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INTRODUCTION 
 
Immune heterogeneity within the tumor 
microenvironment has been linked to the drug 
sensitivity and prognosis of patients with various cancer 
types [1, 2]. Thus, the profiling of immune signatures 
might uncover biomarkers for targeted therapy and 
clinical outcome assessment. Recently, datasets from 
The Cancer Genome Atlas (TCGA) have been used to 
depict the immune landscapes of multiple tumor types 
[1]. Researchers have used integrated approaches and 
multidimensional datasets to determine the infiltration 
levels and co-infiltration networks of various immune  

 

cell populations in tumors [3, 4]. For instance, genomic 
data and hematoxylin & eosin image data were used to 
assess the total lymphocyte infiltration and immune cell 
fractions of the tumor microenvironment in different  
cancer types in TCGA [3]. This analysis revealed 
common immune subtypes, immune gene expression 
signatures and tumor-extrinsic features, which could be 
used to identify transcriptional regulatory networks in 
the tumor microenvironment. Moreover, an extensive 
immunogenomic analysis of PanCancer TCGA data 
from 33 diverse cancer types revealed six distinct 
immune subtypes and various tumor-immune cell 
interactions [1]. 
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ABSTRACT 
 
Uveal melanoma is an aggressive intraocular malignancy that often exhibits low immunogenicity. Metastatic 
uveal melanoma samples frequently exhibit monosomy 3 or BAP1 deficiency. In this study, we used 
bioinformatic methods to investigate the immune infiltration of uveal melanoma samples in public datasets. 
We first performed Gene Set Enrichment/Variation Analyses to detect immunological pathways that are altered 
in tumors with monosomy 3 or BAP1 deficiency. We then conducted an unsupervised clustering analysis to 
identify distinct immunologic molecular subtypes of uveal melanoma. We used CIBERSORT and ESTIMATE with 
RNA-seq data from The Cancer Genome Atlas and the GSE22138 microarray dataset to determine the sample-
level immune subpopulations and immune scores of uveal melanoma samples. The Kaplan-Meier method and 
log-rank test were used to assess the prognostic value of particular immune cells and genes in uveal melanoma 
samples. Through these approaches, we discovered uveal melanoma-specific immunologic features, which may 
provide new insights into the tumor microenvironment and enhance the development of immunotherapies in 
the future. 
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Uveal melanoma (UM) is the most common aggressive 
intraocular malignancy in adults, and originates from 
the uveal tract [5]. UM is characterized by different 
cytogenetic alterations than cutaneous melanoma (CM), 
and has the potential for hepatic metastasis [6]. 
Nevertheless, UM and CM share a common lineage  
that is determined by melanoma-specific neural crest 
genes [7]. Recently, a comprehensive analysis of  
80 UM cases identified four molecularly distinct 
subtypes. Monosomy 3 (M3) tumors were found to be 
enriched for genes in immune pathways such as 
interferon signaling, T cell invasion and cytotoxicity 
[8]. Several reports have demonstrated that CM is 
highly infiltrated by immune cells such as CD4 and 
CD8 cells [9–11]. However, only a subset of UM 
patients exhibit similar lymphocyte infiltration of their 
tumors, suggesting that UM immune infiltration is 
heterogeneous [7]. In liver metastases, the tumor-
infiltrating lymphocyte activity is lower in UM patients 
than in CM patients [5, 7, 12]. 
 
The inflammatory phenotype of UM is characterized by 
high infiltration of lymphocytes and macrophages, and 
by the expression of human leukocyte antigen (HLA) 
Class I and II antigens [13]. Mutation of 
GNA11/GNAQ was not found to significantly alter the 
immune infiltration and HLA Class I expression of 
primary UM [14]. However, the nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-kB) 
pathway was found to be associated with the 
inflammatory phenotype and high HLA Class I 
expression, and was upregulated upon the inactivation 
of BAP1 in UM. The levels of the NF-kB pathway 
molecules NF-kB1, NF-kB2 and RELB were reported 
to correlate positively with the expression of HLA Class 
I and with the infiltration of T cells and macrophages in 
UM [15]. Moreover, one of the most significant UM 
studies revealed that lymphocyte infiltration and tumor-
associated M2 macrophage levels were associated with 
a poor prognosis in primary UM after adjustment  
for other risk factors [16]. In another study, the  
authors used a digital PCR-based T cell quantification 
method to characterize the prognostic value of the  
T cell count and activated macrophage level in the 
microenvironment of UM[17]. Thus, characterizing the 
immunological features of UM may provide novel 
immune biomarkers for prognostic assessment and 
immunotherapy. 
 
Immunotherapy through immune checkpoint blockades 
has displayed promising clinical efficacy in multiple 
tumor types [18–20]. Enhancing the cytolytic functions 
of infiltrating lymphocytes can significantly improve 
antitumor immunity [4]. However, due to the low levels 
of cytotoxic cells in the tumor microenvironment, non-
responsiveness to immunotherapy remains a clinical 

challenge. Thus, a deep comprehension of the interplay 
among the immune cell subsets in the tumor 
microenvironment is needed for the development of 
effective antitumor immune therapies. Here, we sought 
to identify the molecular immune subtypes and 
infiltrating immune cells of UM, in order to discover 
possible candidates for immunotherapy. 
 
RESULTS 
 
Identification of M3/BAP1-specific immunological 
pathways using GSEA 
 
BAP1 is frequently mutated in metastatic UM, and is 
associated with chromosome 3 loss (M3) [16, 21]. Thus, 
we investigated whether BAP1-deficient UM samples 
exhibited distinct immune infiltration patterns from 
BAP1-intact samples in TCGA. Gene Set Enrichment 
Analysis (GSEA) was used to develop M3/BAP1null 
aberrant gene signatures and reveal novel immune 
pathways. The immune-related gene signatures were 
then used to estimate the level of immune cell 
infiltration. Among the most significantly altered 
pathways in M3/BAP1null tumors, those involving the 
CD8/T-cell-receptor, adaptive immune system, pre-B1 
lymphocytes and differentiating T lymphocytes were 
significantly enriched in the M3 group (Figure 1A), 
consistent with a previous study [22]. In curating the 
differential gene expression data, we found significant 
gene expression changes in a variety of immune-
associated processes, suggesting that M3/BAP1null 
tumors highly express immune pathway genes. 
 
Next, we performed Gene Set Variation Analysis 
(GSVA) to compare the sample-level infiltration of 
M3/BAP1null tumors and disomy 3 (D3)/BAP1intact 
tumors. The top 10 significantly enriched immune 
pathway gene sets were selected. As shown in the 
heatmap (Figure 1B), the “B-cell receptor signaling” 
pathway, the “IRF4 targets in plasma cells vs. mature B 
lymphocytes” pathway and the “peripheral blood 
mononuclear cell response to ionizing radiation (IR)” 
pathway were significantly enriched in M3/BAP1null 
tumors, suggesting that IRF4 may enhance immunity in 
BAP1 deficient UMs. 
 
To further assess the immune cell subpopulations of 
M3/BAP1null and D3/BAP1intact tumors, we compared 
the relative abundance of immune cells between these 
two UM subtypes. As shown in Figure 1C, the levels of 
infiltrating CD8 T cells and T follicular helper cells 
were significantly higher in M3-subtype tumors (n = 42) 
than in D3 tumors (n = 38) (P<0.01, Mann-Whitney 
test). Of note, D3 tumors were previously reported to 
have a better prognosis than M3 tumors. In contrast, 
monocytes and CD4 memory resting cell levels were 
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higher in D3 tumors than in M3 tumors (P<0.01, Mann-
Whitney test). 
 
Hierarchical clustering of immune cell-associated 
gene expression in UM 
 
We then performed an unsupervised clustering analysis 
of 730 immune-related genes in the UM dataset of 
TCGA, as described in a previous study [11]. The 
sample clustering revealed three clear groups of samples 

that separated predominantly according to the gene 
expression of infiltrating immune cells, here termed the 
Immune Low (Immune L, n=54, 67.5%), Immune 
Medium (Immune M, n=16, 20%) and Immune High 
(Immune H, n=10, 12.5%) groups (Figure 2A). As 
shown in the heatmap, the Immune H group expressed 
high levels of the majority of the immune-related genes, 
in contrast to the Immune L group. The Immune H 
group highly expressed genes associated with CD8 T 
cells, B cells and natural killer cells (Figure 2B). The 

 

 
 

Figure 1. BAP1-mutant/M3 UM is enriched in immune signatures. (A) GSEA plots of gene ontology categories, including the immune 
response, immune system process, adaptive immune response, immune effector process, and regulation of immune system process. (B) 
GSVA analysis of differing immune pathways between BAP1wild type and BAP1 mutant tumors. (C) Differential proportions of immune cells 
between D3 and M3 tumors. 
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Figure 2. Immune-related gene expression in the UM dataset of TCGA. (A) Hierarchical clustering of 80 tumors based on 730 
immune-related genes. Genes were median-centered. Each colored square represents the relative mean transcript abundance (log2 FPKM+1) 
for each sample, with the lowest levels shown in green, the median levels in black and the highest levels in red. The genetic mutation type, 
SCNA type, immune score, leukocyte fraction and BAP1 mutation status are shown below the array tree. (B) The expression of selected gene 
signatures or genes is demonstrated below the heatmap. 
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inhibitory checkpoint molecules PD-1 and CTLA-4 and 
the genes directly associated with MHC CLASS I/II, 
Cytolytic Activity and co stimulatory Molecules were 
also highly expressed in the Immune H group and 
modestly expressed in the Immune M group 
(Supplementary Figure 2). 
 
Next, we sought to determine the clinical and molecular 
features underlying the immune clustering. The age, 
American Joint Committee on Cancer stage (AJCC), 
sex and GNAQ/11 mutation status of the patients did 
not differ significantly between the Immune H group 
and the Immune L and M groups (Immune H vs. M vs. 
L). Interestingly, the BAP1 mutation status differed 
significantly among the groups (P<0.0001, Fisher’s 
exact test, Immune H vs. M vs. L). Similarly, a 
significant difference in somatic copy number alteration 
(SCNA1/2 vs. 3/4) was found among the groups 
(P<0.0001, Fisher’s exact test, Immune H vs. M vs. L) 
(Table 1). Our analysis suggested that BAP1 mutations 
and chromosome alterations may determine the tumor 
immune state and immune infiltration of UM. 
 
Immune subtypes correlated with immune 
infiltration and clinical outcomes 
 
ESTIMATE (Estimation of STromal and Immune cells 
in MAlignant Tumor tissues using Expression data) is a 
tool for predicting tumor purity and assessing 
stromal/immune cell infiltration into tumor tissues 
based on gene expression data [23]. We used the 
ESTIMATE algorithm to calculate the immune score 
and stromal score for each UM sample from TCGA, and 
we compared the scores of the different immune 
subgroups. Since the immune score reflects the overall 
immune infiltration based on lymphocyte gene 
expression, we used this score to estimate the total 
immune cell infiltration of each sample. The Immune L 
group demonstrated the lowest immune and stromal 
scores, whereas the Immune M and Immune H groups 
displayed modest and high stromal and immune scores, 
respectively (P<0.0001, analysis of variance [ANOVA], 
Immune H vs. M vs. L) (Figure 3A). The tumor purity 
calculated by the ESTIMATE algorithm revealed  
that the Immune L group was the purest subtype  
(mean 0.9373) and the Immune H group was the least 
pure subtype (mean 0.7649) (P<0.0001, ANOVA) 
(Figure 3A). 
 
To further examine the tumor microenvironment, we 
assessed the infiltration of distinct immune 
subpopulations in the three tumor subtypes. The Immune 
L group had the lowest levels of CD8 T cells and total 
lymphocytes, whereas the Immune M and Immune H 
subtypes displayed relatively high levels of these cell 
types (P<0.0001, Immune H vs. M vs. L). In addition, 

the Immune H group had lower levels of M2 
macrophages and mast cells than the other two groups. 
The Immune L group also exhibited low infiltration of T 
follicular helper cells and regulatory T cells (P<0.0001, 
Immune H vs. M vs. L) (Figure 3B), suggesting that 
there are distinct subtypes of UM with low or high T cell 
infiltration. 
 
Next, we investigated the prognostic impact of immune 
clustering on patient survival. Interesting, we observed 
significantly worse overall survival (OS) and 
progression-free intervals (PFIs) in the Immune M and 
Immune H groups than in the Immune L group in the 
cohort from TCGA, suggesting that distinct 
immunological features correlate with the patient 
prognosis in UM (Figure 3C). However, the OS  
and PFI did not differ significantly between the  
Immune M and H groups (log-rank test, P>0.05, 
Immune H vs. M). 
 
Correlations of immune cells and immune scores in 
TCGA and Laurent datasets 
 
Next, we performed a hierarchical clustering analysis of 
the pairwise correlations between the different immune 
subpopulations in UM samples from TCGA (Figure 4A). 
The heatmap revealed high correlations among several 
types of immune cells associated with cytotoxic T cell 
infiltration (i.e., lymphocytes, regulatory T cells, T 
follicular helper cells, M1 macrophages and CD8 T 
cells). We obtained similar results using Laurent 
microarray data (Figure 4B). Therefore, we concluded 
that the identified immune cells were significantly 
associated with immune infiltration in the tumor 
microenvironment. 
 
We then examined the correlations between other 
immune parameters for UM patients in TCGA and 
Laurent UM dataset, and found a significant correlation 
between the immune score and the stromal score 
(Spearman’s r=0.806, 0.7789, respectively; 
Supplementary Figure 4A and 4B). We also observed a 
strong correlation between the immune score and T cell 
infiltration (Spearman’s r=0.7633, 0.4993, respectively; 
Supplementary Figure 4A and 4B). Additionally, a 
significant inverse correlation was found between the 
immune score and tumor purity (Spearman’s r =-0.9758, 
r=-0.9651 Supplementary Figure 4A and 4B). In the 
Laurent UM dataset, the association between the 
immune score and CD8 T cell infiltration remained 
significant (Supplementary Figure 4A and 4B), 
supporting the ability of the immune score to predict 
immune infiltration. Therefore, the immune score based 
on immune marker gene expression reflected immune 
cell infiltration in both the UM TCGA RNA-seq dataset 
and an independent microarray dataset. 
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Table 1. Clinical–pathologic characteristics of the TCGA Dataset in this study. 

N 
N(%) 

80 
Age, median (range)  60 (22–86) 
Sex  

Female 35(43.8%) 
Male 45(56.2%) 

AJCC Clinical Stage  
II 36(45%) 
III/IV 44(55%) 

Histological type  
Epithelioid cell dominant 23(28.8%) 
Spindle Cell dominant 57(71.2%) 

GNAQ/11 status  
Mutation 74(92.5%) 
Wild type 6(7.5%) 

BAP1 status  
Mutation 35(43.8%) 
Wild type 45(56.2%) 

Monosomy3  
Monosomy3/LOH 42(52.5%) 
Disomy3 38(47.5%) 

SCNA  
1/2 38(47.5%) 
3/4 42(52.5%) 

 

Prognostic value of immune cells and immune scores 
in TCGA and Laurent datasets  
 
To assess the prognostic value of immune cells in UM, 
we first used a Univariate Cox regression model to 
investigate the associations of different immune 
subpopulations with the OS and PFI of patients in 
TCGA. The infiltration of M1 macrophages, activated 
natural killer cells and CD8 T cells was associated with a 
worse prognosis in the UM datasets (Figure 5A). On the 
contrary, the infiltration of monocytes was positively 
associated with patient survival (Figure 5A, 5B). In 
general, the infiltration of immune subpopulations 
involved in adaptive immunity is more likely to be an 
unfavorable prognostic factor than the infiltration of 
subpopulations involved in innate immunity. 
 
To determine whether the immune score could predict 
the prognosis of UM patients in TCGA, we used a 
Kaplan-Meier curve and log-rank test to estimate the 
hazard ratios (HRs) of OS and the PFI. High immune 
scores and stromal scores were associated with worse 
OS in the datasets of TCGA (HR=6.721, P<0.0001, 
Figure 5B) and GSE22138 (HR=2.508, P=0.02, 

Supplementary Figure 1A). Next, we determined the 
associations of different immune cells with the patient 
prognosis. Consistent with the Univariate Cox regression 
analysis, our survival analysis revealed that particular 
immune subpopulations (M1 and M0 macrophages, CD8 
T cells and T follicular helper cells) were associated with 
a worse prognosis, whereas total CD4 cells were 
associated with a better prognosis in the UM dataset of 
TCGA. Similar results were obtained with the 
GSE22138 dataset (Supplementary Figure 1B). These 
results suggest that UM patients with greater infiltration 
of immune cells and effector molecules exhibit poorer 
survival and may benefit from immunotherapies. 
 
Immune marker genes predict the prognosis of UM 
patients 
 
Next, we examined the prognostic value of individual 
immune genes in predicting patient survival. Higher 
mRNA levels of CD8A (P<0.0001), HLA-A (P<0.0001), 
HLA-B (P=0.0001), HLA-C (P=0.0003) and HLA-DRA 
(P=0.0001) in TCGA samples were associated with 
significantly shorter OS and PFIs (Figure 6A, 6B). 
Similarly, higher levels of HLA-A (P=0.02), HLA-B 
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Figure 3. Differential infiltration of the immune subgroups. (A) Box plots comparing the distribution of immune infiltration measures 
in the three immune subtypes. Each box spans the interquartile range, with the lines representing the median for each group. Whiskers 
represent the absolute range. All outliers are included in the plot. (B) Differential proportions of immune cells in the immune subtypes. (C) 
Kaplan-Meier survival curves demonstrate that the Immune M and H groups of UM patients consistently exhibited worse OS and PFIs than 
the Immune L group (log-rank test, P<0.05). 
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(P=0.002), HLA-C (P=0.007) and HLA-DRA (P=0.03) 
were associated with significantly shorter metastasis-free 
survival in the 63 patients in the Laurent UM dataset 
(Figure 6C), and CD8A expression (P=0.06) displayed a 
similar but non-significant trend of association with 
metastasis-free survival. 
 
DISCUSSION 
 
TCGA has illuminated the genomic data from bulk 
tumor samples, and has provided detailed information 
about the tumor immune microenvironment [1, 24–26]. 
In previous studies, low immune cell infiltration has 
been associated with poor clinical outcomes for patients 
with different cancers [1, 27]. Through gene expression 
profiling, researchers can identify prognostic gene 
signatures and detect candidate genes for targeted 
therapies [27]. For example, an immune score based on 
gene expression data was found to correlate significantly 
with recurrence-free survival in thyroid cancer patients, 
regardless of their BRAF(V600E) status [28]. The 
fraction of immune cells in clinical tumor samples can 
be evaluated by multiple algorithms; indeed, aside from 
curating samples and performing basic pathologic 
characterization, investigators can analyze digitized 
hematoxylin & eosin-stained images of TCGA samples 
for tumor-infiltrating lymphocytes [3]. Using TCGA 
data, we identified three distinct immune subtypes of 

UM, with prognostic implications for immunological 
cancer management. The immune score was strongly 
associated with immune infiltration and poor outcomes, 
regardless of the tumor genome ploidy of the UM tumor 
samples. The underlying mechanism needs to be 
explored. 
 
Genomic and transcriptomic data have been used to 
detect immune infiltration and to determine the 
molecular subtypes of ovarian cancer, melanoma and 
pancreatic cancer [29–31]. For instance, DNA 
sequencing data have been used to connect the 
neoantigen load to the T cell response and to link 
somatic mutations to immune infiltration [1, 32]. More 
recently, deconvoluted expression data have been used 
to measure the cytolytic activity in the tumor 
microenvironment and to quantify the infiltration of 
individual immune cell subsets [33–35]. A common 
theme across these studies is the integration of several 
types of genomic and clinical data, allowing for 
associations to be made among immune activity, gene 
expression, the mutation burden and patient survival. In 
this study, we examined the immune infiltration of UM 
samples through a single-sample GSEA and 
deconvolution method based on publicly available data 
in TCGA and the Gene Expression Omnibus. Our results 
suggested that the infiltration of immune cells differs 
markedly among immune subtypes. This analysis may 

 

 
 

Figure 4. The correlation between the immune score and immune cell infiltration in UM. Pairwise correlation heatmap among 
immune cell-type scores in the datasets from TCGA (A) and GSE22138 (B). 
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ultimately reveal prognostic gene signatures and provide 
candidate genes for targeted therapies.  
 
Despite the great success of immunotherapies against 
metastatic and late-stage melanoma [36, 37], 
immunotherapy has had limited success in UM [38]. UM 

is considered to be an immunotherapy-resistant subtype 
of melanoma, and UM patients are frequently excluded 
from clinical trials of immunotherapies for metastatic 
melanoma [20, 39, 40]. Although higher cytotoxic 
expression patterns are associated with better anti-tumor 
response and better patient survival in many solid  

 

 
 

Figure 5. The prognostic value of the immune score and immune cell infiltration in UM. (A) HRs of OS and the PFI based on the 
infiltration of various immune cells (as continuous variables) in all patients (left); the horizontal bars represent the 95% confidence intervals 
of the HRs. Statistically significant variables are shown. Each cell type was evaluated individually and rank-ordered based on the estimated 
HR. (B) Kaplan-Meier survival analysis based on immune score and stroma score. Patients were divided into the high and low groups based on 
the level of immune score and stroma score. (C) Kaplan-Meier survival analysis based on selected immune cells. Patients were divided into 
the high and low groups based on their expression of each cell. 
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tumors [34, 41, 42], the prognostic effects of immune 
infiltration depend on the type of tumor, the location of 
the cells and the state of activation. In UM, high levels 
of immune cells are associated with poor prognostic 
factors, such as M3 and BAP1 mutation [15, 17, 43]. 
Immune cell infiltration occurs more frequently in 
epithelioid-cell-type UM, which also has a poor 
prognosis [44]. Crosstalk in the tumor microenvironment 
can promote the inflammatory response in cancer cells. 
Cancer cells may also promote the type 2 differentiation 
of macrophages and neutrophils, and may attract 
myeloid-derived suppressor cells and regulatory T cells 
to tumor sites. Thus, we speculate that UM cells may 
utilize immune cells for their survival and protection 
from immunological attack. The immunomodulatory 
microenvironment in the liver could further protect 
escaped UM cells from systemic immune surveillance 
[5, 44, 45]. 
 
De Lange et al have used unsupervised clustering to 
investigate the gene expression profiles of 64 enucleated 
eyes from UM patients, and divided them into class I 
tumors with a good prognosis and class IIa and IIb 

tumors with a poor prognosis [46]. Their study revealed 
an immune phenotype with a different prognosis. High 
expression of immune-related genes in class IIb UM 
suggested that the tumors were inflamed. Furthermore, 
study from TCGA of UM showed that the genes 
encoding chemotactic signals (e.g., CXCL9 and 
CXCL13), MHC class I (A, B, C) and MHC class II 
(DP, DM, DOA, DOB, DQ and DR) were upregulated in 
M3 patients [22]. Consistent with the previous studies, 
we demonstrated that BAP1 inactivation was associated 
with immune infiltration and immune marker gene set 
expression, indicating the BAP1 may regulate tumor 
immunology. GSVA results suggested that IRF4 targets 
and BCR pathways may be induced in BAP1-deficient 
tumors. Loss of BAP1 expression is also associated with 
an increased infiltration of T cell follicular helper, Treg 
and CD8+ T cells, suggesting an inflammatory tumor 
microenvironment. Our data demonstrated that the 
immune cell subpopulations were differentially 
distributed between M3/BAP1null and D3/BAP1intact 
tumors, suggesting that BAP1 null tumors might be 
prioritized for immune checkpoint blockade therapies  
in UM. 

 

 
 

Figure 6. The prognostic value of individual immune genes in UM. (A) Kaplan-Meier survival curves demonstrate that elevated levels 
of CD8A (P<0.0001), HLA-A (P<0.0001), HLA-B (P=0.0001), HLA-C (P=0.0003) and HLA-DRA (P=0.0001) were consistently associated with 
worse OS in the UM dataset of TCGA. (B) Kaplan-Meier survival curves demonstrate that elevated levels of CD8A, HLA-A, HLA-B, HLA-C and 
HLA-DRA were consistently associated with a worse PFI in the UM dataset of TCGA (log-rank test, P<0.05). (C) Kaplan-Meier survival curves 
demonstrate that elevated levels of CD8A (P=0.06), HLA-A (P=0.02), HLA-B (P=0.002), HLA-C (P=0.007) and HLA-DRA (P=0.03) were 
consistently associated with worse metastasis-free survival in the Laurent UM dataset (n=63; log-rank test, P<0.05). 
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At the time of this work, large, publicly available gene 
expression profiling datasets of UM patients treated with 
immune checkpoint blockers were not available. In 
addition, clinical trials in immunotherapy are being 
deployed earlier in the course of the disease, whereas the 
cohort in TCGA is more representative of the clinical 
population. We hope that large sequencing data from 
UM patients undergoing immune checkpoint blocker 
treatment will emerge in the future. Nevertheless, our 
analysis of the available datasets has advanced the 
application of genomic data to tumor immunology. The 
immune features reported herein should be considered 
for integration into prognostic models, or explored as 
predictors of adjuvant immune therapy responsiveness in 
patients with BAP1-deficient UM. 
 
MATERIALS AND METHODS 
 
UM gene expression datasets 
 
RNA-seq data for UM samples were generated by TCGA 
and downloaded from the Genomic Data Commons Data 
Portal (https://portal.gdc.cancer.gov/). This dataset 
includes normalized gene expression profiles for 80 
tumor samples in FPKM (Fragments Per Kilobase of 
transcript per Million fragments mapped). We 
downloaded one additional microarray gene expression 
dataset from the Gene Expression Omnibus database 
(accession number: GSE22138 [6]; n=63) to verify the 
immune scores and gene signatures and to predict the 
patients’ prognoses. GSE22138 included information on 
metastasis-free survival, while the UM dataset from 
TCGA included data on patients’ OS and PFI from the 
supplemental file of a previous study [1]. The clinical 
information and molecular data for the UM samples from 
TCGA were also downloaded from the supplemental file 
of a previous study [8]. The clinical information included 
the age, sex, metastatic status, histology cell type, 
American Joint Committee on Cancer clinical stage, 
mutation data, SCNA data and vital status of the patients. 
 
We used the complete linkage method for hierarchical 
clustering analysis of the tumor samples, immune cell 
types and genes. The hierarchical clustering algorithm is 
agglomerative in that it joins samples based on a 
measure of multivariate distance, and prevents the joined 
samples from clustering independently again. Pair-wise 
joins in samples are represented as combined branches 
of a tree in a Dendrogram Plot. Pearson’s correlation 
distance method was used to determine whether samples 
clustered together [47]. 
 
ESTIMATE 
 
ESTIMATE is a tool that predicts tumor purity and 
detects infiltrating stromal/immune cells in tumor tissues 

based on gene expression data [23]. The ESTIMATE 
algorithm calculates the stromal and immune scores by 
performing single-sample GSEA for each sample. Data 
on the leukocyte fractions of the 80 tumor aliquots from 
TCGA were obtained from a previous study [1].  
 
CIBERSORT (immune cellular fraction estimates) 
 
The relative fractions of 22 immune cell types within the 
leukocyte compartment were estimated with 
CIBERSORT (Cell-type Identification By Estimating 
Relative Subsets Of RNA Transcripts) [33]. 
CIBERSORT requires a specialized knowledgebase of 
gene expression signatures, termed a “signature matrix,” 
to deconvolute cell types of interest. CIBERSORT uses 
a set of 22 immune cell reference profiles (LM22) [33] 
to derive a base (signature) matrix that can be applied to 
mixed samples to determine the relative proportions of 
immune cells. LM22 is a signature matrix file consisting 
of 547 genes that can precisely distinguish 22 mature 
human hematopoietic populations (from peripheral 
blood or in vitro culture), including seven T cell types, 
naïve and memory B cells, plasma cells, natural killer 
cells, myeloid subsets, etc. LM22 can be applied to 
RNA-seq data as well as to microarray data. We used 
CIBERSORT to re-quantify several key immune gene 
signatures from GSE22138, and to identify the immune 
cells in the dataset from TCGA, as in a previous 
PanCancer immune study [1]. 
 
Predicting patient survival with the Cox 
proportional hazards model 
 
A Cox proportional hazards regression model was used 
to investigate the effectiveness of immune cells in 
predicting patients’ survival (PFI or OS). The optimal 
cut-off values of the proportions of immune cells in the 
cohort from TCGA were calculated based on their 
prognostic effects in X-Tile software [48]. The UM 
samples were then divided into high and low groups 
based on the cut-off point for the fraction level of each 
type of immune cell. In the subsequent scoring formula, 
the immune cell fraction level was given a value of 0 or 
1. In STATA15, a univariate Cox proportional hazards 
model was used to evaluate the effects of significant 
prognostic immune cell fractions on survival outcomes. 
Kaplan-Meier plots were used to visualize the 
differences in survival between groups. The survival 
proportions of the different groups were compared 
through a log-rank test. 
 
GSVA 
 
GSVA was performed as previously described [49] with 
the curated gene set collection of the Molecular 
Signatures Database (Broad Institute, c2. CP CPG). We 

https://portal.gdc.cancer.gov/
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searched for significant pathway gene sets that were 
differentially enriched between the BAP1null and 
BAP1intact groups (FDR≤0.01). The top 10 immune-
related pathways were selected and shown in the 
heatmap. 
 
GSEA 
 
Gene set collections for canonical pathways (C2.CP 
canonical pathways) were downloaded from the 
Molecular Signatures Database version 6.2 (www.broad 
institute.org/gsea/msigdb/collections.jsp). Gene set 
enrichment scores were calculated [50] with GSEA 
package version 1.32.0 with RNA-seq parameters. 
Differential gene set enrichment was determined using 
the limma package. The thresholds for statistical 
significance are noted in the Results. 
 
Statistical methods 
 
All statistical analyses in this study were performed 
with R version 3.2.0 (R Foundation for Statistical 
Computing, Vienna, Austria) and SPSS Statistics 22.0. 
Survival curves were generated by the Kaplan-Meier 
method, and the log-rank test was used to compare  
the survival curves. The thresholds for each  
Kaplan-Meier plot were determined based on the 
unique score distribution of each dataset in X-Tile 
software [48]. We used Spearman's rank correlation 
coefficients to evaluate the correlation between the 
immune score and immune cell infiltration. The 
immune scores and stromal scores stratified by 
subgroup were compared by one-way ANOVA. A 
two-tailed P-value <0.05 was considered statistically 
significant. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 
 
 
 

 
 

Supplementary Figure 1. The prognostic value of immune cell types in the Laurent UM dataset. (A) Kaplan-Meier survival 
analysis based on the immune score and stromal score. Patients were divided into high and low groups based on their value for each score. 
(B) Kaplan-Meier survival analysis based on immune cell types. Patients were divided into high and low groups based on their expression of 
each cell type. (C) The results of CIBERSORT in the Laurent UM dataset. n=63. 
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Supplementary Figure 2. Immune-related gene expression in the UM dataset of TCGA. (A) Hierarchical clustering of 80 tumors 
based on selected gene signatures or genes is shown. 
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Supplementary Figure 3. The prognostic power of the immune score in the UM dataset of TCGA. (A) HRs based on various 
clinical features in all patients; the horizontal bars represent the 95% confidence intervals of the HRs. Statistically significant variables are 
shown. (B) Area under the curve for the immune score and M3 in predicting survival among UM patients in TCGA. 
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Supplementary Figure 4. The correlation between the immune score and immune cell infiltration in UM. (A) Correlations 
among the estimate score, CD8 T cell infiltration, stromal score, tumor purity and immune score in the GSE22138 dataset. (B) Correlations 
among CD8 T cell infiltration, the stromal score, tumor purity and the immune score in the UM dataset of TCGA. 


