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Abstract

Recently developed capture-mark-recapture methods allow us to account for capture heterogeneity among individuals in
the form of discrete mixtures and continuous individual random effects. In this article, we used simulations and two case
studies to evaluate the effectiveness of continuously distributed individual random effects at removing potential bias due to
capture heterogeneity, and to evaluate in what situation the added complexity of these models is justified. Simulations and
case studies showed that ignoring individual capture heterogeneity generally led to a small negative bias in survival
estimates and that individual random effects effectively removed this bias. As expected, accounting for capture
heterogeneity also led to slightly less precise survival estimates. Our case studies also showed that accounting for capture
heterogeneity increased in importance towards the end of study. Though ignoring capture heterogeneity led to a small bias
in survival estimates, such bias may greatly impact management decisions. We advocate reducing potential heterogeneity
at the sampling design stage. Where this is insufficient, we recommend modelling individual capture heterogeneity in
situations such as when a large proportion of the individuals has a low detection probability (e.g. in the presence of floaters)
and situations where the most recent survival estimates are of great interest (e.g. in applied conservation).
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Introduction

Survival of animals in the wild is an important fitness

component, and unbiased survival estimates are critical for

understanding, among other things, the patterns of life histories

[1], evolutionary pressures in the wild (e.g. [2]), and for the

conservation of populations [3]. Development of sophisticated

open capture-mark-recapture models [4] has revolutionized our

knowledge of survival in populations of wild animals (reviewed by

[5]). In theory, these methods give unbiased survival estimates by

incorporating an estimate of the detection probability (i.e. the

probability of recapture (or resighting) an individual that is alive

and in the population at the time of a survey) into the estimation of

survival probability. The detection probability is often regarded as

a nuisance parameter, and is usually of little biological interest (but

see [6]). However, as methods are now used extensively (the key

publication, [4], has been cited 2109 times, according to ISI Web

of Science, accessed on 14 March 2013), the importance of

accounting for the detection probability is becoming clear: almost

all studies find detection probabilities ,1 (implying that perfect

detection is hardly ever achieved). Further, most studies find the

detection rate to vary among groups of individuals (e.g. age classes

and sex), and over time and space. This suggests modelling

variation in detection probabilities is critical for obtaining

unbiased survival estimates from capture-mark-recapture experi-

ments on wild populations [4,7,8].

Conventional capture-mark-recapture methods make the crit-

ical assumption of equal detection probability among individuals

within a group. This assumption is generally tested using standard

tests (Test 2 in RELEASE, ([9]; also available within program

MARK: [10]), and U-CARE, ([11,12])), and often found to be

violated. However, since [13] found that the departure from the

assumption of homogeneity in detection causes negligible bias in

survival estimates, the resulting lack of fit (to which unmodelled

individual heterogeneity contributes) is normally dealt with by

multiplying the variance-covariance matrix by a constant variance

inflation (overdispersion) factor, ĉ [4,10]. This inflates the

confidence intervals, but does not attempt to correct any potential

bias in the mean estimate.

More recently, however, concerns about the assumption that

capture heterogeneity in the estimation of survival and/or

population size can safely be ignored have been voiced [14–19].

At the same time, the development in hierarchical models for

analysing capture-mark-recapture data has made it possible to

address this issue as capture heterogeneity can now be modelled in

various ways [15,20–22]. While appealing, these methods add

complexity to the analyses, and are more difficult to fit and assess

for general users of capture-mark-recapture methodology.
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Therefore, the objectives of this study are to reassess effects of

different forms of capture heterogeneity on survival estimates, and

to identify situations in which the assumption of homogenous

detection probability can safely be applied to empirical data sets. We

use simulations and two case studies where we expected capture

heterogeneity to be strong, to illustrate pros and cons of modelling

capture heterogeneity in capture-mark-recapture studies.

Methods

The family of Cormack-Jolly-Seber (CJS) models is widely used

to estimate survival probabilities from capture-recapture data.

This model can be implemented either using the multinomial

likelihood [4,9] or the state-space formulation [20,23,24]. Here,

we used the latter approach as it provides a flexible framework for

incorporating individual heterogeneity and easily fitting other

modified models [20,23,25–28]. Before we present the model, we

define the notations. Let T be the number of sampling occasions in

year, w be the survival probability, which is assumed constant over

time and identical for all individuals, and pi be the detection

probability of individual i and constant over time. The model is

expressed by the state process, which describes the true biological

process (e.g. survival), and the observation process, which describes

the error associated with the data (e.g. imperfect detection).

Following [20,23], the state process (i.e. z = 1 (alive) or 0 (dead) for

individual i at time t) is described by Bernoulli trials as

zi,tz1Dzi,t ~Bernoulli(zi,tw) ð1Þ

The state of an individual at the time of first capture is known

with probability 1 (i.e. it is alive with certainty). The observation

process (i.e. y = 1 (seen alive), 0 (not seen) for individual i at time t)

is modelled by Bernoulli trials as

yi,tDzi,t ~Bernoulli(zi,tpi) ð2Þ

To assess the effect of ignoring capture heterogeneity, we

considered a model that allowed for capture heterogeneity ({w,pi})

vs. a model that assumed constant detection probability across

individuals ({w,p}). In the former, we used a random effects model

to account for capture heterogeneity, and individual random terms

(ei) are the deviations from the global mean mp, which are

distributed normally with a mean of 0 and standard deviation sp.

That is,

logit(pi) ~ mp z ei, ei ~N(0,s2
p) ð3Þ

1. Simulation Study
We carried out a simulation study to assess the potential bias in

estimates of survival probability when capture heterogeneity is

ignored. In conducting simulations, we first needed to specify the

parameters. The number of sampling occasions in year (T ) set at

15 years, the survival probability (w) was set at 0.7 and assumed to

be constant over time. We considered four different scenarios of

capture heterogeneity (pi ), which could frequently arise in

empirical capture-recapture studies: 1) symmetric heterogeneity

around a mean detection probability (Figure 1a); 2) right-skewed

distribution of detection probabilities (e.g. most individuals have

relatively low detection probabilities but a few individuals are

being caught repeatedly; a situation that could arise if the study

area is relatively small in relation to the movement patterns of the

individuals) (Figure 1b); 3) left-skewed distribution (e.g. most

individuals have relatively high detection probabilities but a few

individuals are unlikely to be detected because they have their

home ranges along the periphery of the study area) (Figure 1c);

and 4) two-group heterogeneity, a situation if the studied

population consists of two groups (e.g. females and males, non-

breeders and breeders, social status) that cannot be distinguished

in the field but differ in their propensity to be trapped (Figure 1d).

The first three scenarios of detection probabilities were generated

from a beta distribution with means 0.4, 0.2, and 0.8 and standard

deviations 0.148, 0.163, and 0.163, respectively. In the fourth

scenario, we considered a detection probability of 0.2 for one

group and 0.8 for the other group. For each scenario, the annual

number of newly marked individuals was chosen to be 50. We then

simulated 100 replicate data sets each under the assumption that

survival probability is constant over time and identical for all

individuals, and under the assumption that detection probability

varies only across individuals.

To each simulated data set, we fitted a model that allows for

heterogeneity in detection probability among individuals ({w,pi}),

and a model that assumes constant detection probability across

individuals ({w,p}). The former model is equivalent to the

generating model for the first scenario, with symmetric heteroge-

neity. We used this model ({w,pi}) to analyse all data sets,

including the ones generated under the other scenarios for

heterogeneity, to see how well this approach works in different

situations.

All the analyses were performed within the Bayesian framework,

specifying non-informative priors to reflect little a priori knowledge

about the parameters. We used uniform prior distributions

between 0 and 1 (U(0,1)) for the survival and mean detection

probabilities, and a U(0,10) prior distribution for the standard

deviation of the detection probabilities. We first assessed the

convergence of the Markov Chain Monte Carlo (MCMC)

algorithm to the targeted posterior distribution by running 3

chains of 10000 iterations with a burn-in of 7000. The R̂R [29]

values were below 1.01 for all parameters, indicating convergence.

We then ran a single chain of 30000 iterations, a burn-in of 20000,

and retained every 10th observation for each simulated data. Thus,

the posterior summary statistics were computed based on

1000 MCMC samples. We then calculated the relative bias in

estimates of survival probability as

Bias(q) ~

1
ns

Pns

k~1

qk{q

� �

q
ð4Þ

where wk is the estimated survival probability for the kth simulated

data, w is the survival probability used to generate the data, and

nsis the number of simulated data sets. Further, we assessed the

effect of ignoring detection heterogeneity on the precision of

survival estimates. The data simulation was carried out using R

[30] and the analysis was performed using WinBUGS calling from

R using R2WinBUGS [31].

Simulation results: Bias and precision of survival

estimates. Ignoring heterogeneity in detection probability led

to negative bias in estimates of survival probability (Figure 2a).

Though the bias was small in all scenarios, our analyses revealed

the largest bias in the cases of the right-skewed scenario (i.e., most

individuals had relatively low detection probabilities) and two

groups with different detection probabilities. A model accounting

for heterogeneity essentially produced unbiased estimates of

Capture Heterogeneity on Survival
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survival probability in all cases (Figure 2a). As expected, the model

that allows for heterogeneity in detection probability provided

slightly less precise (i.e. large standard deviation) estimates of

survival probability compared to the one ignoring it (Figure 2b).

The individual random effects model slightly underestimated the

standard deviations of the detection probabilities (with relative bias

ranging from 20.19 to 20.05).

Goodness-of-fit (GOF) tests. To see whether commonly

used diagnostics would flag the detection heterogeneity in our

simulations, we randomly chose five simulated data sets per

scenario and tested for detection heterogeneity in program U-

CARE [11,12]. The overall GOF test (i.e., TEST3.SR+
TEST3.SM+TEST2.CT+TEST2.CL) for the CJS model showed

little evidence for lack of fit at the 5% significance level except

for the scenario with two groups differing in detection

probabilities (Appendix S1). For this scenario, the directional

tests for both transience and trap dependence were significant (all

p-values,0.05). For all selected data sets, the estimated over-

dispersion parameter (ĉ) varied between 1.000 and 2.162,

suggesting evidence of overdispersion (Appendix S1). Interesting-

ly, for the second scenario (Figure 1b), the TEST2.CT test

showed signs of transience whereas for the third scenario

(Figure 1c), the TEST3.SR test for trap dependence was

statistically significant (Appendix S1).

2. Case Studies
Our simulation study clearly showed that ignoring capture

heterogeneity led to a small bias in survival estimates and a slight

overestimation of its precision (i.e. small standard deviation). We

also examined the issue of capture heterogeneity in two case

Figure 1. Different scenarios of heterogeneity in detection probabilities. a) Symmetric individual detection probabilities, b) right-skewed
(most individuals had a lower detection probability), c) left-skewed (most individuals had a higher detection probability), and d) two-group
heterogeneity (individuals with low and high detection probabilities).
doi:10.1371/journal.pone.0062636.g001
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studies involving data on African White-backed Vultures (Gyps

africanus) and on African Penguins (Spheniscus demersus). While we

advocate reducing capture heterogeneity by choosing a sampling

design that minimizes the problem, this is not always possible and

our case studies are examples of the latter. Both species are of

conservation concern and subject to tagging programs that can be

used to assess effective management strategies. In both data sets,

we expected strong detection heterogeneity for reasons detailed

below, and we assessed the extent to which this may lead to biased

survival.

Ethics statement. Capturing and tagging of the birds was

done under permits from SAFRING, CapeNature, and the

Department of Environmental Affairs (DEA). Under South

African laws, when in possession of a research permit allowing

banding of penguins, no additional ethics clearance is required for

these birds. They were captured by hand and stainless steel flipper

bands were applied according to the guidelines approved by the

DEA [32], who was also responsible for ethical oversight. Stainless

steel bands are tear-drop shaped and the ends overlap, allowing

each band to be individually fitted to the penguin using custom-

made banding pliers. The penguins were banded by officials of the

DEA and the South African Bird Ringing Unit (SAFRING) with

permits issued under the Sea Birds and Seals Protection Act

No. 46 of 1973, the Marine Living Resources Act No. 18 of 1998,

and the National Environmental Management Biodiversity Act

No. 10 of 2004. Both institutions agreed on the use and

publication of these data. The vultures were fitted with patagial

tags, for which ethics clearance was provided by the Endangered

Wildlife Trust Ethics Committee and the ethics committee at

South African National Parks. The effect of tagging was minimised

by adopting the standard protocol adopted for this practice in

southern Africa [33].

The African White-backed Vulture Study. Ninety-three

vultures were captured using carcass baited walk in traps between

November 2005 and January 2007 at the Moholoholo Wildlife

Centre near Kampersrus in Mpumalanga, South Africa. Captured

birds were fitted with unique alphanumerically coded patagial tags

and standard metal leg rings. Individuals were then resighted

Figure 2. Relative bias and precision in the estimate of survival probability. The relative bias (panel 1) in the estimate of survival probability
and precision in terms of standard deviation (panel 2) from a model that ignores (solid circle) and accounts for heterogeneity (open circle) in
detection probability under different scenarios: a) symmetric individual heterogeneity, b) right skewed, c) left skewed, and d) two-group
heterogeneity.
doi:10.1371/journal.pone.0062636.g002
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monthly between December 2005 and June 2010 near the capture

site where vultures were being fed and also within the Greater

Kruger National Park where the birds are known to forage. Re-

sightings away from the capture site were reported by members of

the public visiting or staff working within the Kruger National

Park and adjacent nature reserves. While some vultures visited this

site regularly, others were only found there occasionally, thus

creating strong individual heterogeneity in resighting probabilities

(Figure 3). See [34] for more details.

The African Penguin study. We analysed a capture-mark-

recapture data set consisting of 5558 adult African Penguins

banded and resighted on Robben Island, South Africa, between

2002 and 2009. Birds returning to their breeding colony were

observed with a spotting scope and their flipper bands read. The

birds use different paths to walk from the beach to the colony and

even though flipper bands were read in all areas that penguins

used, most of the resighting effort was concentrated on two main

paths used by most penguins. We expected the spatial heteroge-

neity in effort to translate into individual resighting heterogeneity

if penguins consistently used the same areas in their colony, as is

the norm for seabirds. There is also the possibility of unidentified

groups with different resighting probabilities as we could not tell

apart the sexes in the field and a range of band types of different

quality were used [35], even though the latter effect could have

been incorporated into the model structure. More information on

the penguin study can be found in [36].

For both data sets, we fitted a model allowing for individual

heterogeneity in resighting probabilities and one assuming

constant resighting probabilities, using the same methods as for

analysing the simulated data above. The models further allowed

for a time effect on survival and resighting probabilities, treating

time as a random effect in the longer vulture study and as a fixed

effect in the shorter penguin study. We computed the posterior

summary statistics using a single chain of 200000 iterations after

discarding the initial 100000 iterations as a burn-in period and

thinned by using every 10th observation. The R and WinBUGS

codes used for fitting all models are available on request.

Case studies results. For the African White-backed Vulture

data, the estimated monthly survival probabilities were close to 1

except for a few months (Figure 4a). The posterior distribution of

the standard deviation of monthly individual resighting probability

(on the logit scale) had a mean of 1.78 (95% CRI: 1.50–2.10),

indicating evidence of heterogeneity in resighting probabilities.

However, both models, the one ignoring heterogeneity and the

one allowing for it, provided similar estimates of survival

probabilities for most months of the study (Figure 4a). The overall

GOF test from U-CARE indicated a serious lack of fit

(x2 = 627.903, df = 142, P,0.001) with the largest contribution

coming from TEST2.CT (x2 = 487.068, df = 53, P,0.001). The

directional test for transience was statistically significant and the ĉ

obtained from the GOF test showed substantial overdispersion

(ĉ = 4.422). In general, the model ignoring heterogeneity yielded

survival estimates with shorter confidence intervals than the one

accounting for it (Figure 4a). For African Penguins, the mean

annual survival probabilities varied between 0.530 and 0.817, and

the model ignoring heterogeneity tended to underestimate the

survival probability in some years (Figure 4b). Our analysis

revealed that the mean of the posterior distribution of the standard

deviation of the resighting probability was 1.239 (95% CRI:

0.883–1.637), suggesting evidence of heterogeneity in resighting

individuals. The overall GOF test result from U-CARE showed

overdispersion (x2 = 83.924, df = 28, P,0.001), and TEST2.CT

was highly significant (x2 = 37.292, df = 5, P,0.001). The

directional test for transience was statistically significant and the

ĉ obtained from the GOF test showed overdispersion (ĉ = 2.997).

Yet, ignoring this variation only had a small effect on the survival

estimates and the precision of the survival estimates was

comparable for both models (Figure 4b).

Discussion

The traditional capture-mark-recapture modelling framework

assumes constant survival and detection probabilities across

individuals [4,37–39]. This is of course never strictly true in real

situations, but early studies showed that heterogeneity among

individuals results in only slight bias in survival estimates [13].

More recently, doubts have been raised whether individual

heterogeneity can safely be ignored [14,19,40] and methods to

account for such heterogeneity have been developed [15,21].

Individual heterogeneity can conveniently be modelled as

individual random effects when formulating the model as a

state-space process [20,23] but popular software packages also

offer individual random effects within the classical capture-mark-

recapture modelling framework (recent versions of MARK [10]

and E-SURGE [21]). We used simulations and two case studies to

examine in what situations the added complexity of individual

random effects is necessary, and what the costs and gains may be.

In our simulations even large individual heterogeneity in

detection probabilities caused little bias in survival estimates.

The largest negative biases occurred in the cases of right-skewed

heterogeneity (i.e., most individuals had relatively low detection

probabilities) and with two groups that differ in detection

probabilities. Intuitively, the negative bias arises because the

detection estimate is dominated by individuals that are detected

more frequently because their detection probability is high. This

leads to positive bias in detection estimates and negative bias in the

survival estimates. If it was known or suspected that detection

heterogeneity was due to a small number of unrecognized groups

that differ in detection probabilities, this structure could be

modelled using discrete mixtures [40]. In all cases considered,

however, modelling heterogeneity as continuous individual ran-

dom effects essentially eliminated bias. The results of this

simulation are thus in agreement with [13] who found small

negative biases of unmodelled capture heterogeneity on survival

estimates. [16] also found small negative biases in a situation with

unmodelled two-group heterogeneity. However, such small

Figure 3. Example of parts of the capture-resighting histories
for a subset of the African White-backed Vultures. The rows
correspond to individuals and the column to months. If a particular bird
was seen in a given months, its sighting history contains a ‘19 in the
corresponding column, and ‘09 otherwise. The capture histories suggest
strong heterogeneity in resighting probabilities, probably due to
individual differences in movement patterns.
doi:10.1371/journal.pone.0062636.g003
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negative bias in survival estimates may still have a strong impact

on the ability to select the correct management measures, in

particular for long-lived species where population dynamics is very

sensitive to survival [19].

Our case studies supported the results observed in our

simulations. Survival estimates slightly increased when we

included individual random effects on detection with greater

influence towards the end of the time series. This may be due to

individuals with low detection probability ‘disappearing’ towards

the end of the study, which would make the estimated detection

probability increasingly influenced by the individuals that are easy

to detect, and thus lead to survival estimates that are increasingly

biased low towards the end of the study [16]. In applied

conservation the most recent survival estimates are often the most

interesting ones, because they are needed to gauge the effective-

ness of conservation interventions or to predict future population

declines. We recommend individual random effects to be explored

in such situations, particularly if detection probabilities are low.

Other strategies for reducing detection heterogeneity (see below)

should also reduce the problem of apparently declining survival

estimates towards the end of the study.

Precision of survival estimates is also of concern when capture

heterogeneity is unmodelled. Such heterogeneity could lead to

confidence intervals that are too narrow due to failure to account

for uncertainty in detection probabilities. In our simulations, we

found that the survival estimates became slightly less precise when

we used individual random effects to account for detection

heterogeneity, demonstrating that ignoring detection heterogene-

ity can lead to optimistic confidence intervals. In the vulture case

study, the model without individual random effects led to

increased precision of survival estimates with confidence intervals

that appear to be overly optimistic. However, in the penguin case

Figure 4. Estimates of survival probability. Mean survival estimates along with the 95% credible interval obtained from a model that ignores
heterogeneity (solid symbols and lines) and a model that allows for heterogeneity (open symbols and broken lines) for (a) the African White-backed
Vultures data, and (b) the African Penguins data.
doi:10.1371/journal.pone.0062636.g004
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study, adding individual random effects had little influence on

precision of survival estimates.

We advocate a three-stage strategy to dealing with potential

capture heterogeneity. The first stage is to reduce detection

heterogeneity by study design, e.g. by standardising field effort

across time and space. However, even constant effort is not likely

to yield constant detection probabilities as factors beyond the

control of the observer can still vary. Furthermore, constant effort

may not be possible or practical. As a second stage, we therefore

recommend incorporating suspected sources of heterogeneity into

the model, e.g. by using covariates that are thought to be related to

detection probability. Indirect information on possible hidden

heterogeneity (e.g. sex determined by uncertain cues [41]) can be

used in multi-event models [42]. As a third stage, we recommend

modelling individual heterogeneity where there is evidence for

such heterogeneity to remain, for example from a high estimate of

ĉ or significant goodness-of-fit results. Our simulations showed that

heterogeneity can lead to apparent trap effects and transience.

Using continuously distributed individual random effects may

yield better survival estimates, in terms of bias and precision than

applying an overdispersion factor.

In summary, our results suggest that individual detection

heterogeneity only has small effects on survival estimates. In

practice, the situation that is most likely to bias survival is if a

considerable proportion of the individuals have a low detection

probability, like our right skewed and two-group scenarios.

Transients or the presence of floaters would have such an effect.

The effect of transients is well recognised and accounted for by

assuming that these individuals are never recaptured [43,44]. Even

though we did not explicitly examine a scenario where some

individuals have zero recapture or resighting probability, our

results suggest that continuously distributed individual random

effects effectively eliminate the bias due to various types of

individual heterogeneity. Our results also suggest that individual

random effects can improve survival estimates towards the end of

the study if detection heterogeneity is present.
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