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Abstract: Circulating tumor DNA (ctDNA) is a new pan-cancer tumor marker with important appli-
cations for patient prognosis, monitoring progression, and assessing the success of the therapeutic
response. Another important goal is an early cancer diagnosis. There is currently a debate if ctDNA
can be used for early cancer detection due to the small tumor burden and low mutant allele fraction
(MAF). We compare our previous calculations on the size of detectable cancers by ctDNA analysis
with the latest experimental data from Grail’s clinical trial. Current ctDNA-based diagnostic methods
could predictably detect tumors of sizes greater than 10–15 mm in diameter. When tumors are of this
size or smaller, their MAF is about 0.01% (one tumor DNA molecule admixed with 10,000 normal
DNA molecules). The use of 10 mL of blood (4 mL of plasma) will likely contain less than a complete
cancer genome, thus rendering the diagnosis of cancer impossible. Grail’s new data confirm the
low sensitivity for early cancer detection (<30% for Stage I–II tumors, <20% for Stage I tumors),
but specificity was high at 99.5%. According to these latest data, the sensitivity of the Grail test is
less than 20% in Stage I disease, casting doubt if this test could become a viable pan-cancer clinical
screening tool.

Keywords: circulating tumor DNA; liquid biopsy; cancer screening; early cancer detection; molecular
analysis; clonal hematopoiesis; positive predictive value

1. Introduction

Circulating fetal DNA was originally discovered by clinical chemist Dr. Dennis
Lo in the 1990’s (Figure 1), who found that in the serum/plasma of pregnant women
there is 5–10% of circulating free DNA (cfDNA) of fetal origin [1]. This discovery led to
the application of cfDNA for the non-invasive detection of fetal abnormalities by using
maternal blood (non-invasive prenatal diagnosis) [2]. Later, Dennis Lo and others identified
cell-free DNA in the serum of patients with cancer. Some of this DNA is of tumor origin,
termed circulating tumor DNA (ctDNA). Since then, it has been hypothesized that it may
be possible to use what is now widely known as a “liquid biopsy” (essentially blood
taking) for the diagnosis and prognosis of cancer by analyzing ctDNA. ctDNA has now
emerged as the latest and a highly promising new cancer biomarker for diverse clinical
applications [3–5].

A liquid biopsy involves obtaining blood or other fluids and then analyzing the
extracted DNA, usually by diverse molecular techniques. Liquid biopsy is minimally inva-
sive, and it can be applied to analyze ctDNA, tumor cells, exosomes, and other components.
The preferred sample is blood/plasma, but other fluids such as cerebral spinal fluid, saliva,
synovial fluid, ascites fluid, stool, and urine can also be used [6].
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ctDNA is fragmented DNA that originates from dying cancer cells and has been shed
into the bloodstream [7]. Importantly, it is well-established that the amount of ctDNA
is proportional to tumor size (tumor burden) and is related to other clinicopathological
parameters such as stage, lymph node infiltration, local and distant metastasis, and disease-
free and overall survival [8,9]. Thus, ctDNA carries strong prognostic information [10–16].

Healthy cells also release what is known as cfDNA into the bloodstream. The amount
of cfDNA that can be extracted from the blood of normal people is about 1–10 ng/mL.

2. Liquid Biopsy

Usually, a tube of blood is obtained from a patient, and DNA is extracted from plasma.
This DNA can then be used for analysis with various techniques, including whole-genome
sequencing, whole-exome sequencing, targeted sequencing of cancer-associated genes, or
by looking for gene fusions, copy number variations, and DNA methylation status [6].
While performing liquid biopsies, it is important to consider some caveats. One caveat is
that blood contains both normal DNA originating from diverse normal tissues (cfDNA)
and genetically altered DNA that is expected (as per the current wisdom) to originate from
cancer cells (ctDNA). However, this is not always the case [17]. Genetic analysis of DNA
must be able to discriminate between the normal DNA and the cancer DNA by looking for
mutations, epigenetic, and other molecular changes. The ratio of cancer to normal DNA,
expressed as a percentage, is known as “mutant allele fraction” (MAF). For example, a MAF
of 0.1% means that for every 1000 DNA molecules in the circulation, one is contributed by
cancer cells, and 999 are contributed by normal cells. It is known that the higher the tumor
volume, the higher the mutant allele fraction [6] and the easier the analysis of the extracted
DNA. It is evident that when the MAF is very low, such as <0.1% or <0.01%, there is a
need for special and highly sensitive techniques to analyze the ctDNA, which is a minute
fraction in comparison to normal DNA (cfDNA) [6].

3. Clinical Applications of ctDNA

ctDNA is an excellent prognostic marker for cancer. For example, in a 2016 study
of 230 stage 2 colon cancer patients, 100% of those who had detectable ctDNA right
after the surgery relapsed. However, more than 90% of those who were negative for
ctDNA did not relapse [13]. Since then, the prognostic value of ctDNA was repeatedly
confirmed [8–16,18,19]. Similar to other tumor markers, ctDNA can also be used to mon-
itor disease progression. One example is breast cancer patients who have been treated
at various intervals with chemotherapy [20]. ctDNA was superior to CA15.3 (the classi-
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cal breast cancer biomarker) and circulating tumor cells in tracking disease progression
and regression.

An important application of circulating tumor DNA is monitoring the success of
treatment [21]. The patient is treated initially with certain therapy while he/she is moni-
tored with liquid biopsy for the presence and intensity of mutations in ctDNA. The ctDNA
analysis may show that the mutations have been reduced in numbers and/or intensity,
indicating that the therapy is working and should continue to be administered. On the
other hand, for other patients, it may be shown that there is progression because the in-
tensity and the number of mutations are increased, thus alerting the clinician to select a
new therapy [21]. The amount of ctDNA, as mentioned earlier, correlates quite well with
the size of the tumor. Larger amounts of ctDNA correlate with larger tumors, advanced
tumors, or later-stage tumors.

4. Early Cancer Diagnosis

While the utility of ctDNA for monitoring the success of treatment and prognosis
is unquestionable, and the marker is now being used in the clinic, there is a debate in
the literature if ctDNA can be used for the most impactful application of early cancer
detection [22]. A company called Grail invested billions of dollars in developing methods
for early cancer detection by using ctDNA. For more details on Grail, see reference [23–25].
In short, Grail has embarked on a large project aiming to enroll 10,000 individuals with
cancer and 3000 healthy individuals and analyze their cfDNA, to find differences between
cancer and non-cancer patients, thus developing an early cancer detection test, aided in
decision-making by artificial intelligence. The test has detection capability for any cancer
(a pan-cancer test) and is good enough to identify the cancer primary lesion with about 80%
accuracy [25]. The techniques that Grail uses to analyze ctDNA include targeted sequencing
of about 500 genes previously associated with cancer, whole-genome sequencing, and copy
number variations, whole-genome bisulfite sequencing to study methylation status [22],
while other investigators are using DNA fragmentation to study the sizes of ctDNA [26–29].
Academic investigators have also published on the detection of early cancer by using
ctDNA [13,30]. In one of these papers, the authors claimed sensitivities for detecting cancer
of around 50–60% at 95% specificity, which are good numbers if they can be independently
reproduced. Unfortunately, these and all other published studies suffer from the limitation
that these investigators used clinically detected cancers with relatively high mutant allele
fractions of 0.1% to 1%, thus predictably over-estimating sensitivity [31]. The approach
used by the Nickolas Papadopoulos group (Figure 2) included combination of ctDNA
with classical circulating biomarkers for early detection of cancer [30]. These authors
claimed sensitivity between 70–90% at 98% specificity, which are good numbers if they
can be reproduced [30]. A company called Thrive attracted $110 million to commercialize
this approach.
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5. Empirical Calculations Challenging the Clinical Utility of Grail and Similar Tests
for Early Cancer Diagnosis

Here, we will provide a summary of our detailed and previously published calcula-
tions, mostly based on published empirical data, which show that ctDNA tests for the early
diagnosis will likely have limited sensitivity for small, asymptomatic tumors. For more
details, see our previous analyses [22,32–34].

The amount of cfDNA in the plasma of normal individuals falls within the range
1–10 ng/mL (average 5 ng/mL) [34]. Assuming a molecular mass of DNA of approximately
2 × 1012 Da, 5 ng/mL of DNA equates to approximately 1500 whole human genomes per
mL (6000 genomes per 4 mL of plasma). According to these data, when the mutant allele
fraction of cancer DNA drops below 0.01% (one cancer genome admixed with 10,000 normal
genomes), then the use of 10 mL of blood (4 mL of plasma) will likely not contain a single
cancer genome for molecular analysis, thus rendering the diagnosis of cancer impossible,
due to sampling error.

In patients with small tumors, we also used other reported tumor measures to calcu-
late the approximate amount of cancer or normal DNA in the circulation [35,36]. Table 1
summarizes our calculations (these are either experimental data or the numbers were
calculated by extrapolation), assuming proportionality between tumor volume and percent
fraction of mutant DNA, as suggested by Abbosh et al. [36]. It is reported in the litera-
ture that a tumor of approximately 1 cm3 in volume has a wet weight of 1 g, contains
109 cells [37], and has an approximate diameter of 1.2 cm (assuming a spherical nodule).
The table demonstrates that when the mutant allele fraction drops below 0.01% (one tumor
DNA molecule admixed with 10,000 normal DNA molecules), then 10 mL of blood (4 mL
of plasma) will likely contain less than one cancer genome, rendering diagnosis impossible.
We reached the same conclusion using other independent cancer data (not shown) and
by modeling pregnancy at various gestational ages, assuming that the fetus resembles a
tumor [32–34].

Table 1. Tumor characteristics reported in the literature or calculated by extrapolation.

Tumor
Diameter, mm

Tumor Weight,
mg

Tumor
Volumen mL

(cm3)

Number of
Cancer Cells

Percentage
Fraction of

Mutant
ctDNA

Number of
Cancer

Genomes per
10 mL of

Blood

Chance of
Progression c

Mammographic
Screen

Sensitivity d

27 10,000 10 a 10,000,000,000 1:1000 6 - -
12.5 1000 1 b 1,000,000,000 1:10,000 0.6 - -
10 500 0.5 500,000,000 1:20,000 0.3 50% 91%
8 250 0.25 250,000,000 1:40,000 0.15 25% -
6 125 0.12 125,000,000 1:80,000 <0.1 - -
5 62 0.06 62,000,000 1:160,000 <0.1 6% 26%
4 31 0.03 32,000,000 1:320,000 <0.1 - -
3 16 0.015 16,000,000 1:640,000 <0.1 - -

2.4 8 0.007 8,000,000 1:1,300,000 <0.1 - -
2 4 0.0035 4,000,000 1:2,600,000 <0.1 - -

1.5 2 0.0017 2,000,000 1:5,200,000 <0.1 - -
1.1 1 0.0008 1,000,000 1:10,000,000 <0.1 0.05% -

ctDNA: circulating tumor DNA. a As reported by Abbosh et al. [36]. b As reported by Del Monte [37]. c As reported by Narod and
others [38,39]. d As reported by Wedon-Fekjaer et al. [39]. Adapted from ref. [34].

Dr. Steven Narod reported the likelihood of progression of small breast tumors and
correlated the findings with the known sensitivity of mammographic screening [38,39]
(Table 1). If we set a clinical screening requirement to detect cancers that are >6% likely
to progress and are currently missed by mammography, then a 5 mm diameter tumor
would be a realistic and clinically relevant early detection goal. As we have determined
through our calculations (Table 1), this goal is not likely to be achieved by the Grail test and
similar other technologies. More ambitious goals, such as the detection of 1 mm diameter
tumors, need to be balanced with unfavorable consequences, such as over-diagnosis and
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over-treatment [40]. A summary of the merits and disadvantages of cancer screening
programs is shown in Table 2 [34].

Table 2. Possible Benefits and Harms of Population Screening.

Benefits Harms

Identification of disease predisposition or
early diagnosis, leading to prevention or

effective therapy.

If no treatment or prevention available, diagnosis may cause anxiety/depression.
False-positives leading to more testing; some testing may be invasive or have side

effects (biopsies, surgeries, anxiety, depression).
Incidental findings/indolent disease 1 (over-diagnosis, over-treatment, and some

treatments may be invasive, have serious side effects, and be costly).
Harms of testing (e.g., radiation, bleeding, colon perforation).

Cost-effectiveness.
1 Incidental finding is defined as a finding that is unrelated to the primary reason of patient testing. Indolent disease is defined here as a
disease detected by screening that would have otherwise not been detected in a patient’s lifetime. Reprinted with permission from ref. [40];
published by De Gruyter, 2016.

The presented empirical data suggests that current ctDNA-based diagnostic methods
could predictably detect tumors of sizes greater than 10–15 mm in diameter. Tumors of
such sizes are currently detectable through imaging [39]. Our calculations also pinpoint
a MAF of 0.01% as the detection limit of current Grail-like methods. A summary of our
conclusions is shown in Figure 3.

Diagnostics 2021, 11, x FOR PEER REVIEW 6 of 9 
 

 

 

Figure 3. Tumor characteristics and related circulating tumor DNA (ctDNA) parameters. For dis-

cussion see text. 

6. Additional challenges with Grail and Related Technologies 

In screening programs, the sensitivity of a cancer test is not the only important char-

acteristic; specificity could be as important or, in certain screening scenarios for rare tu-

mors, even more important than sensitivity. It is now well-established that mutations and 

other genomic alterations can be found in normal tissues [17] and in circulating DNA from 

normal people, especially in the precancerous conditions called clonal hematopoiesis [41–

44]. Discussion of other caveats with screening, including prevalence, overdiagnosis, 

overtreatment, and tumor dynamics can be found in the associated references [40,45]. 

7. Experimental Data from Grail That Support our Predictions 

Recently, Klein et al. from the Grail group presented a large validation study of a 

targeted methylation-based multi-cancer early detection test using an independent pa-

tient validation set [25]. This study was the third and final part of the series of studies by 

the same authors/company that incorporates their best analytics thus far, which is meth-

ylation sequencing, in combination with artificial intelligence. This was a case-control 

study, not a simulated screening study. The authors report a specificity of 99.5%, which is 

impressive if it holds true in screening settings. Sensitivity was around 52% overall but 

was strongly dependent on the stage, as expected from the previous discussion. Sensitiv-

ity was 17% for Stage I, 40% for Stage II, 28% for Stages I-II, and 84% for Stages III-VI 

disease. These data prompted the authors to conclude that their results support the feasi-

bility of the blood-based multi-cancer early detection test as a complement to existing sin-

gle-cancer screening tests. In fact, the British Ministry of Health contracted Grail to screen 

200,000 Britons for early cancer detection (these data are pending). 

In our view, the claim that such tests are close to reaching the clinic is premature, 

mainly because the test’s sensitivity is poor for early-stage tumors. Based on the way pa-

tients were enrolled (clinically symptomatic disease; a case-control study), we can safely 

predict that about 9 out of 10 small, asymptomatic tumors, which are amenable to curative 

Figure 3. Tumor characteristics and related circulating tumor DNA (ctDNA) parameters. For
discussion see text.

6. Additional challenges with Grail and Related Technologies

In screening programs, the sensitivity of a cancer test is not the only important charac-
teristic; specificity could be as important or, in certain screening scenarios for rare tumors,
even more important than sensitivity. It is now well-established that mutations and other
genomic alterations can be found in normal tissues [17] and in circulating DNA from nor-
mal people, especially in the precancerous conditions called clonal hematopoiesis [41–44].
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Discussion of other caveats with screening, including prevalence, overdiagnosis, overtreat-
ment, and tumor dynamics can be found in the associated references [40,45].

7. Experimental Data from Grail That Support our Predictions

Recently, Klein et al. from the Grail group presented a large validation study of a
targeted methylation-based multi-cancer early detection test using an independent patient
validation set [25]. This study was the third and final part of the series of studies by the
same authors/company that incorporates their best analytics thus far, which is methylation
sequencing, in combination with artificial intelligence. This was a case-control study, not a
simulated screening study. The authors report a specificity of 99.5%, which is impressive if
it holds true in screening settings. Sensitivity was around 52% overall but was strongly
dependent on the stage, as expected from the previous discussion. Sensitivity was 17% for
Stage I, 40% for Stage II, 28% for Stages I-II, and 84% for Stages III-VI disease. These data
prompted the authors to conclude that their results support the feasibility of the blood-
based multi-cancer early detection test as a complement to existing single-cancer screening
tests. In fact, the British Ministry of Health contracted Grail to screen 200,000 Britons for
early cancer detection (these data are pending).

In our view, the claim that such tests are close to reaching the clinic is premature,
mainly because the test’s sensitivity is poor for early-stage tumors. Based on the way
patients were enrolled (clinically symptomatic disease; a case-control study), we can safely
predict that about 9 out of 10 small, asymptomatic tumors, which are amenable to curative
therapies, will likely be missed (a more realistic sensitivity will likely be around 10%, as
described earlier [46] by the same authors).

The authors extrapolated what will be the positive predictive value (PPV) of such tests
(PPV = the chances that the disease is present if the test is positive). If the sensitivity is
assumed to be 10% for early cancers under a screening scenario, at 99.5% specificity, and
a hypothetical prevalence of cancer in the general screening population of either 1% (for
fairly common cancers) or 0.1% (for fairly rare cancers), the PPV will be 17% in the first
case and 1.7 % in the second case. We seriously question whether a successful screening
program for cancer can be sustained with such low PPVs. The false positivity rates will lead
to a rather large number of non-cancer patients who will undergo additional, unnecessary,
and probably harmful testing [40].

8. Conclusions

ctDNA is a new and exciting cancer biomarker with many clinical applications. Based
on our previous analyses, this test could detect some small, asymptomatic tumors, which
are amenable to cure. We believe that the vast majority of small but clinically significant
tumors will be missed under a screening scenario. Based on our calculations, we set the
tumor size for detectability above 10–12 mm in diameter (Figure 3).

Grail’s current and previous clinical trial data, including those reported recently [25],
do not warrant population screening based on analysis of methylation patterns, even if
such tests are highly specific. The problem lies in the low sensitivity for detecting early,
asymptomatic tumors. We further believe that physicians will be reluctant to operate on
patients who do not have imaging-confirmed masses. We are not very optimistic about new
advances in this area since the problem is not so much the limitations in techniques but the
availability of ctDNA in sufficient amounts with a simple blood draw. Much larger blood
draws may partially provide a solution, but these are unlikely to be acceptable to the testing
population. The data to be generated through the Grail/UK Government collaboration
will tell us if Grail has finally found, or missed, the trail that leads to early cancer detection.
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