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Group testing (or pool testing), for example, Dorfman’s method or grid method, has been validated for COVID-19 RT-PCR tests
and implemented widely by most laboratories in many countries. These methods take advantages since they reduce resources,
time, and overall costs required for a large number of samples. However, these methods could have more false negative cases
and lower sensitivity. In order to maintain both accuracy and efficiency for different prevalence, we provide a novel pooling
strategy based on the grid method with an extra pool set and an optimized rule inspired by the idea of error-correcting codes.
The mathematical analysis shows that (i) the proposed method has the best sensitivity among all the methods we compared, if
the false negative rate (FNR) of an individual test is in the range [1%, 20%] and the FNR of a pool test is closed to that of an
individual test, and (ii) the proposed method is efficient when the prevalence is below 10%. Numerical simulations are also
performed to confirm the theoretical derivations. In summary, the proposed method is shown to be felicitous under the above

conditions in the epidemic.

1. Introduction

Group testing is a frequently used tool to identify an unknown
set of defective (positive) elements out of a large collection of
elements by testing subsets (pools) for the presence of defec-
tives. The concept of group testing originated from the appli-
cation of screening blood samples for syphilis during World
War II, first suggested by Dorfman [1]. In Dorfman’s method,
samples are mixed together and tested in a single pool, and
then, subsequent individual tests are made only if a pool is
positive. Group testing strategy has been applied in other
infectious diseases, including Chlamydia trachomatis, HIV,
hepatitis B, malaria, and avian pneumovirus [2-9]. Recently,
the idea of group testing (or sometimes pooling) has been val-
idated for COVID-19 RT-PCR tests, implemented by labs in

Israel [10, 11], German [12], and the United States [13, 14]
and further studied in [15-23].

1.1. Related Works. So far, there have been two kinds of
pooling strategies proposed for the diagnosis of SARS-
CoV-2 with authorized RT-PCR tests. One is the Dorfman’s
method [19, 21, 22] (or called single pooling), where samples
in the pools are pairwise disjoint and every patient belongs
to exactly and only one pool; the other is multipooling where
every patient can belong to more than one pool.

In the Dorfman’s approach, if a pool test is negative,
then all samples can be presumed negative with the single
test, while if the test result is positive, then all the samples
in the pool need to be retested individually. The advantages
of this two-stage pooling strategy include preserving testing
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reagents and resources, reducing the amount of time
required to test large numbers of samples, and lowering
the overall cost of testing. Narayanan et al. [22] demon-
strated the effectiveness of the Dorfman’s method to acceler-
ate testing for COVID-19. Hanel and Thurner [19]
estimated the optimal pool size and the expected upper
bound of missed infections, all as a function of the infection
levels and the false negative/positive rates of PCR tests. Most
laboratories turning to pool testing for more efficient
COVID-19 surveillance use this approach.

Researchers found that pooling samples in certain ways,
e.g., double pooling [17], bloom-filter pooling [15, 24], and
the grid method [25], can help lowering the overall cost of
testing. These studies reported that multipooling is signifi-
cantly more efficient than the standard individual testing
approach (reducing the total number of tests up to fourfold
at 2% prevalence and eightfold at 0.5% prevalence [25]) and
the single pooling approach in certain ranges of infection
levels (30% improvement at 1.1% prevalence and at least
10% improvement all the way up to 5.4% prevalence [17]).
The essence of the idea behind previous multipooling
approaches is as follows: every patient belongs to two pools
so as to be tested twice. For every patient, if both the pools
test positive, then test the patient individually. Otherwise,
that patient is considered to be clear.

Although they all share the same idea, there is a differ-
ence in the way of how they are designed. Designs based
on the bloom-filter pooling [15, 24] rely on a random hash
function and require a relatively complicated decoding,
which could be one of the reasons why the use of such strat-
egies is not popular. The grid method [25] is a two-
dimensional pooling structure which can be represented as
a matrix with fixed sizes, while the double pooling approach
[17] divides the population into pools randomly. Among
these strategies, the grid method is a simple pooling exten-
sion to existing SARS-CoV-2 testing protocols to boost effi-
ciency and better utilize scarce resources.

1.2. The Grid Method. In [25], all samples of the library to be
screened are arranged in a 2-dimensional grid of fixed sizes:
a 96-well (8 x 12) plate and a 384-well (16 x 24) plate. One
can then pool them according to the rows and the columns
of the grid. Precisely, each row and each column give a pool,
and then, we perform a test on each pool. Notice that two
copies of the library are required at this stage. Then, in the
second stage, all samples for which both the row and column
which were tested positive are tested individually again to
determine which individuals are positive. See Figure 1 for
an example.

The double pooling approach such as the grid method
not only improves the efficiency but also has another advan-
tage that infected samples can be determined in an early
stage. Under the described grid method, an infected sample
will render its row and its column positive, so all the positive
samples will be located immediately at the intersection of a
positive row and a positive column. However, the reverse
is not true. As shown in Figure 1, there can be many normal
samples appearing in an intersection of a positive row and a
positive column. In fact, if x samples are positive, then there
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are at most x rows and x columns tested positive (not exactly
since two positive samples can be in the same pool), and x?
intersections are potentially positive. It is impossible to
determine in the first stage which individuals are the exact
x infected samples. To distinguish this, an additional test
which is performed individually is necessary in the second
stage.

However, there are obvious drawbacks to this approach
which relies very much on the infection rate and sensitivity,
although it has been proved more efficient than the classic
Dorfman’s method in a certain range of infection levels.
The infection rate of the population can directly affect the
number of tests performed in the second stage, which relies
on the number of potential candidates leave behind the first
stage. It is undesired if the number of such potential candi-
dates is too many. However, this is an inevitable conse-
quence of inflexible pool sizes in the grid method in [25].

Pooling samples reduce test sensitivity (to greater extents
with larger pool sizes). In a study of testing the ability of the
standard PCR test for detecting a single positive sample
within a pool of negative samples, positive samples can still
be well observed in pools of up to 32 samples and possibly
even 64 with additional PCR cycles, with an estimated false
negative rate of 10% [11]. Reported false negative rates of
individual testings have ranged from less than 5 to 40 per-
cent, although these estimates are limited, in part because
there is no perfect reference standard for comparison
[26-28]. False positive results are rare but have been
reported with certain platforms [29] whereas false negative
results can occur for numerous reasons, including subopti-
mal specimen collection, testing too early in the disease pro-
cess, low analytic sensitivity, inappropriate specimen type,
low viral load, or variability in viral shedding. Once a false
negative outcome occurs in the process of the grid method,
excluding those samples appearing in a negative test may
lead to severe damage. The major concern for false negatives
is someone who tests negative in a pool, thinking they are
not infected, could unknowingly spread the virus into the
community.

Another important feature is that a positive RT-PCR test
for SARS-CoV-2 has more weight than a negative test because
of the test’s extremely high specificity 100% [30] but relatively
moderate sensitivity. Specificity is the proportion of patients
without disease who have a negative test, while sensitivity
measures the proportion of actual infected samples that are
correctly identified. Sensitivity and specificity can be confusing
terms that may lead to misunderstanding. Figure 2 explains
these notions of statistical measures of test accuracy, including
false positive rate (FPR) and false negative rate (FNR).
Although (sensitivity, FNR) and (specificity, FPR) are simply
the inverse of each other, to distinguish the notions on tests
or strategies that we are talking about, sensitivity and specific-
ity are used primarily for strategy outcomes while FNR and
FPR are used for test outcomes.

1.3. Abbreviations. FNR:False negative rate (of an individual
test or of a pool test),

FPR:False positive rate (of an individual test or of a pool
test),
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FiGuRrk 1: Given a population of 96 patients, infected samples are marked bold, and there are five infected samples in the 96-well plate. A
single pooling approach of pool size 8 can be represented by 12 pools, each in a column, as demonstrated in (a), while the grid method tests
not only the 12 vertically parallel pools but also 8 horizontally parallel pools as shown in (b). In the single pooling, there are five positive
pools if all tests are error-free, and thus in the second, all the 40 samples appearing in these five pools need to retest individually, which
yields a total of 52 tests across the 96 individuals and a 44/96 =~ 45.8% improvement over the standard individual testing. However, in the
grid method, only those samples appearing in both positive outcomes will be tested individually again to assess what status of COVID-
19 it may have, so those appearing in a negative row or column can be excluded. Only those samples with bold circles will go to the
second round. Therefore, there are total 40 tests across the 96 individuals being tested (8 rows plus 12 columns plus 20 remaining
individuals), a 56/96 = 58.3% (12/52 =23.0%) improvement over the standard individual testing (the single pooling), respectively. Note
that the discussion above is made under the assumption that the experimental scenario is error-free, which is obviously not the case in

the real world. Things become much more complicated if some test errors occur in the first stage of the grid method.

TENR:True false negative rate = 1 — sensitivity,

TFPR:True false positive rate = 1 — specificity.

Previously mentioned, single pooling and multipooling
approaches do not fully reveal potential advantages in terms
of sensitivity. The reason is that, in a multipooling strategy,
every sample (including infected ones) could be tested in
more than two pools, and consequently, the probability of
an infected sample being detected is increasing with respect
to the number of pools it appears. Nevertheless, there is a
relative lack of research to designs and analysis of pooling
strategies going along with the benefit of improving sensitiv-
ity, which may lead to severe damage from the practical
point of view. An interesting and important question is that
“how to design a better pooling strategy with accurate case
detection and efficient performance than individual test-

ings?”. It is possible that performing several simultaneous
or repeated tests could overcome an individual test’s limited
sensitivity; however, such strategies need validation [31]. In
addition, it would raise efficiency concerns about performing
tests several times.

The current study is aimed at proposing an easy-to-
implement pooling strategy with both accurate case detec-
tion and efficient performance than the individual testing
approach. Our approach, the triple grid method, is based
on the two-dimensional grid method, but a big difference
is that every patient is tested in three pools in the first round
so as to offer more error-correcting capability. On the basis
of data from more than 50 countries, we simulate and com-
pare results among the standard individual-testing
approach, the grid method, and the proposed triple grid



How many infected samples are
identified correctly?
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How many normal samples are
identified correctly?

8
Sensitivity = = Specificity = =
8 10
1 2
TFNR = 1 - Sensitivity = TFPR =1 - Specificity =
8 Selected elements = { elements identified as positive} 10

F1GURE 2: The notion of sensitivity/specificity and TENR/TFPR.

method under a wide range of infection levels. Mathematical
analysis points to the triple grid method being the best strat-
egy in sensitivity if FNR of pool tests is not much worse than
FNR of individual tests when FNR of individual tests is in
the range [1%, 20%]. Moreover, taking into account the
infection rate and error rates of the currently used PCR tests,
we suggest a flexible pool size depending on the infection
level to optimize the error-correcting capability, estimate
the expected upper bound of missed cases in the strategy,
and evaluate the benefits across both simulated and real
data. An interactive web visualization of simulations is avail-
able at https://www.andylee.tw/covid19/.

2. The Triple Grid Method

2.1. Principle Aspect. Inspired by the grid method in [25],
our triple grid method is aimed at reducing the chances of
assessment errors caused by double pooling designs. Since
the true positives are supposed to present as positive with
high accuracy, the probability of frequent errors is relatively
low. To discriminate between true and false positives, one or
several more pools are needed. The following is the proce-
dure of the triple grid method.

(1) Four swabs are taken for each person. This is fea-
sible since it was examined that up to 10 tubes are
allowed [12]

(2) Four w x w plates are prepared (the value w depends
on the infection rate and will be discussed later), and
each well, corresponding to a patient, in each plate
contains a single sample obtained from a patient’s
swab. Formally speaking, a plate can be treated as a
matrix [m,] of size w x w

(3) Test mixtures of all the samples in each row of the
first plate, in each column of the second plate, and

in each parallel diagonal of the third plate. That is,
there are w row pools {m;, my,--,my,} for 1 <i<
w, w column pools {m,;, my;,---,m,,;} for 1 <j<w,
and w diagonal pools {my j,m, 1, My 4
My jia 1> My} for 1<j<w. Notice that the
index is cyclic, and thus, the index j — 1 =0 is equiv-
alent to j — 1 = w. Figure 3 demonstrates an example
ofw=7

(4) Every patient presents in at most one positive pool
can be excluded; otherwise, individual tests are made
for those with a relatively high risk (e.g., presenting
in at least two positive pools or in three positive
pools under certain scenario)

2.2. Practical Aspect. The first concern of applying this strat-
egy is to choose the pool size w. By applying this approach,
there are total 3w tests instead of w? in the first stage, a sig-
nificant reduction when w is large. However, this choice of w
depends not only on the number of samples to be screened
and technical limitations but also on the redundancy (the
number of potential candidates to be confirmed in the sec-
ond stage): if the number of infected samples is large, then
there can be several samples which are clear but presenting
in two or even three pools that contain an infected sample.

In this case, thinking simply all of the samples appearing
in three positive pools are positive makes no sense and can
cause several false positives. To distinguish them, more tests
should be taken in the second round. Picking individual
samples to retest in the second round is prone to not only
efficiency but also reliability. It could lead to more unneces-
sary worries if staff wrongly declared a person who turned
out not infected to be suspected and needed to confirm in
the second round.

With this in mind, here we suggest choosing a number N
of samples at most 1/p to test in a grid and set the pooling
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Plate 1

Plate 3

FIGURE 3: On three 7 x 7-well plates, pools of samples from each row, each column, and each parallel-shifted diagonal are tested in the first
round. Totally, 7+ 7+ 7 =21 pools are tested in this case. Every individual will be tested in three different pools associated with three
corresponding swabs. As false negative rate of a single pool is low (about 10% examined in [11]), the probability of more than one false
negative error out of the three pools is relatively lower. Thus, individuals for which at least two pools tested negative are not retested

further in the second round.

size w = [/N ], where p is the infection rate. A good reason
of setting N < 1/p is to limit the number of infected samples
in the grids so as to reduce the number of tests required to
do in the second round. If there is only one infected sample
in the grid, then other samples appear in at least two nega-
tive pools unless some false positive test occurs. Therefore,
all other samples can be declared to be virus-free with confi-
dence since the false positive rate is very low in practice [30,
32]. As a consequence, no retests are needed if there is at
most one infected sample in the grid, which is the most usual
case by setting N < 1/p. In fact, the triple grid strategy offers
an error-correcting capability of one experimental error if
there is only one infected sample in the grid. That means
even if one error occurs (no matter false positive or false
negative cases), the Diagnostic Algorithm below can success-
fully identify the only infected sample.

Note that throughout the above discussion there is a pre-
sumption that both N<1/p and w=[v/N]. Based on the
practical constraints of pool size in [11], which examined
how diluting many negative samples with a confirmed posi-
tive sample would affect the test sensitivity of a single pool
and suggested that 32 people (up to 64 people with more
cycles) could be tested in a single pool with high sensitivity
about 90% (that is, FNR 10%), we require the pool size w
in an applicable range w < 32; meanwhile, we also require
w > 4 because of efficiency concerns. That is,

4,if[ 1/p]s4,

w= 32,if[ 1/p] >32, (1)

[\/ﬂ -‘ , otherwise.

The second concern is the criteria of how to select candi-
dates who are suspected with a relatively high risk and need
to retest in the second round. In our approach, each individ-
ual sample is tested thrice. Let t(A) denotes the number of
positive pools a sample A appears and Nis the number of

samples appearing in j positive pools, e.g., N; =[{A : t(A)
=3}|. We suggest the following Diagnostic Algorithm:

(R1) When #(A) = 3, identify sample A as positive if N
< 3; otherwise, retest A individually and interpret the infec-
tion result based on the test.

(R2) When t(A) =2, identify sample A as positive if N,
=0 and N, = 1; otherwise, retest A individually and inter-
pret the infection result based on the test.

(R3) When t(A) < 1, identify sample A as negative.

In general, a sample should be identified as positive firmly
ifit appears in three positive tests. But, in R1, we suggest retest-
ing these samples when N is large to reduce false positive
cases. The reason is that when N, is large there are several
infected samples in the grid, and in this case, it is likely that a
number of normal samples are falsely claimed as positive only
because they just appear in the intersections of positive pools.

Intuitively, testing a sample repeatedly helps in increas-
ing the accuracy. But we find it is not the case to retest a
sample A with t(A) =2 in R2 when N; =0 and N, = 1. The
crucial idea is that doing imperfect tests on an infected sam-
ple could possibly yield negative results. In this case, it is
more likely that the sample A is an infected sample with
one false negative result. By limiting the average number of
infected samples in the grids, cases with one infected sample
and one false negative outcome (like the mentioned sample
A) would be one of the most frequent cases with error out-
comes. But that error can be detected and corrected by our
algorithm. This is the main reason of why the proposed
method significantly improves the overall sensitivity, as
compared with the two-dimensional grid method. More
details will be explained later in Mathematical Analysis.

Remark that #(A) =2 is a natural threshold to determine
whether a sample A is infected with a relatively high probabil-
ity. If it is one, then an underfitting situation occurs frequently
since every sample appearing in a pool with a positive sample
satisfies these criteria. In the case of only one infected sample
in the grid, this implies a number 3(w — 1) of suspected candi-
dates even if no false negative occurs. If it is three, then an
overfitting situation occurs since every true positive sample
cannot pass the standard in the first round. An approach to
retesting these samples all the time is low efficiency.
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F1GURE 4: Comparisons of the numbers of tests performed by our procedure, the grid method (96 wells), and the individual testing method.
The efficiency of our procedure increases when applying in libraries with a low infection rate and can be better than that of the grid method
as the infection rate is less than 0.5% (which means the pooling size is larger than 15).

3. Simulation Results

It may be useful to give an example to illustrate these theo-
retical considerations: we could envisage using the pooling
approach to screen the libraries with various population
wide infection levels, for example, of p=1% at present
10,000,000 samples. According to the triple gird procedure,
we set N = 1/p = 100, implying that a total of 100,000 simu-
lations were executed with pool size w=[v/N ] =10. Sup-
pose FNR of a single test/pool is 5%/10% and FPR of a
single test/pool is 0.1%/0.1%. A simulation result returns
the usage ratio 35.92% (3,591,952/10,000,000) with sensitiv-
ity 95.73% (94,318/98,518) and specificity 99.99%
(9,900,557/9,901,482) for the Diagnostic Algorithm of the
triple grid approach. That points to relatively lower true false
negative rate (TFNR) 4.27% and true false positive rate
(TFPR) 0.01% of the procedure than FNR 10% and FPR
0.1% of a pool, respectively.

Under the same conditions of FNR and FPR as the pre-
vious case study, if the infection rate increases to p = 4% and
thus w =5, then a simulation result returns the increase of
the usage ratio 65.70% (1,642,474/2,500,000) with compara-
ble sensitivity 96.03% (96,658/100,655) and specificity
99.95% (2,398,150/2,399,345). The pool size w =5 remains
all the way up to infection levels 6.24%, and in this case,
the usage ratio increases to 72.37% with sensitivity 95.37%
and specificity 99.88%. For an infection level of 10% with
the pool size 4, the usage ratio increases to 92.05% with a
slightly better sensitivity 95.29%; for higher infection levels
with the same pool size 4, the triple grid method is of little
use in practice because additional numerous technical
barriers are removed but only to obtain almost no cost
reduction.

The simulations were done by using a sampling
approach: drawing samples from a Bernoulli distribution
with a probability equal to the assumed infection rate p.
All draws were independent, and a total of 100,000 runs
were executed to smooth over any sampling noise. The
results of our triple grid approach are compared with the
individual testing approach and the previous grid approach,
and a simpler interactive version of simulations with adjust-
able parameters such as infection levels, pool sizes, and error
rates can be experienced in our web interface https://www
.andylee.tw/covid19/.

Figure 4 compares the efficiency gain by applying our
procedure with those obtained separately from the
individual-testing procedure and the grid method. As the
grid size is selected inversely proportional to the square root
of the infection rates, it is an expected decrease of the effi-
ciency gain with an increasing infection rate.

We also used the simulations to evaluate the expected
number of missed cases in our strategy and evaluate the ben-
efits across both simulated and real data. We found that both
the grid method [25] and the triple grid method improve the
efficiency of the number of tests when the infection level is
less than 26.77% (Qatar) and 11.74% (Kuwait), respectively.
However, the grid method results in an expected 1,511,345
missed cases, which is significantly more than 329,588
missed cases of the individual testing method over all data
of the 52 countries. When the infection level is less than
0.43% (Lithuania), the strategy which performed best on
both efficiency and sensitivity across countries is the triple
grid method; when the infection level is less than 11.74%
(Kuwait), it is the triple grid method that performed best
on sensitivity. These findings suggest that the triple grid
approach is a straightforward compromise between
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cases ests cases (gér\h'ﬁll POOI) g etho =8( P. g etho cases saved by R2
New Zealand 1176 395510 0.30% 5% 10% 0.1% 0.1% 58 83582 273 19 65005 52 7.14%
Australia 7641 2379175 0.32% 5% 10% 0.1% 0.1% 382 503541 1745 18 412853 323 9.78%
Lithuania 1816 418368 0.43% 5% 10% 0.1% 0.1% 90 89086 417 16 82859 60 11.76%
Uganda 848 164225 0.52% 5% 10% 0.1% 0.1% 42 35159 200 14 36979 29 12.12%
Taiwan 446 75815 0.59% 5% 10% 0.1% 0.1% 22 16351 94 14 17580 24 7.69%
Thailand 3102 468000 0.66% 5% 10% 0.1% 0.1% 155 100995 710 13 115711 142 8.39%
Latvia 1116 148777 0.75% 5% 10% 0.1% 0.1% 55 32263 241 12 39515 37 11.90%
Slovakia 1657 208904 0.79% 5% 10% 0.1% 0.1% 82 45620 368 12 56017 52 7.14%
South Korea 12757 1240949 1.03% 5% 10% 0.1% 0.1% 637 276431 2849 10 394544 540 10.00%
Greece 3376 308392 1.09% 5% 10% 0.1% 0.1% 168 69103 768 10 99052 122 7.58%
Malaysia 8634 756171 1.14% 5% 10% 0.1% 0.1% 431 170246 2021 10 245425 359 10.03%
Denmark 12675 1018866 1.24% 5% 10% 0.1% 0.1% 633 231692 2881 9 361219 501 7.90%
Cuba 2330 168545 1.38% 5% 10% 0.1% 0.1% 116 38844 554 9 61129 112 2.61%
Hungary 4142 273879 1.51% 5% 10% 0.1% 0.1% 207 64221 938 9 101143 150 12.28%
Morocco 11877 646195 1.84% 5% 10% 0.1% 0.1% 593 155715 2708 8 266430 474 7.42%
Estonia 1986 106022 1.87% 5% 10% 0.1% 0.1% 99 25851 479 8 43741 74 5.13%
Czech Republic 11298 545973 2.07% 5% 10% 0.1% 0.1% 564 135948 2598 7 254260 420 9.09%
Ethiopia 5689 250604 2.27% 5% 10% 0.1% 0.1% 284 62951 1364 7 120082 232 9.38%
Luxembourg 4217 177217 2.38% 5% 10% 0.1% 0.1% 210 45618 961 7 84667 156 11.86%
Austria 17625 606375 291% 5% 10% 1% 0.1% 881 167178 4090 6 331557 711 8.85%
Russia 634437 19334442 3.28% 5% 10% 0.1% 0.1% 31721 5553806 150406 6 10868645 26746 8.29%
Croatia 2691 78183 3.44% 5% 10% 1% 0.1% 134 22493 633 6 44559 95 8.65%
Germany 189822 5412655 3.51% 5% 10% 0.1%  0.1% 9491 1588168 42941 6 3055754 7292 7.26%
Bulgaria 4691 133605 3.51% 5% 10% 0.1% 0.1% 234 39164 1081 6 75916 209 7.52%
Kenya 5811 165196 3.52% 5% 10% 0.1% 0.1% 290 48166 1295 6 94001 241 7.66%
Serbia 13792 385713 3.58% 5% 10% 0.1% 0.1% 689 115152 3250 6 220130 601 9.08%
Romania 26022 694909 3.74% 5% 10% 0.1%  0.1% 1301 210264 5966 6 399804 1174 7.19%
Canada 103239 2676629 3.86% 5% 10% 0.1%  0.1% 5161 820428 23652 6 1566129 4632 6.18%
Japan 18476 454609 4.06% 5% 10% 0.1%  0.1% 923 142137 4255 5 302509 807 9.43%
Italy 240310 5341837 4.50% 5% 10% 0.1% 0.1% 12015 1780608 55355 5 3598894 9573 8.76%
Bahrain 25705 536516 4.79% 5% 10% 0.1% 0.1% 1285 184387 5841 5 366919 1082 8.85%
Switzerland 31403 564747 5.56% 5% 10% 0.1% 0.1% 1570 208329 7152 5 399098 1355 5.05%
Turkey 197239 3331158 5.92% 5% 10% 0.1%  0.1% 9861 1266654 46293 5 2414018 9447 5.46%
Belarus 61475 992007 6.20% 5% 10% 0.1%  0.1% 3073 390329 14040 5 720271 2706 5.29%
United Kingdom 310250 4852547 6.39% 5% 10% 0.1% 0.1% 15512 1936557 71848 4 4037620 12617 10.92%
India 548318 8398362 6.53% 5% 10% 0.1% 0.1% 27415 3410962 127673 4 7043081 21468 10.11%
Ukraine 42982 649150 6.62% 5% 10% 0.1% 0.1% 2149 269378 9764 4 546180 1753 8.65%
United States 2510323 30988013 8.10% 5% 10% 0.1%  0.1% 125516 14960441 583963 4 26909218 103229 9.66%
South Africa 131800 1567084 8.41% 5% 10% 0.1%  0.1% 6590 774509 30537 4 1374826 5171 6.88%
Senegal 6586 78238 8.42% 5% 10% 0.1%  0.1% 329 38355 1485 4 68802 304 3.80%
Saudi Arabia 182493 1591141 11.47% 5% 10% 0.1% 0.1% 9124 955823 42594 4 1535943 8980 4.45%
Indonesia 54010 465683 11.60% 5% 10% 0.1% 0.1% 2700 288343 12493 4 444201 2672 4.09%
Kuwait 44942 382842 11.74% 5% 10% 0.1% 0.1% 2247 232321 10463 4 376651 2043 3.50%
Iran 220180 1610869 13.67% 5% 10% 0.1%  0.1% 11009 1098016 49915 4 1662110 12776 2.38%
Pakistan 206512 1262162 16.36% 5% 10% 0.1%  0.1% 10325 963315 47237 4 1402181 12054 1.03%
Argentina 57731 344409 16.76% 5% 10% 0.1% 0.1% 2886 264314 13388 4 387662 3380 1.74%
Bangladesh 133978 733197 18.27% 5% 10% 0.1% 0.1% 6698 586804 30552 4 852712 7845 0.76%
Nigeria 24567 132304 18.57% 5% 10% 0.1% 0.1% 1228 107363 5521 4 154085 1414 0.84%
Chile 267766 1079644 24.80% 5% 10% 0.1%  0.1% 13388 988141 61615 4 1444704 17882 0.22%
Qatar 94413 352659 26.77% 5% 10% 0.1%  0.1% 4720 328367 21628 4 485299 6191 0.15%
Bolivia 30676 72236 42.47% 5% 10% 0.1%  0.1% 1533 72447 7113 4 117458 2288 0.00%
Ecuador 55255 112845 48.97% 5% 10% 0.1% 0.1% 2762 114995 12539 4 188266 4230 0.00%

Sum of above 6592303 105133553 6.27% 329588 42110931 1528747 76347414 296827

Figure 5: Comparison

of pooling strategies, individual testing method, the grid method (96-well), and the triple grid method, across

countries. Across 52 countries with available data of cases and tests for COVID-19, the estimated numbers of tests and missed cases
under a given condition that (FNR 5% and FPR 0.1% for individual tests, FNR 10% and FPR 0.1% for pool tests) are provided. Data of
cases and tests for COVID-19 are collected from Our World in Data [32] (to the date 06/30/2020). The data in this table are sorted
according to the value of the infection level in a nondecreasing ordering. Colored values are the best among the three considered methods.

sensitivity and efficiency if the infection level is low (less
than 11.74%). Using testing and positive test estimates from
Our World in Data [32], we chose an accuracy-optimal test-
ing strategy per country from between individual testing
method, the grid method, and our triple grid method, where
an accuracy-optimal strategy means that the one minimized
the number of missed cases. This resulted in an expected
total of 75,193,229 tests (1.4x improvement) and an expected
total of 287,708 missed cases (1.14x improvement) to retest
everyone who has previously been screened for SARS-
CoV-2 (see Figure 5).

4. Mathematical Analysis

In this section, we provide estimations for the number of
samples to retest in the second round and the FNR of our
procedure, and a proof of why the triple grid method would
be able to successfully identify the only one infected sample
even in the case of some errors happened.

4.1. Notations. p:The population infection rate,
N =1/p:The number of samples in a grid,
w = +/1/p:The pool size,
y0:FNR of individual tests,
y,:FNR of pool tests,

X:A random variable of the number of infected samples
in a grid.

For ease of analysis, throughout the rest of this section,
we assume false positive rate FPR = 0% for both individual
tests and pool tests and ignore the constraint that N and w
are integers. All the following analysis is based on the
assumption that the random variable X has a Poisson distri-
bution. A discrete random variable X is said to have a Pois-
son distribution with parameter A > 0, if it has a probability
mass function given by

Ake—/\
[

Pr (X=k)= (2)

where k is the number of occurrences and A is equal to
the expected value of X and also to its variance.

4.2. Computation of the Expected Number of Samples to
Retest in the Second Round. The theoretical analysis gives
consistent results with simulations on the efficiency of our
procedure. Due to a particular choice of w = /1/p on the tri-
ple grid method, infected samples occur once in every grid
on average. To calculate the probability of the event that
X=0,1,2, -, infected samples occur in the grid, assuming
the Poisson model is appropriate. Actually, the Poisson



distribution with parameter A = Np is an approximation of
the binomial distribution and applies well in the capacity
p <0.05 and N > 20 [33], which is in our case w > 5.

Because the expected rate of occurrences is one infected
sample per grid, we have A = Np = 1, and thus, the probabil-
ity Pr(X=k)=A"e*/k!=1%""/k!. By simple calculation,
the following estimations are obtained:

1% ¢t
Pr(X=0)=—— = ~0.368,
o 1
lle—l e—l
Pr(X=1)= =% <0368,
1
12 -1 —1
Pr(x_2)=2_e|=_=0184, (3)
13 -1 —1
Pr(X=3)= ; =% ~0.061,
14 -1 —1
Pr (X =4)= 4—6' =% <0015

Accordingly, most cases (about 73.6%) occur with at
most one infected sample in the grid, and in this case, all
samples can be successfully classified even if one error
occurs (see discussion below for error-correcting capability).
There are some cases (18.4%) having two infected samples,
which additionally lead to at most 6 normal samples locating
at intersections of two out of the six positive pools if error-
free. This case contributes to at most 1.2 (expected number)
samples needed to retest. As the probability of the rest cases
is low, it affects not much (at most an estimated number of 3
samples to retest) even taking into account y, in the level of
10%. We found that pooling in this way leads to only a con-
stant 5 increase in the total number of samples to retest in
the second round. Remark that the simulation results
obtained a number less than 3 on average.

4.3. Error-Correcting Capability. In the previous grid method
[25], an infected sample renders both its row and column
positive, so all the positive samples will be located immedi-
ately at the intersection of a positive row and a positive col-
umn. If there are more than one infected sample, then
simply identifying samples located at the intersection of a
positive row and a positive column as positive will cause sev-
eral false positives. Retests are necessary to distinguish them.
On the other hand, if there is at most one infected sample in
the grid, then two pools are positive (one in rows and the
other in columns), and we can identify the intersecting sam-
ple as positive firmly. Unfortunately, if one error occurred in
one of the corresponding row and column, which means
only one positive pool in the grid, then it is impossible to
determine which sample is positive without any further
information. To improve the efficiency of experiments, sev-
eral methods of screening have been studied from the point
of view of mathematics [34-36].

Recall that in R2 of the Diagnostic Algorithm, we suggest
not retesting the only sample A with #(A) =2 when N, =0.
The reason is that the proposed triple grid design can iden-
tify the only one infected sample even if one error occurs.
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Observe that every sample appears exactly at the intersection
of three pools (between columns, rows, and parallel diago-
nals), which can be interpreted geometrically as every point
lies on the intersection of three lines. When one error occurs,
there are still two positive pools, and we can use the two
lines to locate which sample is positive. By simple calcula-
tion, one can find that at most one false negative error
occurs in the three supposed-to-be positive pools with high
probability unless y, is extremely high.

From the simulation results in Figure 5, we found that
the one error correcting property plays an important role
in improving the rate of the number of missed cases
(improvement from 4% to 12% if the infection rate is low).

4.4. Computation of True False Negative Rate. To estimate
the number of missed cases, we derive the probability that
an infected sample is misclassified as negative by the Diag-
nostic Algorithm of the triple grid approach, that is, true
false negative rate (TFNR). According to the Diagnostic
Algorithm, there are four potential cases, and it suffices to
consider three cases from the above discussion:

(1) Those A’s with t(A) <1

The probability of at least two false negative errors out of
three supposed-to-be positive pools is y3 + 3y (1 —y,) = y?
(3-2y,).

(2) Those A’s satisfying t(A) =2, N, + N5 > 2, and nega-
tive retest outcome

The probability of one false negative error out of three
supposed-to-be positive pools is at most 3y, (1 — yl)z, ignor-
ing the condition of N, + N5 > 2. The probability of retesting
such a sample A and remaining negative would be 3y,

1=y

(3) Those A’s satisfying t(A) =3, N5 >4, and negative
retest outcome

The assumption of FPR = 0%, N5 > 4 implies at least four
infected samples appearing in the grid, which has probability
Pr (X >4) <2%. Thus, the probability of retesting such a
sample A and remaining negative is at most 0.02y,. This
value is relatively small as compared with the previous two
in the range of 2% <y, < 10%.

The expected true false negative rate of our procedure
can be computed according to the above discussion. For
example, when y,=5% and y, = 10%, the probability that
at most one false negative occurs among three positive pools
is 72.9% + 24.3% = 97.2%, and the probability of at least two
false negative errors out of three positive pools is reduced
down to 2.7% + 0.1% = 2.8%, which is the first case. As for
the other two cases, it is around 1.2% + 0.1% = 1.3%; thus,
we have the expected TFNR 4.1% of our approach, a number
less than FNR of Dorfman’s method (10%) and FNR of indi-
vidual testing approach (5%). In certain ranges of y, and y,,
we find that applying our triple grid method significantly
improves TFNR (see Figure 6).
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0.21 -53% -43% -34% -27% -21% -15% -10% -6% -3% 1% 4%
0.20 -42% -33% -25% -18% -13% -8% -3% 0% 4% 7% 10%
0.19 -32% -23% -16% -10% -5% 0% 3% 7% 10% 13%
0.18 -22% -14% -8% 2% 3% 7% 10% 13% 16%
0.17 -12%  -5% 1% 6% 10% 14% 17% 20%
0.16 2% 4% 9% 13% 17% 20% 23%
= 0.15 7% 12% 17% 21% 24% 27%
g, 014 16% 20% 25% 28% 31%
T 013 24% 28% 32% 35%
S 0.12 32% 36% 39%
£ on 40%  43% V = (FNR-TFNR)/FNR : improvement percentage of
§D 0.10 48% false negative rate
2 009 [ ] 50% < V
=2 0.08 30% <V <50%
£ 007 0% <V <30%
0.06 -20% <V < 0%
0.05 -50% <V <-20%
0.04 -100% <V <-50%
0.03 V <-100%
0.02 TFNR: True False Negative Rate (our procedure)
0.01
[ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [
0.01 0.02 0.03 0.04 0.05 0.06 007 0.08 0.09 010 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20

FNR: False Negative Rate (individual test)

FIGURE 6: Improvement percentage of expected false negative rate of our procedure to the individual testing method. For ease of analyzing
the relation of FNR among the considered methods, the estimation is done by assuming FPR = 0 although it is a parameter adjustable in our
model and the web interface. The x-axis indicates FNR of individual testing method, the y-axis represents FNR of the Dorfman’s method,
and the cell value is the estimated percentage of improvement of FNR of our procedure to individual testing method. For example, when
FNR (individual test) is 0.05 and FNR (pool) is 0.1, it gains an estimated 20% improvement upon the false negative rate by using our

strategy, i.e., TFNR = 0.04.
5. Discussions

We propose an alternative group testing scheme with an
error-correcting capability to improve sensitivity while
maintaining the benefit of reducing cost. These are not
meant to be a replacement for individual testing and other
pooling approaches. There are numerous practical concerns
that must be considered. Accuracy of RT-PCR tests in clini-
cal practice varies depending on the quality of sampling,
stage of disease, and degree of viral multiplication or clear-
ance [37]. There may be many medical, testing, or supply
chain reasons such pooling strategies will not work, includ-
ing mixing samples from multiple individuals in a single
tube risks contamination and picking individual samples to
retest is prone to pipetting errors (see [25] for more details).
All of these practical concerns that should be considered in
any existing pooling strategy must be considered thoroughly
when applying our triple grid method.

It is known that one should never pool samples above a
prevalence of above 30%; however, in the triple grid method,
the threshold is below 10%, a comparable result with that
suggested in the grid method. The efficiency gain increases
when the prevalence decreases from 10% all the way down
to 0.1%. This means that the proposed method and the
existing double pooling approaches have similar implemen-
tation scenarios and could only be used with pooled samples
from low-risk individuals without known or suspected
COVID-19.

The availability of accurate laboratory tools for COVID-
19 is essential for case identification, contact tracing, and
optimization of infection control measures. False negative
results can occur for numerous reasons [26, 38]; however,
there are several possible scenarios that pooling a sample

in several tests such as our strategy would not work well to
avoid such false negative results, including suboptimal spec-
imen collection, testing too early in the disease process, and
low viral load. Risks to a patient of a false negative result
include delayed or lack of supportive treatment and lack of
monitoring of infected individuals and their close contacts
for symptoms resulting in an increased risk of spread of
COVID-19 within the community. This kind of information
matters when people take a test because how this uncertainty
about the tests is communicated influences how people
understand their test results, which in turn has the potential
to influence their decisions and actions.

A feature of the proposed triple grid method is that the
pool size w is flexible and relies on the prior knowledge of
the prevalence p, which is a major reason for improving
the sensitivity when applying our method. However, this
raises clinical barriers to choosing the pool size because in
reality it is usually difficult to have the information of an
accurate infection rate of a population, and the infection rate
usually varies with time and with space. That, in turn, sug-
gests that paying attention to the need for good estimation
of the infection rate of a population to be tested will be
important in managing diagnostic tests.

We assume that samples are distributed at random and
independently. However, sample collection for this approach
might be conducted through contact tracing and door-to-
door sampling, where we expect cohabitation. In these cases,
the assumption of lack of correlation of test status between
individuals does not hold.

This study is limited in that it was only analyzed mathe-
matically but not performed in any laboratory. Additional
experimental data are thus required to validate this approach
in practice.
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6. Concluding Remarks

To conclude, this paper provides an alternative group testing
scheme with an error-correcting capability to improve sensi-
tivity while maintaining the cost reduction benefit of the
existing pooling strategies. However, besides the mentioned
practical concerns, whether or not to use this triple grid
method depends on the requirement of the efficiency and
also the tolerance of the number of missed cases. Let us con-
sider the simplest case that testing a pooled sample does not
change the false positive and false negative rates of the test
and assume FPR =0%. For the case of the infection level 1
% and FNR 5%, the usage ratios are about 20%, 22%, and
32%, and the sensitivities are about 90%, 86%, and 98% for
the Dorfman’s method (pool size 10), the grid method (96-
well plates), and our method (pool size 10), respectively.
For an infection level of 5% with the same condition FNR
5%, the usage ratios are about 45%, 36%, and 68%, and the
sensitivities are about 90%, 85%, and 98% for the Dorfman’s
method (pool size 5), the grid method (96-well plates), and
our method (pool size 5), respectively. For the same FNR
and an infection level of 10%, the usage ratios increase
to 65%, 59%, and 94% with comparable sensitivities 90%,
86%, and 97%.

That in turn suggests that the proposed triple grid
method being a straightforward compromise between effi-
ciency and sensitivity can offer a high-quality diagnosis to
reduce the number of missed cases when the infection level
is low, and pooling sample does not affect FNR of the tests.
If pooling samples increase FNR of the tests, then our strat-
egy provides expanded benefits for maintaining sensitivity.
For example, for an infection level of 5% with FNR of indi-
vidual tests = 5% and FNR of pooled tests = 10%, the usage
ratios are about 45%, 35%, and 69%, and the sensitivities
are about 85.5%, 76.6%, and 95.6% for the Dorfman’s
method (pool size 5), the grid method (96-well plates), and
our method (pool size 5), respectively.

High-sensitivity pooling strategies such as those pro-
posed here will be valuable in expanding testing capacity
and precisely locating potentially infected individuals. In
some countries like U.S., emergency use authorizations
(EUAS) have been issued to authorize the tests for use with
pooled anterior nasal specimens for screening when used
as part of a serial testing program. Tests authorized for use
can only be used in such laboratories that meet certain
requirements, e.g., sensitivity 95% [39], to perform high
complexity tests to detect SARS-CoV-2. While there are
numerous medical, testing, or supply chain barriers left to
overcome, we anticipate that this proposed method offers
an alternative option for any laboratory that wishes to use
pooling samples for adequate testing capacity but fails to
meet the high-sensitivity requirement.

Although we assumed FPR is 0%, as suggested in [30],
and did not address this issue throughout the mathematical
analysis, we found that the triple grid method improves not
only the sensitivity but also the specificity in some cases.
These findings were obtained by simulation results and can
be examined by adjusting the value of FPR via our web
interface https://www.andylee.tw/covid19/. We encourage
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further work into rigour statistical tests to evaluate this more
thoroughly.

We see a great potential of applying such a pooling strat-
egy for rapid scaling up COVID-19 testing. Reopening is an
urgent and huge challenge to most countries in the world
and is a likely scenario to apply our pooling strategy.
According to [31], diagnostic testing will help in safely open-
ing the countries, but only if the tests are highly sensitive;
moreover, it will also be important to develop methods for
estimating the pretest probability of infection for asymptom-
atic and symptomatic people. In fact, our approach achieves
nice sensitivity even higher than the individual testing
approach in certain ranges of conditions. With better esti-
mations of the pretest probability of infection for travellers
from different areas, among individuals with a low probabil-
ity of infection, this methodology might be particularly well-
suited to traveller screening through reliable RT-PCR tests
for COVID-19.
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The cases and tests for COVID-19 data used to support the
findings of this study are included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

Hong-Bin Chen was supported by the MOST 107-2115-M-
035-003-MY2. Jun-Yi Guo was supported by the MOST
108-2115-M-003-014. Fei-Huang Chang was supported by
the MOST 107-2115-M-003-005-MY?2.

References

[1] R. Dorfman, “The detection of defective members of large
populations,” Annals of Mathematical Statistics, vol. 14,
no. 4, pp. 436-440, 1943.

[2] M. E. Arnold, M. J. Slomka, V. J. Coward, S. Mahmood, P. J.
Raleigh, and I. H. Brown, “Evaluation of the pooling of swabs
for real-time PCR detection of low titre shedding of low path-
ogenicity avian influenza in turkeys,” Epidemiology and Infec-
tion, vol. 141, no. 6, pp. 1286-1297, 2013.

[3] M.]J. Currie, M. McNiven, T. Yee, U. Schiemer, and F. J. Bow-
den, “Pooling of clinical specimens prior to testing for Chla-
mydia trachomatis by PCR is accurate and cost saving,”
Journal of Clinical Microbiology, vol. 42, no. 10, pp. 4866-
4867, 2004.

[4] J. Diamant, R. Benis, J. Schachter et al., “Pooling of chlamydia
laboratory tests to determine the prevalence of ocular Chla-
mydia trachomatis infection,” Ophthalmic Epidemiology,
vol. 8, no. 2-3, pp. 109-117, 2001.

[5] S. May, A. Gamst, R. Haubrich, C. Benson, and D. M. Smith,

“Pooled nucleic acid testing to identify antiretroviral treatment

failure during HIV infection,” Journal of Acquired Immune

Deficiency Syndromes, vol. 53, no. 2, pp. 194-201, 2010.

L. Novack, B. Sarov, R. Goldman-Levi et al., “Impact of pool-

ing on accuracy of hepatitis B virus surface antigen screening

=
2


https://www.andylee.tw/covid19/

Computational and Mathematical Methods in Medicine

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

[20]

(21]

of blood donations,” Transactions of the Royal Society of Trop-
ical Medicine and Hygiene, vol. 102, no. 8, pp. 787-792, 2008.
T. C. Quinn, R. Brookmeyer, R. Kline et al., “Feasibility of
pooling sera for HIV-1 viral RNA to diagnose acute primary
HIV-1 infection and estimate HIV incidence,” AIDS, vol. 14,
no. 17, pp. 2751-2757, 2000.

D. M. Smith, S. J. May, J. Pérez-Santiago et al., “The use of
pooled viral load testing to identify antiretroviral treatment
failure,” AIDS, vol. 23, no. 16, pp. 2151-2158, 2009.

S. M. Taylor, J. J. Juliano, P. A. Trottman et al., “High-through-
put pooling and real-time PCR-based strategy for malaria
detection,” Journal of Clinical Microbiology, vol. 48, no. 2,
pp. 512-519, 2010.

N. Shental, S. Levy, S. Skorniakov et al, Efficient High
Throughput SARS-CoV-2 Testing to Detect Asymptomatic Car-
riers, medRxiv, 2020.

L. Yelin, N. Aharony, E. S. Tamar et al., “Evaluation of COVID-
19 RT-qPCR test in multi sample pools,” Clinical Infectious
Diseases, vol. 71, no. 16, pp. 2073-2078, 2020.

M. Schmidt, S. Hoehl, A. Berger et al, FACT-Frankfurt
Adjusted COVID-19 Testing - A Novel Method Enables High-
Throughput SARS-CoV-2 Screening without Loss of Sensitivity,
medRxiv, 2020.

C. R. Bilder, P. C. Iwen, B. Abdalhamid, J. M. Tebbs, and C. S.
McMahan, “Tests in short supply? Try group testing,” Signifi-
cance, vol. 17, no. 3, pp. 15-16, 2020.

C. A. Hogan, M. K. Sahoo, and B. A. Pinsky, “Sample pooling
as a strategy to detect community transmission of SARSCoV-
2, Journal of the American Medical Association, vol. 323,
no. 19, pp. 1967-1969, 2020.

L. Abraham, G. Becigneul, B. Coleman, B. Scholkopf,
A. Shrivastava, and A. Smola, “Bloom origami assays: practi-
cal group testing,” http://arxiv.org/abs/2008.02641.

R. Ben-Ami, A. Klochendler, M. Seidel et al., “Large-scale
implementation of pooled RNA extraction and RT-PCR for
SARS-CoV-2 detection,” Clinical Microbiology and Infection,
vol. 26, no. 9, pp. 1248-1253, 2020.

A.Z. Broder and R. Kumar, “A note on double pooling tests,”
2020, http://arxiv.org/abs/2004.01684.

S. Ghosh, A. Rajwade, S. Krishna et al., “Tapestry: a single-
round smart pooling technique for COVID-19 testing,” medR-
xiv, 2020.

R. Hanel and S. Thurner, “Boosting test-efficiency by pooled
testing strategies for SARS-CoV-2,” http://arxiv.org/abs/2003
.09944v1.

A. Heidarzadeh and K. R. Narayanan, “Two-stage adaptive
pooling with RT-qPCR for COVID-19 screening,” http://
arxiv.org/abs/2007.02695.

F. Minhas, D. Grammatopoulos, L. Young et al., Improving
COVID-19 testing efficiency using guided agglomerative sam-
pling, bioRxiv, 2020.

K. R. Narayanan, A. Heidarzadeh, and R. Laxminarayan, “On
accelerated testing for COVID-19 using group testing,” 2020,
http://arxiv.org/abs/2004.04785.

J. Yi, M. Cho, X. Wu, R. Mudumbai, and W. Xu, “Optimal
pooling matrix design for group testing with dilution (row
degree) constraints,” http://arxiv.org/abs/2008.01944.

M. M. Cechova, Bloom-Filter Inspired Testing of Pooled Sam-
ples (and Splitting of Swabs!), 2020, # H https://sites.psu
.edu/biomonika/2020/04/01/bloom-filter-inspired-testing-of-
pooled-samples-and-splitting-of-swabs/.

11

[25] N. Sinnott-Armstrong, D. Klein, and B. Hickey, Evaluation of
group testing for SARS-CoV-2 RNA, medRxiv, 2020.

[26] L. M. Kucirka, S. A. Lauer, O. Laeyendecker, D. Boon, and
J. Lessler, “Variation in false-negative rate of reverse transcrip-
tase polymerase chain reaction-based sarscov-2 tests by time
since exposure,” Annals of Internal Medicine, vol. 173, no. 4,
pp. 262-267, 2020.

[27] W. Wang, Y. Xu, R. Gao et al., “Detection of SARS-CoV-2 in
different types of clinical specimens,” JAMA, vol. 323, no. 18,
pp. 1843-1844, 2020.

[28] R. Weissleder, H. Lee, J. Ko, and M. J. Pittet, “COVID-19 diag-
nostics in context,” Science Translational Medicine, vol. 12,
no. 546, p. eabc1931, 2020.

[29] False Positive Results with BD SARS-CoV-2 Reagents for the BD
Max System-Letter to Clinical Laboratory Staff and Health
Care ProvidersJuly 2020, https://www.fda.gov/medical-
devices/letters-health-care-providers/false-positive-results-
bd-sars-cov-2-reagents-bd-max-system-letter-clinical-
laboratory-staff-and.

[30] Quest Diagnostics. SARS-CoV-2 RNA, Qualitative Real-Time
RT-PCR (Test Code 39433): Package InsertApril 2020, http://
www.fda.gov/media/136231/download.

[31] S. Woloshin, N. Patel, and A. S. Kesselheim, “False negative
tests for SARSCoV-2 infection - challenges and implications,”
The New England Journal of Medicine, vol. 383, no. 6, p. €38,
2020.

[32] M. Roser, H. Ritchie, and E. Ortiz-Ospina, Coronavirus disease
(COVID-19) research and statistics, Our World in Data, 2020,
https://ourworldindata.org/.

[33] NIST/SEMATECH, “6.3.3.1. Counts Control Charts,” e-Hand-
book of Statistical Methodshttps://www.itl.nist.gov/div898/
handbook/pmc/section3/pmc331.htm.

[34] T. Berger, ]. W. Mandell, and P. Subrahmanya, “Maximally
efficient two-stage screening,” Biometrics, vol. 56, no. 3,
pp. 833-840, 2000.

[35] D. Z. Du and F. K. Hwang, Pooling Designs and Nonadaptive
Group Testing-Important Tools for DNA Sequencing, World
Scientific, 2006.

[36] Y. Mutoh, T. Morihara, M. Jimbo, and H. L. Fu, “The existence
of 2 x 4 grid-block designs and their applications,” STAM Jour-
nal on Discrete Mathematics, vol. 16, no. 2, pp. 173-178, 2003.

[37] R. Wélfel, V. M. Corman, W. Guggemos et al., “Virological
assessment of hospitalized patients with COVID-2019,”
Nature, vol. 581, no. 7809, pp. 465-469, 2020.

[38] I. A.Rodriguez, D.B. Garcia, D. S. Racines et al., False Negative
Results of Initial RT-PCR Assays for COVID-19: A Systematic
Review, medRxiv, 2020.

[39] Interim Guidance for Use of Pooling Procedures in SARS-CoV-2
Diagnostic and Screening TestingJune 2021, http://www.cdc
.gov/coronavirus/2019-ncov/lab/pooling-procedures.html.


http://arxiv.org/abs/2008.02641
http://arxiv.org/abs/2004.01684
http://arxiv.org/abs/2003.09944v1
http://arxiv.org/abs/2003.09944v1
http://arxiv.org/abs/2007.02695
http://arxiv.org/abs/2007.02695
http://arxiv.org/abs/2004.04785
http://arxiv.org/abs/2008.01944
https://sites.psu.edu/biomonika/2020/04/01/bloom-filter-inspired-testing-of-pooled-samples-and-splitting-of-swabs/
https://sites.psu.edu/biomonika/2020/04/01/bloom-filter-inspired-testing-of-pooled-samples-and-splitting-of-swabs/
https://sites.psu.edu/biomonika/2020/04/01/bloom-filter-inspired-testing-of-pooled-samples-and-splitting-of-swabs/
https://www.fda.gov/medical-devices/letters-health-care-providers/false-positive-results-bd-sars-cov-2-reagents-bd-max-system-letter-clinical-laboratory-staff-and
https://www.fda.gov/medical-devices/letters-health-care-providers/false-positive-results-bd-sars-cov-2-reagents-bd-max-system-letter-clinical-laboratory-staff-and
https://www.fda.gov/medical-devices/letters-health-care-providers/false-positive-results-bd-sars-cov-2-reagents-bd-max-system-letter-clinical-laboratory-staff-and
https://www.fda.gov/medical-devices/letters-health-care-providers/false-positive-results-bd-sars-cov-2-reagents-bd-max-system-letter-clinical-laboratory-staff-and
http://www.fda.gov/media/136231/download
http://www.fda.gov/media/136231/download
https://ourworldindata.org/
https://www.itl.nist.gov/div898/handbook/pmc/section3/pmc331.htm
https://www.itl.nist.gov/div898/handbook/pmc/section3/pmc331.htm
http://www.cdc.gov/coronavirus/2019-ncov/lab/pooling-procedures.html
http://www.cdc.gov/coronavirus/2019-ncov/lab/pooling-procedures.html

	Improvement of Sensitivity of Pooling Strategies for COVID-19
	1. Introduction
	1.1. Related Works
	1.2. The Grid Method
	1.3. Abbreviations

	2. The Triple Grid Method
	2.1. Principle Aspect
	2.2. Practical Aspect

	3. Simulation Results
	4. Mathematical Analysis
	4.1. Notations
	4.2. Computation of the Expected Number of Samples to Retest in the Second Round
	4.3. Error-Correcting Capability
	4.4. Computation of True False Negative Rate

	5. Discussions
	6. Concluding Remarks
	Data Availability
	Conflicts of Interest
	Acknowledgments

