Ségonne et al., 2004). Briefly,

the FreeSurfer pipeline accomplishes motion correction, skull strip-

ping, Talairach transformation, segmentation of gray and white mat-

ter, intensity normalization, and tessellation of the gray-white matter

boundary. FreeSurfer also produces cortical thickness maps based on

information derived from segmentation and deformation procedures

(Fischl & Dale, 2000).

We utilized quality assurance images produced by the ciftify

cifti_vis_recon_all utility (Dickie et al., 2019) to conduct an initial

review of segmentation quality. In a minority of cases, segmentation

quality could not be determined from these images alone. In these

instances, midthickness surfaces were opened in Connectome Work-

bench (Marcus et al., 2011) and manually reviewed. Scans were

excluded from analysis if automated segmentation did not correctly

isolate the cerebral cortex.

2.4 | Surface-based registration

Ciftify (Dickie et al., 2019) was used to translate FreeSurfer output

into a format consistent with the Human Connectome Project (HCP)

pipeline (Glasser et al., 2013) and to accomplish registration to the

MNI space. Surfaces from the native space, as defined in the HCP

pipeline, were used as the starting point for longitudinal analysis

with aMSM.

aMSM was used to align each subject's baseline and 2-year corti-

cal reconstructions (Robinson et al., 2014; Robinson et al., 2018). As

shown in Figure 1, aMSM modifies an input surface, bringing it into

alignment with a reference surface and producing an output surface

that has point-correspondence to the reference surface. Each

surface can be represented as a series of vertices that connect to form

triangular faces. aMSM evaluates these triangular faces to calculate

cortical deformations that exist between the input and reference sur-

faces, while penalizing deformations incongruent with the mechanical

properties of brain tissue (Garcia et al., 2018). Uniquely, aMSM penal-

izes these deformations on the anatomical surface (Figure 1), offering

increased accuracy over alternatives relying on deformations of the

spherical surface, which introduce additional artifact (Robinson

et al., 2018). After registration, the deformations of each triangle pro-

vide detailed, local measures to map change in cortical surface area at

the resolution of the control point grid (10,242 vertices in this study,

corresponding to an average resolution of approximately 20 mm2).

Each subject's left and right hemispheres were processed sepa-

rately, and each hemisphere was processed bidirectionally. Bidirec-

tional maps of cortical change, one produced by registration of

baseline surface to 2-year surface and the other by registration of 2--

year surface to baseline surface, were averaged to minimize potential

bias associated with unidirectional registration (Garcia et al., 2018).

Each aMSM job ran on a single processor, and multiple jobs were run

in parallel as computing resources allowed. The median runtime for

aMSM was 26.08 hr, with a runtime of <36 hr in 92% of cases.

F IGURE 1 Longitudinal registration with aMSM. Physical
deformation of the cortical surface between two timepoints is
calculated for each triplet of vertices on the input surface (red dots)
and reference surface (blue dots). Similar to other popular surface
registration techniques (Yeo et al., 2010) vertices from both the input
surface and reference surface are projected to a spherical
representation to simplify mathematical calculations. However, unlike
other registration techniques, aMSM (gray box) regularizes vertex
displacement to minimize physical deformation (strain energy based
on mechanical properties of brain tissue) between the anatomical
surfaces (2a, 2b). Based on these constraints, triplets on sphere 1 are

shifted to bring them into alignment with triplets on sphere 2 (3).
Once realigned, sphere 1 is projected to a new anatomical output
surface (4), resulting in more realistic physical deformations of the
cortical surface
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2.5 | Global and local measures of atrophy

The primary measures considered in this study were change in cortical

thickness, change in surface area, and change in volume. For each sub-

ject, change in cortical thickness was calculated as log2(CT2/CT1),

where CT1 refers to cortical thickness at baseline and CT2 refers to

cortical thickness at 2-year follow-up. Both CT1 and CT2 are

FreeSurfer-based thickness measurements. Individual thickness maps

were smoothed using a 20 mm full-width at half-maximum (FWHM)

Gaussian kernel, in accordance with past studies (Bernal-Rusiel,

Atienza, & Cantero, 2010; Kälin et al., 2017; Kang et al., 2019; Wes-

ton et al., 2016).

While local thickness can be defined for each vertex, local surface

area is calculated from the area forming a triangle between each trip-

let of vertices. To obtain a vertex-wise representation of local surface

area, each vertex was assigned one third of the area for each triangle

of which it is a part (Marcus et al., 2011). Change in cortical surface

area was calculated as log2(SA2/SA1), where SA1 refers to surface area

attributed to a given vertex at baseline and SA2 refers to surface

area attributed to a given vertex at 2-year follow-up. Change in sur-

face area was calculated by aMSM, with the final metric representing

the averaged results from each unidirectional registration. Change in

cortical volume was calculated as log2((SA2 � CT2)/(SA1 � CT1)).

To identify changes occurring at the global level, percent change

in thickness, surface area, and volume were calculated at baseline and

at 2-year follow-up for each subject. Vertices associated with the

medial wall were excluded from all calculations. For a global measure

of change in thickness, thickness was averaged across all cortical verti-

ces. For a global measure of change in surface area, midthickness sur-

face area was summed across all cortical vertices. Total volume was

estimated by multiplying average thickness by total surface area. Per-

cent change was defined as the difference between baseline and

2-year follow-up divided by the baseline result.

2.6 | Statistics

To evaluate atrophy at the global level, one-way ANOVA was used to

compare measures of atrophy between demographically balanced

diagnostic groups. Tukey's Honest Significant Difference test was

used to conduct pairwise comparisons. Effect size was also calculated,

as Cohen's d, for each pair of diagnostic groups that differed signifi-

cantly in terms of change in thickness, surface area, or volume.

p values and effect size are reported parenthetically in the text as

p and d, respectively.

Statistical analysis of continuous surface maps for the CN, MCI-S,

MCI-C, and AD diagnostic groups was conducted using Permutation

Analysis of Linear Models (PALM) with threshold-free cluster

enhancement and family-wise error correction (Winkler, Ridgway,

Webster, Smith, & Nichols, 2014). To find regions of significant atro-

phy in each diagnostic group, one-sample t-tests were performed sep-

arately for each group. ANOVA was performed to determine regions

of intergroup differences in atrophy. All possible pairwise comparisons

were analyzed, and all analyses were performed on surfaces with

10,242 vertices per hemisphere.

2.7 | FreeSurfer longitudinal pipeline

The FreeSurfer longitudinal pipeline is a commonly used surface-

based method of measuring cortical atrophy. Like aMSM, the

FreeSurfer longitudinal pipeline accomplishes longitudinal registration,

allowing for the measurement of structural cortical change within a

single subject over time. To directly compare these two registration

methods, we reanalyzed the CN, MCI-S, MCI-C, and AD diagnostic

groups using the FreeSurfer longitudinal pipeline instead of aMSM.

The FreeSurfer surfaces described in the “MRI acquisition and

segmentation” section were used as a starting point for processing

with the FreeSurfer longitudinal pipeline. This pipeline produced

aligned baseline and 2-year follow-up surfaces for each subject. These

surfaces were processed with ciftify and changes in thickness, surface

area, and volume were calculated for each subject as described in the

“Global and local measures of atrophy” section. Once atrophy maps

had been generated for each subject, statistical analyses were per-

formed using PALM as described in the “Statistics” section.

2.8 | Region of interest analysis

ROI analysis is a commonly used alternative to the continuous surface

maps that are the focus of this study. To compare this methodology

to results produced using aMSM, we reanalyzed atrophy in the CN,

MCI-S, MCI-C, and AD diagnostic groups in terms of ROIs. The same

FreeSurfer segmented and ciftify-processed surfaces that were used

in our primary analysis were used for ROI analysis.

ROIs were based on the Desikan-Killiany (DK) protocol (Desikan

et al., 2006). Within each ROI, average thickness and total surface

area were calculated for each subject at both baseline and 2-year

follow-up. Change in cortical thickness, surface area, and volume were

calculated for each subject, at all ROIs, using the equations described

in the “Global and local measures of atrophy” section.
One-way multivariate ANOVA (MANOVA) was used to identify

differences in atrophy between diagnostic groups. Separate MAN-

OVA were run for change in cortical thickness, change in cortical sur-

face area, and change in cortical volume. Left and right hemispheres

were processed separately. Differences between specific groups were

assessed using pairwise comparisons with Bonferroni correction.

2.9 | Comparisons using 1.5 T Scans

To demonstrate the influence of MRI field strength on the measure-

ment of atrophy, we identified subjects from our primary 3.0 T

dataset who had baseline and 2-year follow-up scans performed on

both 1.5 and 3.0 T scanners. Matching 1.5 and 3.0 T datasets were

analyzed in parallel to identify the impact of field strength on changes
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in thickness, surface area, and volume. One-sample t-tests were per-

formed using PALM, as described in the “Statistics” section, to define

patterns of atrophy within each diagnostic group at each field

strength.

We also used the larger cohort of ADNI1 subjects, scanned at

1.5 T, to examine the relative performance of surface area and thick-

ness measures at a variety of sample sizes. Demographically balanced

90-subject samples were selected for each diagnostic group. To test

for significant differences between diagnostic groups in age, educa-

tion, gender, race, ethnicity, study site, and MRI scanner manufac-

turer, one-way ANOVA, the chi square test, or the exact multinomial

test of goodness-of-fit were used as appropriate. To assess perfor-

mance of 1.5 T scans at lower sample sizes, smaller samples of 12, 24,

and 48 subjects per diagnostic group were randomly selected

(Urbaniak & Plous, 2013) from within the 90-subject samples.

ANOVA, performed using PALM as described in the “Statistics” sec-

tion, was used to identify differences in atrophy between diagnostic

groups at each sample size.

3 | RESULTS

3.1 | Subjects

In total, 89 subjects met eligibility criteria for inclusion in our primary,

3.0 T analysis. Of those subjects, 18 were removed following post-

segmentation quality review and another five failed to successfully

complete longitudinal registration with aMSM. Of the 66 subjects

remaining after MRI processing, an additional 16 were removed from

analysis to demographically balance the four diagnostic groups. This

left us with a relatively small cohort of 50 subjects, comparable to the

small sample sizes in pilot studies or observational studies focused on

specific AD populations or subtypes (Machado et al., 2020; Persson

et al., 2017). Demographic characteristics of the CN, MCI-S, MCI-C,

and AD groups are presented in Table 1. The manufacturers of the

MRI machines used to scan this cohort are presented in Table 2, and

the study sites visited by subjects in the four diagnostic groups are

presented in Table S1.

A total of 499 ADNI1 subjects met eligibility criteria for inclusion

in our secondary, 1.5 T analysis. Of these, 16 subjects failed segmen-

tation and four failed registration. Of the remaining 479 subjects,

160 were in the CN group, 127 in the MCI-S group, 92 in the MCI-C

group, and 100 in the AD group. Forty-four subjects, 11 in the CN

group, nine in the MCI-S group, 12 in the MCI-C group, and 12 in the

AD group, also had successfully processed 3.0 T scans. These 44 sub-

jects were used, along with their 3.0 T counterparts, in our analysis of

the influence of field strength on the measurement of atrophy.

For our analysis of the influence of sample size on the measure-

ment of atrophy, the 479 successfully processed subjects with 1.5 T

scans served as the pool for selecting demographically balanced

90-subject samples within each diagnostic group. Demographic char-

acteristics of these samples are presented in Table 3. The manufac-

turers of the MRI machines used to scan these subjects are presented

in Table 4, and study sites visited are presented in Table S2. The

12, 24, and 48 subject samples used in our sample size analysis were

randomly selected from within the samples presented in Table 3.

Demographic and MRI scanner manufacturer information for the

12, 24, and 48 subject samples is presented in Tables S3–S8.

3.2 | Global atrophy

Comparisons of global loss in thickness, surface area, and volume

were conducted between the four diagnostic groups: CN, MCI-S,

TABLE 1 Subject demographics by
diagnostic group in ADNI1 3.0 T cohort

Characteristic CN MCI-S MCI-C AD

Total subjects 12 12 13 13

Gender

Males 6 6 8 4

Females 6 6 5 9

Ethnicity

Hispanic or Latino 1 1 1 0

Not Hispanic or Latino 11 11 12 13

Race

Black or African American 1 0 0 2

White 11 12 13 11

Mean age (SD) at baseline (years) 72.39 (1.93) 72.14 (6.65) 72.89 (9.62) 71.46 (8.32)

Mean (SD) years education 16.08 (1.62) 15.33 (2.35) 14.31 (3.95) 14.08 (3.82)

TABLE 2 MRI scanner manufacturers for ADNI1 3.0 T cohort

Manufacturer CN MCI-S MCI-C AD

GE medical systems 2 1 0 2

Philips medical systems 5 5 3 4

Siemens 5 6 10 7

Total 12 12 13 13
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MCI-C, and AD. As shown in Figure 2, a significant difference in thick-

ness was identified between the CN and AD groups (p = .034,

d = 1.334), but not between the CN and MCI-C groups (p = .199,

d = 0.843) or the CN and MCI-S groups (p = .232, d = 0.780). Signifi-

cant differences in surface area were found between the CN and AD

groups (p = .017, d = 1.366), as well as between the CN and MCI-C

groups (p = .009, d = 1.413), but not between the CN and MCI-S

groups (p = .605, d = 0.540). Similarly, significant differences in vol-

ume were found between the CN and AD groups (p = .002,

d = 1.806), as well as between the CN and MCI-C groups (p = .008,

d = 1.253), but not between the CN and MCI-S groups (p = .168,

d = 0.946). Of the three measures considered, change in volume iden-

tified the most pronounced differences between groups.

3.3 | Individual atrophy maps

In order to identify patterns of atrophy within each diagnostic group,

we first calculated individual atrophy maps for each subject. Figure 3

demonstrates maps of change in unsmoothed thickness, smoothed

thickness, surface area, and volume for one subject in the AD group.

Maps of unsmoothed thickness (Figure 3a) contained considerable

noise, while maps of smoothed thickness (Figure 3b) demonstrated

biologically feasible patterns of atrophy, illustrating the rationale for

using smoothed thickness for group-based analysis and calculation of

cortical volume. The map for change in surface area (Figure 3c), pro-

duced using aMSM, provides a novel measure of longitudinal struc-

tural change. Change in volume (Figure 3d), which incorporates both

change in smoothed thickness and change in surface area, demon-

strates the greatest degree of atrophy. Figure 3e illustrates

intrasubject variance associated with change in smoothed thickness,

change in surface area, and change in volume. Within each subject,

standard deviation was calculated for each measure using that mea-

sure's value at every vertex, excluding the medial wall. Standard devia-

tion was then used to calculate variance. Figure 3e summarizes the

variability of each metric (variance of all vertex values for a given sub-

ject) for all 50 subjects. The variability across vertices was lowest

when considering change in surface area.

3.4 | Patterns in atrophy by diagnostic group

Within each diagnostic group, patterns associated with change in cor-

tical thickness, surface area, and volume were identified using one-

sample t-tests (Figure 4). Across all metrics, relatively little atrophy

was identified in the CN and MCI-S groups, but considerable

atrophy was present in the more symptomatic MCI-C and AD groups.

These latter groups showed particularly strong patterns of atrophy in

the temporal and parietal lobes, though atrophy was detected

throughout much of the cortex. For all groups except CN, the greatest

degree of atrophy was detected by volume loss, which combines

thickness and surface area loss.

Surface area and thickness loss identified similar regions of atro-

phy. However, the specific patterns and degrees of atrophy detected

by each measure differed. Significant decreases in surface area tended

to be detected over broader regions of cortex, while decreases in

thickness were more localized. There were also some differences in

the specific regions of atrophy identified by these two measures. For

TABLE 3 Subject demographics by
diagnostic group in 90 subject ADNI1
1.5 T samples

Characteristic CN MCI-S MCI-C AD

Total subjects 90 90 90 90

Gender

Males 53 51 61 48

Females 37 39 29 42

Ethnicity

Hispanic or Latino 2 2 1 0

Not Hispanic or Latino 88 88 89 89

Unknown 0 0 0 1

Race

Asian 1 2 3 1

Black or African American 4 4 2 3

White 85 84 85 86

Mean age (SD) at baseline (years) 76.32 (5.36) 74.95 (6.00) 74.92 (7.42) 75.60 (7.33)

Mean (SD) years education* 15.70 (2.69) 15.13 (2.62) 15.61 (3.00) 14.86 (3.02)

TABLE 4 MRI scanner manufacturers for 90 subject ADNI1 1.5 T
samples

Manufacturer CN MCI-S MCI-C AD

GE medical systems 48 54 48 45

Philips medical systems 5 3 8 12

Siemens 37 33 34 33

Total 90 90 90 90
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F IGURE 2 Global loss in thickness, surface area, and volume by diagnostic group. Differences between diagnostic groups (CN, MCI-S, MCI-C,
AD) were identified by ANOVA. Significant differences with .01 ≤ p < .05 are identified with the symbol *. Very significant differences with p <
.01 are identified with the symbol **. Diamond symbols indicate group means. Lower and upper box edges represent the first quartile (Q1) and
third quartile (Q3), respectively, with the area within the box representing the interquartile range (IQR). Horizontal lines inside of boxes represent
group medians. Whiskers extend to the minimum and maximum nonoutlier values, where outliers are defined as falling below a minimum value of
(Q1 – 1.5*IQR) or above a maximum value of (Q3 + 1.5*IQR). Outliers are indicated with circles

F IGURE 3 Change in unsmoothed thickness, smoothed thickness, surface area, and volume within individual subjects. Relative change in
(a) unsmoothed thickness, (b) smoothed thickness, (c) surface area, and (d) volume for a single subject in the AD group. Change in volume is
calculated using smoothed thickness and unsmoothed surface area maps. Panel (e) demonstrates intrasubject variance in smoothed thickness
(left), surface area (middle), and volume (right) change across all 50 study subjects. Results are demonstrated for the left (L) and right
(R) hemispheres. Diamond symbols indicate group means. Lower and upper box edges represent the first quartile (Q1) and third quartile (Q3),

respectively, with the area within the box representing the interquartile range (IQR). Horizontal lines inside of boxes represent group medians.
Whiskers extend to the minimum and maximum nonoutlier values, where outliers are defined as falling below a minimum value of (Q1 � 1.5*IQR)
or above a maximum value of (Q3 + 1.5*IQR). Outliers are indicated with circles
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example, in the MCI-C group (Figure 4, row 3), significant loss of sur-

face area was detected in the frontal lobe, where no significant loss

was detected in terms of thickness. Conversely, the anterior portion

of the left superior temporal gyrus displays significant thickness loss

despite little evidence of loss in surface area. Comparisons of volume

loss showed the greatest significance, even suggesting cortical loss in

specific areas of the MCI-S group.

3.5 | Areas of increased atrophy in the AD and
MCI-C diagnostic groups

To compare differences in atrophy among the four diagnostic groups,

ANOVA was used to compare groups within each atrophy metric (loss

in thickness, surface area, or volume). Divergent patterns of atrophy

between the AD and CN groups, the MCI-C and CN groups, and the

MCI-C and MCI-S groups are illustrated in Figure 5. The AD and

MCI-S groups also showed different patterns of atrophy, but only in

the right hemisphere. These differences are similar to those seen in

the right hemisphere when comparing the AD and CN groups

(Figure 5, top row). No other pairwise comparisons demonstrated sig-

nificant differences in atrophy. In all comparisons that did identify

significant differences in atrophy, additional regions of atrophy were

detected in the AD and MCI-C groups that were not present in the

CN and MCI-S groups.

As shown in Figure 5, atrophy maps produced using thickness

loss and surface area loss identified distinct areas of difference

between groups, with little overlap. For example, when comparing

the AD and CN groups (Figure 5, top row), the AD group shows sig-

nificant thickness loss, but not surface area loss, in the left superior

temporal gyrus. The same group shows surface area loss in the left

inferior temporal gyrus, but no thickness loss at this location. Differ-

ences between thickness- and surface area-derived maps are also

distinct when comparing the MCI-C and CN groups (Figure 5, middle

row). The MCI-C group displayed increased loss in thickness almost

exclusively in the left anterior temporal pole, while increased surface

area loss was evident in the bilateral temporal, parietal, and primary/

premotor cortices.

F IGURE 4 Areas of significant thickness, surface area, and volume loss over a 2-year period by diagnostic group. Patterns of atrophy are
shown for the CN (n = 12, top row), MCI-S (n = 12, second row), MCI-C (n = 13, third row), and AD (n = 13, bottom row) groups, in terms of loss
in thickness (left column), surface area (middle column), and volume (right column). p values are threshold-free cluster-enhanced with family-wise
error correction
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Overall, volume loss was again the most sensitive measure ana-

lyzed, identifying larger and more significant areas of difference than

thickness or surface area loss alone. In the comparison of the AD and

CN groups, results were more significant when volume was consid-

ered. The map of change in volume resulting from this comparison

combines most areas of atrophy associated with either thickness or

surface area loss. The same trend can be seen in the comparison of

the MCI-C and CN groups. Finally, when comparing the MCI-C and

MCI-S groups, volume loss identified areas of atrophy with greater

significance than either thickness loss or surface area loss alone.

3.6 | Cortical atrophy measured with aMSM, the
FreeSurfer longitudinal pipeline, and ROIs

To highlight the strengths and limitations of aMSM, we compared

results obtained using aMSM to two additional methodologies: vertex-

wise analysis based on longitudinal registration using the FreeSurfer

longitudinal pipeline and ROI analysis based on the DK atlas.

Results of two illustrative pairwise comparisons, the AD and CN

groups and the MCI-C and CN groups, are shown in Figures 6 and 7,

respectively. Overall, ROI results detected the most atrophy across met-

rics. However, conformity to predefined ROIs did, in some instances, dis-

tort the localization of cortical atrophy. For example, both aMSM and

the FreeSurfer longitudinal pipeline identified the left temporal pole as a

region of increased thickness loss in the MCI-C group (Figure 7). How-

ever, due to the ROI definitions used, ROI analysis suggests that the

entire superior temporal gyrus is an area of increased atrophy.

aMSM and the FreeSurfer longitudinal pipeline identified similar

patterns of overall atrophy, as measured by change in volume. How-

ever, the influence of thickness and surface area differed between the

two methodologies. aMSM was more sensitive than the FreeSurfer lon-

gitudinal pipeline to changes in cortical surface area, while the

FreeSurfer longitudinal pipeline identified more areas of significant

thickness loss. When each diagnostic group was evaluated individually

for evidence of atrophy, as presented in Figures S1–S4, these trends

persisted. Notably, surface area and thickness changes detected by

aMSM appeared generally more similar to results detected by ROI anal-

ysis than did changes detected by the FreeSurfer longitudinal pipeline.

3.7 | Influence of field strength on measurements
of atrophy

For a subset of the ADNI1 cohort, subjects were scanned using both

1.5 and 3.0 T acquisition parameters at baseline and 2-year time points.

To explore aMSM's ability to consistently and reliably measure atrophy

under different image acquisition parameters, we analyzed and

F IGURE 5 Areas of increased 2-year atrophy in the AD and MCI-C diagnostic groups relative to the CN and MCI-S groups. Diagnostic groups
were compared to identify differences in patterns of atrophy, and significant differences were found between AD and CN groups (top row),
MCI-C and CN groups (middle row), and MCI-C and MCI-S groups (bottom row). Areas in which thickness (left column), surface area (middle
column), or volume (right column) loss differ are shown. p values are threshold-free cluster-enhanced with family-wise error correction
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compared both sets of imaging data. The resulting maps of change in

thickness (Figure 8a) and change in surface area (Figure 8b) illustrate

patterns of atrophy detected using 1.5 and 3.0 T field strengths.

Overall, change in surface area was less impacted than change in

thickness by differences in field strength. Loss in surface area was

detected in the same regions of the cortex regardless of field strength,

though therewas generallymore evidence of atrophy in the 3.0 T analysis.

By contrast, thickness-based atrophy performed less consistently. While

some common trends were detected in both the 1.5 and 3.0 T analysis, a

considerable amount of variation also existed. Maps of change in volume

(Figure S5) identified more atrophy than change in surface area or change

in volume alone but, due to variation in the thickness measure, did not

measure atrophy as consistently as did change in surface area.

3.8 | Influence of sample size on measurements of
atrophy

Finally, to demonstrate the reliability of aMSM results obtained using

different sample sizes, we considered subsets of the large 1.5 T

dataset. The largest sample considered is described in Table 3, with

90 subjects in each diagnostic group. Smaller samples of 12, 24, and

48 subjects per diagnostic group were randomly selected from within

the large 1.5 T cohort. ANOVA was performed to identify trends in

surface area loss (Figure 9), thickness loss (Figure 10), and volume loss

(Figure S6) at each of the four sample sizes. The group comparisons

depicted in Figures 9, 10, and S6 mirror those seen in Figure 5, which

focused on the small 3.0 T cohort.

Our results suggest that measures of surface area may perform

slightly better at small sample sizes than measures of thickness. Partic-

ularly, in the comparison of the AD and CN groups (Figure 9, top row),

analysis of surface area loss in the 24- and 48-subject groups identi-

fied very similar trends. These results also aligned well with trends

seen in the 90-subject groups. When examining areas of increased

thickness loss (Figure 10, top row), only minimal evidence of

increased atrophy was detectable in the 24-subject groups.

When comparing the MCI-C and CN groups (Figures 9 and 10,

middle row) or the MCI-C and MCI-S groups (Figures 9 and 10, bot-

tom row), surface area and thickness measures performed similarly. In

both of these comparisons, minimal significant differences were

F IGURE 6 Areas of increased 2-year atrophy in the AD group relative to the CN group, calculated using aMSM, the FreeSurfer longitudinal
pipeline, and predefined ROIs. Areas in which thickness (left column), surface area (middle column), or volume (right column) loss differ between
the AD and CN groups are shown. p values for the continuous surface maps produced using aMSM (top row) and the FreeSurfer longitudinal
pipeline (middle row) are threshold-free cluster enhanced with family-wise error correction. p values associated with specific ROIs (bottom row)
were adjusted with Bonferroni correction
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identified in groups of fewer than 48 subjects, and 48- and 90-subject

group comparisons identified similar trends, including some substan-

tial areas of atrophy. It is likely that few significant differences were

identified between the 24-subject groups because the overall effect

sizes were smaller than those seen in the AD and CN comparison

(Figures S7 and S8).

Notably, our primary analysis of subjects scanned at 3.0 T was

able to detect significant differences in atrophy between groups when

considering 12–13 subjects per group (Figure 5). However, we were

unable to detect such differences between the 12-subject 1.5 T

groups (Figures 9 and 10). Trends that were detected in the small

3.0 T groups did tend to align with areas of increased atrophy in the

larger 1.5 T groups, with even broader regions reaching statistical sig-

nificance in the largest 1.5 T groups.

4 | DISCUSSION

This study compared three measures of cortical atrophy: thickness

loss, surface area loss, and volume loss. By utilizing aMSM for

longitudinal registration, we produced maps of change in surface area,

optimized with anatomically constrained deformations, which offer

advantages over maps produced by commonly used spherically based

methodologies (Robinson et al., 2018) and provide detail that cannot

be achieved by global or ROI-based analyses.

To illustrate the benefit of this method relative to other existing

approaches, we compared maps produced with aMSM to two com-

mon alternatives, the FreeSurfer longitudinal pipeline and ROI analy-

sis. Furthermore, to characterize the reliability of atrophy metrics

derived from thickness, surface area, or volume, we examined the

impact of MRI field strength and sample size on aMSM-derived

atrophy maps.

4.1 | Surface area loss as a complementary
measure of cortical atrophy

Our results suggest that mapping change in surface area is a viable

method of detecting atrophy, with group analysis producing results of

comparable significance to those detected using change in thickness

F IGURE 7 Areas of increased 2-year atrophy in the MCI-C group relative to the CN group, calculated using aMSM, the FreeSurfer
longitudinal pipeline, and predefined ROIs. Areas in which thickness (left column), surface area (middle column), or volume (right column) loss
differ between the MCI-C and CN groups are shown. p values for the continuous surface maps produced using aMSM (top row) and the
FreeSurfer longitudinal pipeline (middle row) are threshold-free cluster enhanced with family-wise error correction. p values associated with
specific ROIs (bottom row) were adjusted with Bonferroni correction
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(Figures 4 and 5). These similar levels of significance were detected

despite the fact that surface area maps did not undergo smoothing

procedures that were applied to thickness maps.

Overall, the patterns of atrophy detected with aMSM are consis-

tent with prior studies. Areas of increased atrophy identified in AD

include medial temporal lobe structures (Belathur Suresh et al., 2018;

Chandra et al., 2019; Cuingnet et al., 2011; Femminella et al., 2018;

Risacher et al., 2010), the lateral temporal lobe (Belathur Suresh

et al., 2018; Chandra et al., 2019; Cuingnet et al., 2011; Femminella

et al., 2018), the parietal cortex (Belathur Suresh et al., 2018; Chandra

et al., 2019), the posterior cingulate (Cuingnet et al., 2011), and the

precuneus (Belathur Suresh et al., 2018). Our comparison of MCI-C

and CN subjects also produced results consistent with past studies,

which have found increased atrophy in medial temporal lobe struc-

tures (Chandra et al., 2019; Risacher et al., 2010) and the parietal and

temporal cortices (Risacher et al., 2010) of MCI-C participants.

Unsurprisingly, in this study we found the most sensitive measure

of atrophy to be volume loss, which incorporates both surface area

loss and thickness loss. Volume loss identified atrophy with the

greatest degree of significance, whether considering global atrophy,

individual subject vertex-wise atrophy, intragroup patterns of

atrophy, or intergroup differences in atrophy. However, as a multi-

dimensional measure incorporating both change in thickness and

change in surface area, change in volume masks the distinct influences

of these two underlying measures.

It has been found that cortical surface area and thickness are both

heritable traits with separate genetic influences (Grasby et al., 2020;

Panizzon et al., 2009), and the two measures are not equally impacted

as volume is lost in AD. In medial temporal lobe structures specifically,

surface area loss is thought to be characteristic of normal aging, while

AD is associated with additional significant thickness loss (Dickerson

et al., 2009). Further, thinning of the entorhinal and perirhinal cortices

was found to correlate with memory performance, while decreases in

surface area did not (Dickerson et al., 2009). The results of our study

have also demonstrated that patterns of thickness and surface area

loss in AD differ, in the medial temporal lobe and in other regions of

the cortex (Figure 5), though the clinical consequences of these differ-

ences require further study.

Findings in Parkinson disease, another neurodegenerative condi-

tion, further support the clinical relevance of separating the influences

of thickness and surface area on volume loss. When re-analyzing a

volume-based analysis to consider the differential impacts of thick-

ness and surface area, Gerrits et al. (2016) found that these two mea-

sures correlated with different dimensions of cognitive performance

in Parkinson disease patients. These findings suggest that separate

and complete analysis of both thickness and surface area loss, rather

F IGURE 8 Areas of atrophy over a 2-year period assessed in the same subjects with 1.5 and 3.0 T MRI. (a) Patterns of thickness loss in CN
(n = 11), MCI-S (n = 9), MCI-C (n = 12), and AD (n = 12) groups. (b) Patterns of surface area loss in the same groups of subjects. Each panel
displays atrophy patterns that were derived from 1.5 T MRI scans (left column) and 3.0 T scans (right column) of the same subjects over the same
2-year period. T-statistics are threshold-free cluster enhanced
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F IGURE 9 Influence of sample size on the detection of surface area loss. Significant differences in 2-year atrophy between the AD and CN
groups (top row), MCI-C and CN groups (middle row), and MCI-C and MCI-S groups (bottom row) are displayed. Results are shown for
12 subjects per diagnostic group (column 1), 24 subjects per diagnostic group (column 2), 48 subjects per diagnostic group (column 3), and
90 subjects per diagnostic group (column 4). All subjects were scanned at 1.5 T. p values are threshold-free clusterenhanced with family-wise
error correction

F IGURE 10 Influence of sample size on the detection of thickness loss. Significant differences in 2-year atrophy between the AD and CN
groups (top row), MCI-C and CN groups (middle row), and MCI-C and MCI-S groups (bottom row) are displayed. Results are shown for
12 subjects per diagnostic group (column 1), 24 subjects per diagnostic group (column 2), 48 subjects per diagnostic group (column 3), and
90 subjects per diagnostic group (column 4). All subjects were scanned at 1.5 T. p values are threshold-free clusterenhanced with family-wise
error correction
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than the combined measure of volume loss, offers a more meaningful

view of cortical change than thickness, surface area, or volume loss

alone.

While surface area loss represents a major component of the vol-

ume loss seen in AD (Figure 2), change in surface area has not been as

widely studied as change in thickness or change in volume. This omis-

sion may reflect the technical limitations of commonly used methods,

particularly when evaluating small cohorts (Figures 6 and 7). Notably,

at the small sample sizes used in this study, the FreeSurfer longitudi-

nal pipeline was entirely unable to detect significant differences in

surface area loss between diagnostic groups. ROI analysis was able to

detect significant differences in certain predefined regions, such as

the middle temporal gyrus, but this methodology sacrifices detail by

forcing results to conform to predefined ROIs. Improvements in the

vertex-wise measurement of change in surface area, such as those

possible with aMSM, provide a critical tool in disentangling the influ-

ences of thickness and surface area loss on cortical atrophy in AD and

other neurodegenerative diseases.

4.2 | Surface area loss as a more precise measure
of cortical atrophy

While thickness and volume loss remain important measures of atro-

phy, our results suggest that change in surface area, when precisely

and accurately mapped using a tool such as aMSM, possesses consid-

erable utility as an independent measure of atrophy. To illustrate the

performance of each metric, we first considered a relatively small sub-

set of subjects from the ADNI1 dataset. When we compared maps of

atrophy derived from the same subjects over the same period of time,

but scanned at different field strengths, we found that change in sur-

face area was more consistent across field strengths than was change

in thickness (Figure 8). This suggests that change in surface area may

offer increased precision over change in thickness when analyzing

scans of varying image quality. We also observed that, when compar-

ing results obtained using a range of sample sizes, trends in surface

area loss were more consistent across sample sizes than were trends

in thickness loss (Figures 9 and 10). In this case, surface area loss

offered increased statistical sensitivity over thickness loss when con-

sidering small samples. While volume loss, the combination of thick-

ness and surface area loss, tended to be most sensitive across sample

sizes (Figures 9, 10, and S6), it suffered from the loss of precision

inherent in the thickness measure (Figure S5).

The decreased precision associated with measures of change in

thickness is not surprising, given that the thickness of the cortex

ranges from 1 to 4.5 mm (Fischl & Dale, 2000), and MRI scans, includ-

ing those used in this study (Jack et al., 2008), are often acquired with

a target isotropic voxel size of 1 mm3. In these conditions, even mini-

mal bias or measurement error can become problematic when calcu-

lating local change. To compound this problem, thickness maps

calculated using surface-based methods may introduce bias (Scott,

Bromiley, Thacker, Hutchinson, & Jackson, 2009), and precision is fur-

ther compromised by the use of smoothing procedures (Bernal-Rusiel

et al., 2010). These issues become particularly problematic when

attempting to measure change within a single subject. By contrast, the

surface area attributed to any vertex considered in this analysis is on

the order of 20 mm2, and high-quality reconstruction of the cortical

surface represents the original goal of popular reconstruction pack-

ages such as FreeSurfer.

This highlights a final benefit associated with maps of change in

surface area generated by aMSM, which has been optimized to pro-

duce physically accurate surface deformations (Robinson et al., 2018).

While additional work is needed to optimize the thickness dimension

for atrophy mapping at the individual subject level, the results in this

paper suggest that information gleaned from surface area alone is

highly accurate and may be clinically useful to highlight unique regions

undergoing cortical atrophy. This ability to track cortical changes in

individual subjects offers a foundation to enable more personalized

patient care and has the potential to aid in the implementation of pre-

cision medicine in AD detection and management.

4.3 | Limitations

We note that, while surface area loss, measured with aMSM, offers

advantages over thickness loss in small sample sizes, sample size

remains an important consideration in study design. In this study,

about 20% of potential subjects considered for our primary 3.0 T anal-

ysis were excluded due to failed or poor-quality segmentation with

FreeSurfer. This suggests that future analyses may benefit from con-

sideration of alternate segmentation tools. Particularly in studies of

Alzheimer's disease, tools such as MaCRUISE (Huo et al., 2016), which

has demonstrated efficacy in older populations, may allow for a higher

segmentation success rate. While the focus of this paper has been to

establish the benefits of aMSM as a registration tool, studies of corti-

cal atrophy may find additional advantage in the careful selection of a

segmentation tool suited to the population of study.

We also acknowledge that multi-scanner, multi-site data can be

complicated by unwanted scanner effects. While we have attempted

to minimize these effects by using standardized datasets and

balancing our diagnostic groups in terms of site and scanner manufac-

turer, we did not account for other differences in MRI protocol that

may exist, which could confound physiologic trends. Furthermore, dif-

ferences between 1.5 and 3.0 T results must be interpreted cau-

tiously, since scanner type and manufacturer vary dramatically

between these two datasets (Tables 2, 4, and S6–S9). Future studies

using ADNI data or other multi-site datasets may benefit from the

implementation of a more comprehensive data harmonization process,

such as the ComBat (Johnson, Li, & Rabinovic, 2007) derived methods

employed in some recent analyses of structural MRI scans (Beer

et al., 2020; Pomponio et al., 2020). In this study, longitudinal mea-

sures for each individual (surface area loss, thickness loss, and volume

loss) were calculated from scans collected on the same scanner, which

may mitigate some scanner effects. However, trends within and

between diagnostic groups may be expected to increase in accuracy

with improved data harmonization. As such, data harmonization

IANNOPOLLO ET AL. 3589



remains an important consideration and a direction for future study

which cannot be overlooked.

5 | CONCLUSION

In summary, this study presents a viable method of accomplishing lon-

gitudinal registration and producing maps of cortical surface area loss.

With this approach, we identified atrophy at similar levels of signifi-

cance using either maps of change in thickness or change in surface

area. Notably, however, surface area maps did not require smoothing

and thus avoided a source of lost precision present in our thickness-

based analysis. We illustrated that aMSM is more effective than exis-

ting methods at detecting surface area loss, producing improved maps

of surface area loss that can benefit future studies seeking to eluci-

date the precise contributions of thickness and surface area to atro-

phy in AD and other neurodegenerative disorders. These maps are

also a promising means of evaluating small subpopulations, due to

their increased precision compared to maps of change in thickness or

change in volume. Finally, this method offers the potential for

improved mapping of atrophy in individual subjects, an advancement

that could prove clinically useful in AD detection and management.
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