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Abstract  
The study of respiratory plasticity in animal models spans decades. At the bench, researchers use an 
array of techniques aimed at harnessing the power of plasticity within the central nervous system 
to restore respiration following spinal cord injury. This field of research is highly clinically relevant. 
People living with cervical spinal cord injury at or above the level of the phrenic motoneuron pool 
at spinal levels C3–C5 typically have significant impairments in breathing which may require assisted 
ventilation. Those who are ventilator dependent are at an increased risk of ventilator-associated co-
morbidities and have a drastically reduced life expectancy. Pre-clinical research examining respiratory 
plasticity in animal models has laid the groundwork for clinical trials. Despite how widely researched 
this injury is in animal models, relatively few treatments have broken through the preclinical barrier. 
The three goals of this present review are to define plasticity as it pertains to respiratory function 
post-spinal cord injury, discuss plasticity models of spinal cord injury used in research, and explore 
the shift from preclinical to clinical research. By investigating current targets of respiratory plasticity 
research, we hope to illuminate preclinical work that can influence future clinical investigations and 
the advancement of treatments for spinal cord injury.
Key Words: breathing; phrenic; plasticity; rehabilitation; respiration; spinal cord injury; translation

https://doi.org/10.4103/1673-5374.335839

Date of submission: August 13, 2021

Date of decision: September 18, 2021

Date of acceptance: October 20, 2021 

Date of web publication: February 28, 2022 

Introduction 
Each year there are more than 17,000 new spinal cord injury (SCI) cases in the 
United States and an estimated 294,000 people living with some level of SCI 
today (National Spinal Cord Injury Statistical Center, 2020). The most common 
location of traumatic injury to the spinal cord is the cervical region (National 
Spinal Cord Injury Statistical Center, 2020). Injury to the spinal cord disrupts 
ascending and descending neural pathways and can affect motor and sensory 
function. Injuries occurring in people are complicated and heterogeneous, 
varying substantially in neuropathology. People living with cervical SCI at or 
above the level of the phrenic motoneuron (PhMN) pool (cervical levels C3–
C5) typically have significant impairments in breathing which may require 
assisted ventilation. Respiratory input from the brainstem innervates the 
spinal phrenic network controlling the diaphragm (the primary muscle of 
inspiration) and more caudal motor networks that control intercostal and 
abdominal muscles (Figure 1). Direct damage to the phrenic network, loss 
of supraspinal drive to this network, and denervation to more caudal circuits 
(intercostal and abdominal) result in associated muscle paresis or paralysis 
and subsequent muscle atrophy. Such injuries not only usually necessitate 
assisted ventilation, but these individuals have a higher risk of secondary 
complications including pneumonia, and may suffer from additional deficits 
including impaired cough reflex, impaired mucociliary clearance, and sleep-
disordered breathing (Baydur and Sassoon, 2010; Chiodo et al., 2016; Sankari 
et al., 2019). The National Spinal Cord Injury Statistical Center reports that 
the life expectancy of a 20-year-old, ventilator-dependent patient falls from 
59.4 years with no injury to just 10 years post-injury (National Spinal Cord 
Injury Statistical Center, 2020). With this in mind, research centered on the 
restoration of independent breathing and improvement in quality of life has 
become a nexus of both clinical and biochemical research. 

The very earliest clinical case reports from ancient Egypt recognized the 
brainstem as an essential component of breathing (Imhotep, 2650BC). In the 
mid 1800s, Flourens (1858) also suggested that the “noeud vital” (vital node) 
for respiration was located between the V of the grey matter in the medulla 
(obex) and the pyramidal decussation. It is now known that respiratory nuclei 
are distributed throughout the pons and medulla, with those comprising the 
ventral respiratory column (VRC) being responsible for the generation and 
maintenance of ongoing rhythmic respiratory drive, and input to respiratory 
networks in the spinal cord (Hilaire and Monteau, 1976, 1997; Feldman 
et al., 2003; Alheid et al., 2004; Feldman and Del Negro, 2006; Alheid and 
McCrimmon, 2008; Feldman, 2011). Continued advances in our understanding 
of the respiratory system and its underlying neural networks have made 

it one of the more frequently used systems to study spinal cord injury, 
plasticity, and repair, while also being highly clinically relevant. The central 
pattern generator for breathing and the PhMNs primarily receive impulses 
from the VRC in the medulla. These impulses mostly descend ipsilaterally to 
synapse on their PhMN targets which then send a motor impulse through 
the phrenic nerve to the diaphragm. Notably, pre-clinical studies in rodents 
(Goshgarian et al., 1991; Vinit and Kastner, 2009; Darlot et al., 2012), cats 
(Cohen, 1973; Janczewski and Karczewski, 1990), and rabbits (Janczewski 
and Karczewski, 1990) have revealed that some of these descending VRC 
projections cross (decussate) at the brainstem and spinal cord levels to 
innervate the PhMN pool on the other side (contralateral) of the spinal cord, 
and a small subset even re-cross the spinal midline again (Boulenguez et al., 
2007; Lane et al., 2009). Supraspinal projections from either the ipsilateral or 
contralateral VRC that descend the contralateral spinal cord and cross to the 
ipsilateral spinal cord below the level of injury are considered the anatomical 
basis for the spontaneous crossed phrenic phenomenon (CPP). Mounting 
preclinical evidence is also exploring the contribution of spinal interneurons 
(Darlot et al., 2012; Buttry and Goshgarian, 2014; Zholudeva et al., 2017; 
Satkunendrarajah et al., 2018; Jensen et al., 2019).
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Figure 1 ｜ Respiratory muscles and their innervation. 
Three-dimensional rendering of the muscles contributing to breathing separated by their 
relative depth (superficial layers, left and deep layers, right), with the spinal distribution 
of motoneurons that innervate them. Primary respiratory networks are highlighted in 
blue font, while secondary networks (e.g., accessory muscles) that can contribute to 
breathing are shown in green font. 
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This network and plasticity via the CPP help to explain spontaneous contraction 
of a previously paralyzed hemidiaphragm following SCI seen both clinically and 
in research. In 1868, Brown-Sequard noted that a hemi-lesion between C1–
C4 did not always affect diaphragmatic contraction (Brown-Sequard, 1868). 
Porter eventually confirmed the findings and systematically documented the 
CPP in a pre-clinical model of complete C2 Hemisection (C2Hx) (Porter, 1895). 
It is important to note that the cases Brown-Sequard reported on were likely 
neurologically complete injuries, but also anatomically incomplete hemi-
lesions (although often misleadingly represented as anatomically complete). 
For 56 years the CPP went relatively unexplored until 1951 when Lewis and 
Brookhart published work concluding that the extent of functional recovery 
attributable to the CPP varies in proportion to the discharge from supraspinal 
respiratory centers (Lewis and Brookhart, 1951; Goshgarian, 2009). Since then, 
this system has evolved to include inducible CPP by methods such as hypoxia, 
hypercapnia, and asphyxia (Lane et al., 2008a, 2009; Goshgarian, 2009). 

In addition to these examples of phrenic plasticity, similar spontaneous 
improvements have been seen in other respiratory networks such as the 
intercostals, following cervical or thoracic injury. Pre-clinical studies revealed 
spontaneous improvement in intercostal function weeks after a high cervical 
SCI (Dougherty et al., 2012). This functional plasticity was attributed to a 
“crossed-intercostal” pathway (Dougherty et al., 2012), which may consist 
of direct input from brainstem respiratory centers, or polysynaptic pathways 
with spinal interneurons that are known to exist within these spinal networks 
(Lane et al., 2008b). Progressive recovery of cough has also been seen 
following thoracic SCI in the cat model (Jefferson et al., 2010). Compared to 
the evidence for plasticity within the phrenic network, less is known about the 
intercostal and abdominal respiratory pathways, which networks contribute 
to plasticity, and how it translates to changes in ventilation or recovery from 
impaired expiratory functions (e.g., cough). What is unfortunately clear is 
that spontaneous plasticity is limited and deficits after SCI persist in both pre-
clinical models (Kowalski et al., 2007) and the human population (Brown et 
al., 2006; Baydur and Sassoon, 2010). 

While injury at cervical, thoracic and lumbar spinal levels can compromise 
respiratory networks, the most devastating consequence arises following 
cervical injury, which is the focus for the remainder of this review. Cervical SCI 
can lead to respiratory failure and several secondary complications making 
them targets of therapy vast. The three goals of this review are to define 
plasticity as it pertains to respiratory function post-SCI, discuss plasticity 
models of SCI used in research, and explore the shift from preclinical to 
clinical research. By investigating current targets of respiratory plasticity 
research, we hope to illuminate preclinical work that can influence future 
clinical investigations and the advancement of treatments for SCI.

Search Strategy and Selection Criteria
PubMed database was used to search for all references cited in this 
manuscript, and citations were added using Endnote software. References 

were searched based on known content or using search terms relevant to the 
statements being made. No exclusion criteria were used in searches. 

Choosing a Pre-Clinical Model of Spinal Cord 
Injury
Besides considering the spinal level of injury (e.g., cervical vs. thoracic), 
the type of injury used to model SCI can also have important differences in 
neuropathological and functional outcomes (Table 1). The most frequently 
used model of respiratory dysfunction and plasticity after SCI is the lateral 
C2Hx (Goshgarian, 2003; Vinit and Kastner, 2009; Hoh et al., 2013; Warren 
et al., 2014; Figure 2). Given the early studies by Porter in adult canines, the 
C2Hx model has essentially been used for almost 130 years (Porter, 1895). 
This incomplete injury compromises direct (monosynaptic) projections 
from the VRC in the medulla to ipsilateral PhMNs, resulting in ipsilateral 
hemidiaphragm paralysis (Ellenberger and Feldman, 1988; Ellenberger et al., 
1990; Lane et al., 2008a, 2009; Vinit and Kastner, 2009; Figure 3). This injury 
model has since been used to study respiration and neuroplastic potential 
(see below) post-SCI in a number of species, most commonly rats (Golder 
et al., 2001; Fuller et al., 2008, 2009; Lane et al., 2008b; Lee et al., 2013) 
and mouse (Minor et al., 2006; Seeds et al., 2009; Zholudeva et al., 2017; 
Satkunendrarajah et al., 2018; Michel-Flutot et al., 2021a).

In more recent years, a growing number of studies have used a clinically 
comparable contusion injury model (Kwon et al., 2002; Scheff et al., 2003), 
instead of the C2Hx. This injury model damages both spinal respiratory 
circuitry (moto- and interneurons) and descending respiratory axons from 
the VRC. El-Bohy et al. (1998) were the first to show that lateral or midline 
cervical contusion resulted in reduced phrenic motor output and attenuated 
phrenic motor response to the respiratory challenge. For example, a 
lateral contusion injury between cervical levels 3 and 4 (C3/4) disrupts 
the descending respiratory bulbospinal axons and damages both grey and 
white matter within the cervical spinal cord. The resulting neuropathology 
and asymmetric lesion are more comparable to injuries usually occurring 
in people (Sassoon and Baydur, 2003; DiMarco, 2009; Austin et al., 2013), 
and may even be more comparable to the injuries originally described by 
Brown-Sequard (Figure 2). Contusive damage typically leads to cystic cavity 
formation in most mammalian species including humans (Backe et al., 1991; 
Kwon et al., 2002; Scheff et al., 2003; Lane et al., 2008a, 2012; Talekar et 
al., 2016; Burks et al., 2019), which at mid-cervical levels results in a loss of 
phrenic moto- and interneurons at the lesion epicenter and denervation of 
phrenic network caudal to injury (Figure 3). This cervical contusion model 
used by us (Lane et al., 2012; Spruance et al., 2018; Zholudeva et al., 2018b) 
and others (Baussart et al., 2006; Golder et al., 2011; Nicaise et al., 2012a, 
b, 2013; Awad et al., 2013; Wen and Lee, 2018; Wen et al., 2019; Wu et al., 
2020a) has revealed that contusion injury results in reproducible attenuation 
of diaphragm function both during breathing of room air (eupneic) and 
respiratory challenge (hypoxia and hypercapnia).

Table 1 ｜ Mouse to man: considerations for translation

Human SCI Pre-clinical animal models

Injury Highly heterogeneous injuries with varying degrees of damage (e.g., contusion, 
compression, laceration, root avulsion) and laterality, most often at cervical 
levels. The complexity of injury involves multiple evolving factors, including point 
of impact, dynamic instability with repetitive trauma and possible hematoma 
formation (intramedullary and extradural), with further exacerbation of damage. 

Injuries are carefully controlled with a goal of reproducibility and consistency, 
and typically model only one aspect of SCI neuropathology (contusion, 
compression, or “laceration”) to a specific region of the spinal cord, affecting 
known neuronal networks. Pre-clinical models are rapid, single-time injury that 
does not include the ongoing damage risks that are seen in people. 

Species The human spinal cord is much larger than most animal models used. Non-
human primates, porcine, canine, and feline are among those that are closer to 
human anatomy.
The extent to which underlying neural networks differ between human and non-
human species is not entirely clear, but there may be important differences to 
consider.  

Often smaller mammalian rodent models, with a translational goal of 
progressing research to larger models. Considerations in the choice of model 
begin with the primary questions being asked (and model relevancy), with 
considerations for network similarities, size of the animal and spinal cord, 
inflammatory responses to trauma, behavioral patterns, genetic differences.

Post-injury 
management 
and treatment

There is high variability in post-injury management that is impacted by varying 
degrees of compliance with the standard of care and evidence-based guidelines, 
as well as health care resource accessibility. 
Management often primarily focuses on stabilizing the individual that may have 
undergone multiple other traumas in addition to the SCI. Given the complexity 
of SCI types, patients may or may not undergo surgical intervention. Once 
stable, people may undergo surgical decompression and stabilization. The time 
before a patient receives surgical intervention or additional medication, or is 
transferred for rehabilitation, will vary substantially based on socio-economic 
and health care resource factors (impacted by geographical location and 
insurance coverage).

Some under-appreciated variability. Often considered standardized to limit 
variability and animal management, the care and treatment that pre-clinical 
animals receive follow institutionally approved veterinary care. This varies 
substantially depending on species and may vary by country. Animals are 
kept warm acutely post-injury and given analgesics immediately*. Ongoing 
treatment regimens (daily analgesics, antibiotics) can vary greatly between 
investigators, even within an institution. Note: in order to perform most injuries, 
a laminectomy is performed pre-injury (perhaps comparable to a “pre-injury 
decompression surgery”).
*Dose and timing may vary depending on institutional guidelines, with 
consideration for what effects it might have on compromised functions like 
breathing.

Outcome 
measures

Neurological testing and scoring based on ASIA/ISNCSCI scales are most common 
and highly standardized, however, these scales are less effective at evaluating 
some injury deficits, such as common spinal cord injury syndromes (e.g., central 
cord). Other outcome measures, such as imaging and electrophysiological, have 
been shown to have some predictive value but are not considered standard of 
care. However, there is a lack of consistency in outcome measures employed 
in clinical trials and there is no approved or mandated “standard”. Accordingly, 
comparing results between trials can be extremely difficult.

Functional/behavioral outcome measures are highly variable between 
investigative teams and may depend on the level of research funding and access 
to necessary facilities. A greater push for consistency and more extensive data 
sharing and collaboration has helped to address this issue. With the greater 
drive in the field for transparency, rigor, and reproducibility, the quality of data 
being reported is improving.

A brief highlight of some important differences between human spinal cord injury and how pre-clinical animal models are used to replicate it. The differences are important to 
consider when interpreting the data collected from pre-clinical models, and the translational potential of promising pre-clinical data. Modified from Reier et al. (2021). ASIA: American 
Spinal Injury Association; ISNCSCI: International Standards for Neurological Classification of Spinal Cord Injury; SCI: spinal cord injury. 
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Given that contusive injuries span longer rostro-caudal differences, the extent 
of disruption and neuronal loss, and the contribution of spared pathways 
to plasticity may vary between injury models. Using a dual contusion and 
hemisection injury, Alilain and colleagues (2011) demonstrated that crossed 
phrenic pathways appear to at least partially contribute to the motor function 
after injury (Awad et al., 2013). Retrograde, transneuronal tracing of the 
phrenic motor network also reveals an increase in the number of labeled 
phrenic spinal interneurons (SpINs) connected with the motor network on the 
side of a contusive injury, highlighting a role for SpINs in plasticity post-injury 
(Lane et al., 2012).

Spinal Interneurons and Respiratory Plasticity 
after Spinal Cord Injury 
Recent studies have shown that pre-motor SpINs, that innervate the phrenic 
and other respiratory networks, are found throughout the neural axis, 
and receive input from neurons in the VRC and other respiratory-related 
supraspinal nuclei (e.g., serotonergic axons from the raphe, several reticular 
nuclei including the gigantocellular nucleus) (Zholudeva et al., 2018a). While 
the contribution of these SpINs to breathing remains elusive, several studies 
have now shown that they modulate respiratory output, integrate the phrenic 
networks on each side of the spinal cord, and integrate phrenic with other 
respiratory networks (Lane et al., 2008a, 2009; Lane, 2011; Darlot et al., 
2012; Buttry and Goshgarian, 2015; Zholudeva et al., 2018a; Jensen et al., 
2019). They do so under normal, eupneic breathing, and can change their 
contribution to output with changing conditions (e.g., hypoxia) (Lane et al., 
2009; Sandhu et al., 2009; Streeter et al., 2017). Even more pertinent to 
the present discussion, these cells have been shown to contribute to both 
spontaneous and therapeutically driven plasticity post-SCI, and SpINs are 
being increasingly considered to be key therapeutic targets for promoting 
functional recovery (Harkema, 2008; Zholudeva et al., 2018a, 2021; Zavvarian 
et al., 2020).

Enhancing Respiratory Neuroplasticity after 
Spinal Cord Injury
Neuroplasticity is the ability of the central nervous system to change either 
anatomically or functionally (or both) resulting in persistent alterations in 
function. This ability is an integral part of normal physiology and, following 
injury, can be either adaptive or maladaptive (Table 2). The CPP, as described 
above, and the plasticity that has been reported following contusive injury, 
have provided extensive preclinical data on adaptive plasticity within the 
phrenic motor network. Moreover, clinical reports of progressive respiratory 
improvement following traumatic SCI are beginning to highlight similar 
examples of plasticity among the human population. Several strategies 
including neural interfacing, physical stimuli, and growth-promoting agents 
(pharmacological or genetic) have been identified as promising ways of 
enhancing neural plasticity and are subject of ongoing research. We will now 
discuss the targets of SCI research as they apply to spontaneously occurring 
and therapeutically driven neuroplasticity.

with the injured spinal cord (Courtine and Sofroniew, 2019). With the 
development of more biologically compatible materials, invasive implantation 
is becoming more translationally viable. The resolution at which we can 
stimulate components of the injured respiratory networks is significantly 
improving. Simultaneously, preclinical research has seen a rapid advancement 
in the development of less invasive hardware, including optrodes for epidural 
stimulation of neural tissues (Mondello et al., 2018). Coming years may also 
see the preclinical development of neural interfacing strategies with other 
optogenetic, chemogenetic, and ultrasonic capabilities for activating injured 
networks. Within the respiratory networks, a host of neural interfacing 
strategies have been explored, including diaphragm stimulation (DiMarco 
et al., 2005b; Onders, 2012; DiMarco, 2018), intercostal muscle stimulation 
(DiMarco et al., 2005a; DiMarco and Kowalski, 2010, 2015), epidural 
stimulation (DiMarco and Kowalski, 2009; Kowalski and DiMarco, 2011; 
Kowalski et al., 2013, 2016; Gonzalez-Rothi et al., 2017; Bezdudnaya et al., 
2018, 2020), and to a lesser extent intraspinal stimulation (Mercier et al., 
2017). In an effort to develop and characterize less invasive, yet translationally 
relevant means of stimulation, Vinit and colleagues are exploring the use of 
transmagnetic stimulation as well (Vinit et al., 2014; Lee et al., 2021; Michel-
Flutot et al., 2021b). For a more detailed discussion on neural interfacing for 
respiratory networks, please see (Onders, 2012; DiMarco and Kowalski, 2013; 
Hormigo et al., 2017).

Activity-based therapies
Respiratory training encompasses rehabilitative, resistive, and activity-based 
training methods to strengthen the neuromuscular respiratory circuitry. 
These include respiratory resistive devices, exposure to gas (e.g., hypoxia or 
hypercapnia training) as well as non-respiratory strategies such as locomotor 
training (Randelman et al., 2021; Figure 4B). Resistance-based training 
strategies have been shown to significantly improve respiratory function in 
people with a wide range of underlying impairments (Sapienza and Wheeler, 
2006), and can assist in weaning from assisted ventilation. As ongoing clinical 
studies explore how and when muscle strength training can be used, it may 
become an important component of conventional therapies for people living 
with SCI. Locomotor training for people with SCI has been shown for decades 
to improve motor outcomes (Behrman and Harkema, 2000; Harkema, 2001; 
Barbeau et al., 2006; Edgerton et al., 2006, 2008; Harkema et al., 2012; 
Behrman et al., 2017) and in more recent years these benefits have been 
seen across a wider range of functions in both the clinical population (Harkema 
et al., 2008; Terson de Paleville et al., 2013) and in pre-clinical studies (Ward 
et al., 2014, 2016; Hubscher et al., 2016; Harman et al., 2021).  

One example of a non-invasive respiratory activity-based therapy uses 
decreased oxygen levels (hypoxia). This form of respiratory training - known 
as intermittent hypoxia (IH) - consists of brief intermittent exposures to 
hypoxia with alternating levels of normoxia. These IH protocols can vary by 
the severity of hypoxia (e.g., percent of O2), duration of hypoxic episodes, 
number of hypoxia/normoxia cycles per day, longevity of treatment, and/or 
start time of treatment following injury (Dale-Nagle et al., 2010; Dale et al., 
2014; Gonzalez-Rothi et al., 2015, 2021). One of the hallmarks of respiratory 
plasticity with IH training is the ability to elicit persistent (hours) increase 
in phrenic nerve activity called phrenic long-term facilitation (Fuller et al., 
2000; Mitchell et al., 2001; Devinney et al., 2013). Many of the IH-facilitated 
respiratory plasticity pathways are serotonin (Ling et al., 2001; Baker-Herman 
and Mitchell, 2002; Golder and Mitchell, 2005) and BDNF dependent (Baker-
Herman et al., 2004). Several lines of evidence have shown that daily acute 
intermittent training with hypoxia can enhance respiratory motor output and 
tidal volume (Lovett-Barr et al., 2012) and restore breathing capacity after 
preclinical SCI (Vinit et al., 2009; Navarrete-Opazo et al., 2015; Dougherty et 
al., 2018). 

An alternative form of gas training to hypoxia is to increase levels of 
carbon dioxide (i.e., intermittent hypercapnia) while maintaining normoxia 
(Randelman et al., 2021). While early studies using chronic hypercapnia 
revealed little efficacy (Bach and Mitchell, 1996, 1998; Baker et al., 2001), 
intermittent hypercapnia appears to promote some adaptive respiratory 
plasticity (Baker and Mitchell, 2000; Baker et al., 2001). Combining 
hypercapnia with hypoxia has also been shown to enhance respiratory 
function, tidal volume, and frequency after SCI (Lee et al., 2017; Wen et al., 
2019; Wu et al., 2020b; Lin et al., 2021). Therefore, understanding the proper 
dose (level of gas) and duration (exposure time) of different types of gas as a 
“chemical” stimulant is crucial for effectively modulating respiratory plasticity. 
As preclinical studies continue to refine these therapeutic approaches there 
will be a strong potential for rapid translation into the clinic. 

Pro-regenerative treatments
The goal of pro-regenerative treatments is typically to enhance axon 
outgrowth for the repair of neural networks capable of restoring function. 
The barriers to growth can be broadly divided into intrinsic and extrinsic 
barriers. Various neuronal intrinsic mechanisms contribute to structural 
plasticity including gene transcription, neuronal chromatin, and cytoskeletal 
architecture, intrinsic neuronal molecular brakes, and mitochondrial energy 
deficits. Extrinsic barriers to axonal growth such as cellular damage and death, 
upregulated matrix molecules (e.g., perineuronal net), myelin and protein 
debris, and fibroastrocytic scarring also contribute to attenuated neuronal 
growth. Both intrinsic and extrinsic mechanisms controlling structural 
plasticity and axon growth have been targeted with pharmacological and 
genetic strategies (e.g., viral vectors) and are described in detail elsewhere 
(Tedeschi and Bradke, 2017), and have been applied as anatomical and 
functional repair strategies for respiratory networks (Nantwi and Goshgarian, 

Table 2 ｜ Types of functional plasticity

Adaptive plasticity
Maladaptive 
plasticityRestorative Compensatory

Plasticity within 
neural networks: 
General changes in 
neural output

Restoration 
of function in 
respiratory circuits 
(and muscles 
they control) that 
have been directly 
compromised/
paralyzed by injury 

Altered activity 
within respiratory 
circuits (and the 
muscles they control) 
that are not directly 
compromised by 
injury 

The amplitude or 
pattern of neural 
output may become 
dysfunctional 
(e.g., weakened 
or arhythmic), 
limiting recovery or 
contributing to the 
deficit.

Behavioral 
plasticity: Resulting 
from collective 
changes that usually 
occur across multiple 
neural networks

Restoring the 
ability to perform 
ventilation in exactly 
the same manner 
as it was performed 
prior to injury

Effective ventilation, 
but performed in 
a manner different 
from how it was 
performed prior to 
injury (e.g., rapid, 
shallow breathing)

The onset of 
inappropriate 
patterns of 
ventilation

The following table provides the definitions for types of plasticity that occur either within 
neural networks or at a behavioral level. Modified from Kleim (2013) and Hormigo et al. 
(2017).

Neural interfaces
Stimulation of neuronal networks via neural interfaces (e.g., electrical 
stimulation) activates spared networks and contributes to modest anatomical 
and functional plasticity. These stimulation strategies include epidural, 
intraspinal, functional electrical stimulation, and transcranial magnetic 
stimulation (Edgerton and Harkema, 2011; Young, 2015; Hormigo et al., 2017; 
Courtine and Sofroniew, 2019; Zavvarian et al., 2020; Figure 4A). The last 
decade has seen rapid advances in the engineering of hardware for interfacing 
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Though promising in the treatment of respiratory dysfunction, bringing 
PTEN antagonist peptide from preclinical models to clinical trial would be a 
dangerous endeavor as PTEN inhibition is directly linked to the development 
of some cancers (Milella et al., 2015). Therefore, longitudinal studies 
evaluating residual effects of PTEN antagonist peptides are necessary prior to 
application in humans. Alternatively, there may be other means of targeting 
such pathways. There is mounting evidence to suggest that activity-based 
strategies may be a viable non-pharmacological alternative to targeting the 
mechanisms of enhanced axonal growth (Liu et al., 2012; Gutierrez et al., 
2013). 

Another strategy that can target both intrinsic and extrinsic mechanisms of 
repair is cell or tissue transplantation. Within the respiratory networks, pre-
clinical studies have explored the reparative potential of olfactory ensheathing 
glia (Polentes et al., 2004; Stamegna et al., 2011; Stamegna et al., 2018), fetal 
spinal cord tissue (White et al., 2010; Lee et al., 2014; Spruance et al., 2018), 
and their more-refined counterpart neural progenitor cells (Zholudeva et 
al., 2018b; Goulão et al., 2019), and peripheral nerve bridges (Gauthier and 
Rasminsky, 1988; Lammari-Barreault et al., 1991; Gauthier and Lammari-
Barreault, 1992; Decherchi and Gauthier, 1996; Decherchi et al., 1996, 1997; 
Gauthier et al., 1996, 2002; Decherchi and Gauthier, 2002; Alilain et al., 2011). 
While diverse in their mechanism of action (and elusive for some), each of 
these approaches has demonstrated repair within phrenic motor networks 
and improvements in respiratory function. Although untested in the clinical 
arena for respiratory functions, ongoing pre-clinical studies continue to 
refine and optimize transplantation strategies and improve their translational 
potential (Charsar et al., 2017; Lane et al., 2017; Zholudeva and Lane, 2019; 
Fischer et al., 2020). Despite what is quickly becoming a remarkable potential, 
translating cell therapies are not without difficulties (discussed in Fischer et 
al., 2020). A major hurdle faced in translating cellular therapies to the clinical 
population has been producing large enough numbers of purified human 
cells in a good manufacturing practice facility, that are identical to those that 
were shown to have pre-clinical efficacy. Maintaining the survival of donor 
cells (when needed for the proposed therapeutic effects) is another difficulty 
that is not easily overcome without significant immunosuppression, and it 
remains unclear as to how long that is required. Ongoing pre-clinical research 
is broadening its focus to start exploring some of these hurdles in the hope of 
paving a smoother translational path. 

A

B

C

Figure 4 ｜ Therapeutic strategies to enhance neuroplasticity. 
Neural interfaces (A), activity-based therapies (B), and pre-regenerative treatments (C) 
are subject of ongoing pre-clinical and clinical investigations for enhancing neuroplasticity 
after spinal cord injury. Recent years have seen an increased translation of neural 
interfaces for people with spinal cord injury and diaphragm pacing (FES) represents one 
of the greatest advances in ventilating people with impaired breathing (A). A growing 
number of activity-based therapies are being developed to enhance plasticity and are 
often used to strengthen respiratory muscles and wean people form assisted ventilation 
(B). While there is a vast array of pro-regenerative treatments under pre-clinical 
development, there is growing motivation to explore translating some of these to people 
with spinal cord injury (C). FES: Functional electrical stimulation; TMS: transcranial 
magnetic stimulation. 

1998; Alilain et al., 2011; Gransee et al., 2013; Warren et al., 2018; Charsar et 
al., 2019; Urban et al., 2019).

One strategy that has been explored to enhance the repair of respiratory 
pathways is pharmacologically targeting phosphatase and tensin homolog 
(PTEN), which is a negative regulator of mammalian target of rapamycin 
(Park et al., 2008, 2010). Inhibition of PTEN with PTEN antagonist peptide has 
been shown to promote robust growth of damaged axons in both chronic 
(Du et al., 2015) and acute (Urban et al., 2019) SCI and has even been 
shown to significantly restore respiration following diaphragm hemiparesis. 

DC 

BA

Figure 2 ｜ Cervical spinal cord injury in “mouse” and “man”. 
Comparison of the cervical spinal cord in man (A, C) and rodent (B, D). These 
representations highlight gross morphology of the cervical spinal cord in each species (A, 
B) and show examples of clinically occurring traumatic spinal cord injury (C), and common 
pre-clinical models of cervical spinal cord injury used to study respiratory dysfunction (D). 
MRI of the human spinal cord (inset, C) from patient seen at Shands Hospital, University of 
Florida, USA. Unpublished data. 

BA

Figure 3 ｜ Models of cervical spinal cord injury and resulting respiratory deficits. 
Schematic diagram of the cervical spinal cord highlighting the phrenic network, 
comprising phrenic motoneurons (green), pre-motor spinal interneurons (purple), and 
descending bulbospinal input (grey, VRC). These images compare two spinal cord injury 
(SCI) models that are commonly used to examine respiratory function and plasticity. The 
C2 hemisection (A) is the most frequently used model of SCI for examining respiratory 
plasticity after SCI. This model completely disrupts all descending pathways from the 
ventral respiratory group (VRC) in the medulla, to the phrenic motoneurons (green) 
on the same side (ipsilateral). Electrophysiological recording from this denervated 
network shows diaphragm paralysis, but sustained activity on the contralateral side 
(likely undergoing compensation). In contrast, contusive models of SCI (B) more closely 
resemble the neuropathological deficits associated with human SCI. Most human injuries 
also occur at mid-cervical levels denervating some phrenic motoneurons and resulting 
in loss of others. Recording diaphragm activity in this pre-clinical model reveals deficits 
ipsilateral to injury. Ongoing research is studying the neuroplastic potential of this 
injured anatomical substrate and progressive functional changes. dEMG: Diaphragm 
electromyography; SCI: spinal cord injury; VRC: ventral respiratory column.
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From Mouse to Man: Plasticity in Clinical 
Research
The medical management of SCI is constantly evolving. In recent years, 
clinicians have begun bringing the discoveries of benchwork scientists into 
clinical research and practice. Particular emphasis has been placed on using 
external triggers to stimulate plasticity including exercise, virtual reality 
exposure, and hypoxia/hypercapnia training for the ease of application and 
relatively minimal invasive nature of the therapy. 

IH and hypercapnia have shown promising results in inducing spinal plasticity 
post-SCI. In 2021, Christiansen et al. found that paired corticospinal motor 
neuronal stimulation-induced plasticity could be potentiated by acute (short 
exposures) IH. In this study, sixteen people with cervical SCI were treated with 
either paired corticospinal motor neuronal stimulation-acute IH or paired 
corticospinal motor neuronal stimulation-sham-acute IH, and then measured 
motor evoked potentials as an amplifier of plasticity. This study builds upon a 
strong foundation of research supporting IH as a method of inducing plasticity 
in humans (Mateika et al., 2015; Mateika and Komnenov, 2017) and improving 
respiratory function (Tester et al., 2014; Sutor et al., 2021). While IH has 
been more readily translated clinically, hypercapnia training (intermittent 
or sustained exposures) has also been demonstrated to evoke respiratory 
plasticity and ventilatory long term facilitation with and without exposure to 
hypoxia (Harris et al., 2006; Griffin et al., 2012; Sankari et al., 2015; Bascom et 
al., 2016; Vermeulen et al., 2020; Welch, 2021). With ongoing clinical use of 
hypercapnic treatments, and mounting evidence of intermittent hypercapnia 
demonstrating therapeutic efficacy in pre-clinical models of SCI, coming years 
may see this as a newly translated treatment of individuals living with injury.

Beyond activity-based or training strategies, pharmacological interventions 
have also been explored as means for improving respiratory function after 
SCI. Theophylline is a phosphodiesterase inhibiting drug commonly used in 
therapy for chronic obstructive pulmonary disease and asthma (Jilani et al., 
2021). It is theorized that theophylline improves respiratory muscle strength 
by enhancing descending bulbospinal pathways and/or increasing the 
inotropy of the skeletal muscle in the diaphragm, intercostal, and transversus 
abdominis muscles (Jilani et al., 2021). Theophylline has previously been 
shown in animal models to restore phrenic nerve activity by inhibiting the 
adenosine A1 and A2-receptors (Nantwi and Goshgarian, 1998, 2002) and 
activating quiescent tracts in the contralateral spinal cord via the inducible 
CPP previously discussed (Moreno et al., 1992). Despite evidence of recovery 
in animal models, clinical trials have failed to find a significant improvement 
in pulmonary function following treatment protocols of oral theophylline 
(Moxham et al., 1985; Tzelepis et al., 2006) though there is some evidence 
to suggest that higher success rates of ventilator weaning in high cervical SCI 
patients can be attributed to theophylline use (Zakrasek et al., 2017). 

Another therapeutic strategy that has seen rapid pre-clinical advances 
and translation to the clinical arena is the use of the vast array of neural 
interfacing strategies. The primary therapeutic goal of neural stimulation 
post-SCI is to restore sufficient activity to denervate spinal motor networks 
and activate otherwise silenced/paralyzed circuitry and muscles. When 
applied under the right conditions, the beneficial effects can also persist after 
treatment termination (Dobkin, 2003; DiMarco, 2005; Courtine et al., 2009; 
Onders, 2012; Mondello et al., 2014; Posluszny et al., 2014). There are many 
ways to stimulate the spinal cord, including functional electrical stimulation, 
intraspinal, epidural, or transcutaneous stimulation, or trans magnetic 
stimulation (DiMarco, 2005; Martin et al., 2012; Onders, 2012; Tator et al., 
2012; Hormigo et al., 2017) (outlined in Figure 4A). Prior studies demonstrate 
that electrical stimulation can facilitate plasticity in respiratory (Hormigo et al., 
2017) and non-respiratory networks (Taccola et al., 2018; Jack et al., 2020). 

Within respiratory circuitry, functional electrical stimulation of respiratory 
muscles, particularly the diaphragm (diaphragm pacing, DP) has been 
successfully translated and employed for more than 30 years and can 
facilitate ventilator weaning and respiratory recovery (Onders, 2012; 
Posluszny et al., 2014). After cervical SCI diaphragm paralysis/paresis often 
leads to muscle atrophy within hours, especially when the injured individual is 
on mechanical ventilation (Powers et al., 2009; Gill et al., 2014; Smuder et al., 
2016). However, DP stimulates regular muscle contractions and accordingly 
attenuates disuse atrophy (Dalal and DiMarco, 2014; Lu et al., 2016; Zambon 
et al., 2016). Stimulation of these paralyzed or impaired muscles uses the 
same pattern and magnitude of normal respiratory functional activity (Moe 
and Post, 1962). The beneficial effects of DP have even been reported to 
persist after the treatment’s termination (Posluszny et al., 2014). However, 
muscle stimulation still requires the sparing of sufficient spinal (lower) 
motoneurons to achieve muscle contraction, so not all patients with cervical 
level SCI are eligible. While preclinical assessment and development of 
functional electrical stimulation-based strategies continue, clinical functional 
electrical stimulation therapy, including DP, is proving beneficial in eligible 
patients (DiMarco, 2005, 2018; Onders et al., 2007; Kowalski et al., 2013; 
Posluszny et al., 2014). A 2018 study by Onders et al. collected data from 92 
people with traumatic SCI and subsequent respiratory failure, treated with 
four-electrode intramuscular DP, and found complete respiratory recovery 
in 5 participants, with 2 able to have their electrodes removed (Onders et 
al., 2018). They concluded that early implantation of DP leads to favorable 
outcomes and improves the quality of life of people with respiratory 
dysfunction following traumatic SCI. The complete recovery of respiration 

with the use of DP is evidence of plasticity within the respiratory circuit and 
further propels clinical SCI research forward.

Locomotor training has also been shown to improve a range of non-
locomotor functions, including a respiratory function for individuals with 
chronic cervical and thoracic injuries (Terson de Paleville et al., 2013). This 
improvement in respiratory function is believed to be from increased heart 
rate and minute ventilation (i.e., increase cardiopulmonary activity) during 
treadmill training (Terson de Paleville et al., 2013). However, the extent of 
respiratory improvement may also be “dose-dependent”. Terson de Paleville 
saw improvements in respiratory function for subjects who received 60 
minutes of stepping on a treadmill, five days a week for an average of 12 
weeks (Terson de Paleville et al., 2013). In contrast, individuals who received 
passive robot-assisted stepping did not improve cardiopulmonary function 
(Jack et al., 2011). One limitation in respiratory recovery might be achieving 
a sufficient increase in limb afferent stimulation to encourage locomotor-
respiratory coupling post-SCI (Sherman et al., 2009). This hypothesis is 
supported by hindlimb stimulation (a passive event) producing respiratory 
rhythm entrainment (Iscoe and Polosa, 1976; Morin and Viala, 2002; Potts et 
al., 2005) and increased phrenic motor output (Persegol et al., 1993). While 
there are several possible mechanisms by which locomotor training may 
promote improvements in breathing, better understanding what these are 
and how to best harness the therapeutic potential of locomotor training will 
require more pre-clinical and clinical investigation. 

A wide range of treatments have been used in pre-clinical studies to improve 
respiratory function after traumatic SCI, with some limited effort to translate 
these to the clinical arena, but attaining the greatest degree of improvement 
will likely require a combination of these therapeutic approaches. Each 
targets unique aspects of neural repair and/or the neuroplastic potential of 
compromised respiratory networks. As these strategies are refined for the 
optimal therapeutic outcomes, future work can start to consider how they 
can be combined for synergistic effects.

Closing Remarks
Respiratory plasticity following cervical SCI is a devastating and widely 
researched trauma. Yet despite how widely researched this injury is in 
animal models, relatively few treatments have broken through the preclinical 
barrier (Table 1). This could be partial because of a lack of funding or too 
few incentives for academic, clinical, and industry professionals alike; or the 
immense costs of translation relative to the number of people that can be 
treated (investors make less than they would in other areas of biomedical 
research). This has not been helped by the failure of some treatments with 
pre-clinical efficacy to effectively translate to the clinic. Recent years have 
seen greater effort to replicate promising pre-clinical results before moving 
toward translation, and pre-clinical investigators are required by agencies 
that fund them to strive for great rigor. While there is a broad range of 
hurdles that must be overcome to see a pre-clinically tested treatment 
translated through to conventional therapy for people living with injury, there 
is also growing momentum in the field of SCI research to push forward with 
translation (Morse et al., 2021). Maintaining this momentum will require 
effective communication among researchers, clinicians, and those living with 
SCI. Though SCI may initially seem like an insurmountable scientific challenge, 
the studies presently discussed tell a different tale. Promising animal studies 
have highlighted the neuroplastic potential of respiratory networks and 
how they can be effectively therapeutically targeted. Clinicians have been 
able to use these findings to inform clinical research and intervention to the 
benefit of their patients, e.g., advances in diaphragm pacing (Onders et al., 
2014, 2018), and respiratory training (Christiansen et al., 2021). Not only is it 
important for benchwork to inform clinical research, but investigators must 
also use clinical work to inform their research (reverse translation, a.k.a., 
bedside-to-benchtop). The interactions between academic, clinical, and 
industry professionals, and injured individuals, must become more closely 
intertwined in order to propel SCI research forward and positively impact 
the lives of those living with SCI. The translation spectrum (Figure 5) involves 
a wide range of scientists and engineers in both academic and industry 
environments, and clinical professionals, that need to interact in a timely and 
effective manner with each other, and with those people living with SCI, to 
best pave the translational path.
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