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Abstract: Publicly available compound and bioactivity databases provide an essential basis for
data-driven applications in life-science research and drug design. By analyzing several bioactivity
repositories, we discovered differences in compound and target coverage advocating the combined
use of data from multiple sources. Using data from ChEMBL, PubChem, IUPHAR/BPS, BindingDB,
and Probes & Drugs, we assembled a consensus dataset focusing on small molecules with bioactivity
on human macromolecular targets. This allowed an improved coverage of compound space and
targets, and an automated comparison and curation of structural and bioactivity data to reveal
potentially erroneous entries and increase confidence. The consensus dataset comprised of more
than 1.1 million compounds with over 10.9 million bioactivity data points with annotations on assay
type and bioactivity confidence, providing a useful ensemble for computational applications in drug
design and chemogenomics.

Keywords: big data; data curation; medicinal chemistry; machine learning; de novo design

1. Introduction

Information on small molecules and their biological activity extracted from scientific
publications is currently available through several publicly accessible databases. Among
these are large generic databases such as ChEMBL [1] and PubChem [2], which include
“any” reported molecule and associated data, as well as specialized repositories focus-
ing on extensively profiled “high-quality” compounds (BindingDB [3], IUPHAR/BPS [4],
Probes & Drugs [5], Drugbank [6]). Such repositories are exceptionally valuable for medici-
nal chemistry, computer-aided drug design, pharmacology, and chemical biology. Since
these databases have different objectives [7], their main focus, the contained data, the
ways of data collection, and the level of details are diverse. The use of all available data
is indispensable in some data-driven applications in life-science research and computer-
aided drug design. Thus, a database that combines all publicly available information on
compounds and their bioactivities would be valuable. For example, the assembly of a
chemogenomics library containing the most active and selective compounds for hundreds
of targets ought to rely on all available bioactivity information to capture potency and
selectivity. Moreover, data-driven drug design techniques, e.g., machine learning, relying
mainly on ChEMBL [8–11] or PubChem would profit from larger datasets that combine
data from multiple repositories. Furthermore, data quality is another essential factor in
decision-making regarding the use of public databases [12,13]. Combining information
from multiple databases not only increases coverage of compound/bioactivity data, but
may potentially reveal erroneous structural and activity data in a database [14,15] when
comparing values from different sources, which thereby helps curating data in a semi-
automatic fashion. Following these considerations, we have analyzed the overlap and
gaps between several public databases of compound/bioactivity data and assembled a
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consensus database for chemogenomic compound search and machine learning applica-
tions. For rapid application, this database only contains information on chemical structure,
biological target(s), and bioactivity/potency. Moreover, the database follows a common
gene/target nomenclature and minimizes duplicate compound entries for different assays
and targets. To add additional validation/confidence, it employs and compares structural
and bioactivity information from various repositories.

2. Results
2.1. Sources of Compound/Bioactivity Databases

We used data from five sources for the assembly of the consensus database, including:

• ChEMBL28 [1] containing experimentally determined bioactivity data for 2.1 million
drug-like bioactive molecules;

• PubChem [2] (downloaded 11.01.21) containing chemical and physical properties, as
well as biological activities for more than 110 million molecules;

• BindingDB [3] (downloaded 25.02.21) containing experimentally determined binding
affinities to biological targets for approx. 26,000 drug-like bioactive molecules;

• IUPHAR/BPS [4] Guide to Pharmacology (version 2021.1) containing curated infor-
mation on biological targets and bioactivity for selected, pharmacologically active
tool compounds;

• Probes & Drugs [5] (version 02b_2021) containing bioactivity data as well as target
and signaling pathway information for more than 30,000 compounds from 29 public
and commercial libraries, with great attention to chemical probes and drugs.

Except for PubChem, all described databases were fully incorporated into the custom
database. Compounds from PubChem were only considered when they were included in
at least one of the other databases. The data in PubChem for such compounds were used to
validate and curate chemical structure and biological activities. Only compounds with a
molecular weight of ≤1500 and an annotated biological activity on a human target were
included, resulting in the following numbers of molecules per source database:

• ChEMBL28: 1,131,947 molecules;
• PubChem: 444,152 molecules;
• BindingDB: 26,856 molecules;
• IUPHAR/BPS: 7371 molecules;
• Probes & Drugs: 34,211 molecules.

2.2. Analysis of Public Compound/Bioactivity Databases

Before assembling a consensus database from the publicly available compound/bioactivity
data, we evaluated the selected source databases. We extracted and compared the con-
tained molecules to reveal unique and shared compound entries, and we analyzed the
distribution of bioactivities as well as the coverage of large protein target families (e.g.,
kinases, G protein-coupled receptors, nuclear receptors, transporters, ligand-gated ion
channels, cytochrome P450, and writers/readers/erasers). In addition, we used molecular
descriptors (e.g., molecular weight, number of rotatable bonds, number of aromatic bonds,
and cLogP) and analyzed the molecular scaffold diversity to compare the source databases.

2.2.1. Database Coverage and Overlap

To reveal the overlapping information (common compounds) and potential differ-
ences/gaps in the coverage of the public databases, we compared the compound IDs
(PubChem CIDs and ChEMBL IDs, see also Section 2.3) as well as the molecular structures
using canonical Simplified Molecular Input Line Entry System (SMILES) [16] strings for
all databases (Figure 1a). Surprisingly, only 39.8% (455,513 of 1,144,648) of the molecules
were contained in more than one source database and only 0.14% (621) of these molecules
were found in all sources. Only 64.9% (295,404) of the molecules contained in at least two
databases had the same canonical SMILES deposited in the different repositories. Database
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comparison purely based on canonical SMILES revealed only 306,689 compounds shared
by two or more databases and only 387 compounds shared by all (Figure 1b). Combining
the information content from all the public databases, hence appeared attractive.
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Figure 1. Analysis of individual compound/bioactivity databases to assemble a consensus dataset
(C = ChEMBL, PC = PubChem, B = BindingDB, I = IUPHAR/BPS, and PD = Probes & Drugs). From
PubChem, only compounds that were also included in at least one of the other databases were
considered and the data in PubChem referring to these compounds were used to validate and curate
chemical structure and biological activities. (a,b) Venn diagrams of the data collected from the
five different databases and created by compound ID (a) or SMILES (b). The numbers of shared
and not-shared molecules are reported and the numbers of unique scaffolds are in round brackets.
(c) The five-most frequently occurring Murcko scaffolds present in the databases. (d) Distribution
of molecular weight (MW), number of aromatic rings, rotatable bonds, and octanol–water partition
coefficients (cLogP) per database. (e) UMAP of 2000 randomly selected molecules from each database.
(f) Percentage pie chart of records labeled as active (activity log-value higher than 6), weakly active
(activity log-value between 5 and 6), inactive (activity log-value lower than 5 or labeled inactive),
not specified (no activity log-value), and no data point. Each ring represents a database in the order
shown in the legend. Percentages below 5% are not displayed.

2.2.2. Compound Space of Databases

Murcko scaffold analysis [17] revealed 353,492 unique scaffolds in total, among which,
169,883 (48.1%) were shared by two or more databases. Only 449 (0.3%) scaffolds were
present in all databases. Conversely, each source thus contributed unique atomic scaffolds.
For example, 2134 of the 8592 molecules (24.8%) contained only in the BindingDB repre-
sented novel scaffolds (ChEMBL: 180,763 of 676,453 (26.7%); IUPHAR: 696 of 3129 (22.3%);
Probes & Drugs: 350 of 961 (36.4%)). The IUPHAR/BPS and Probes & Drugs databases
had the highest diversity as observed by high percentages of different scaffolds with 58.7%
(4327 different scaffolds in 7371 contained molecules) and 52.5% (17,963 different scaffolds
in 34,211 contained molecules), respectively. For the remaining databases, a lower diversity
was observed with 31–36% unique scaffolds per compound ratio. This observation further
supports the need for a consensus database and highlights unique contributions from all
data sources. Benzene emerged as the most common scaffold in all databases, and biphenyl
and indole were also frequent (top 5) (Figure 1c).

Despite large differences in terms of the contained compounds and scaffolds, the distri-
butions of common drug-like features such as molecular weight, number of aromatic bonds,
number of rotatable bonds, and predicted octanol–water partition coefficients (Figure 1d)
were similar across the sources. Owing to the largest number of contained molecules, the
ChEMBL database had the widest distribution and the highest frequency of outliers com-
pared to the other databases, while the more focused databases IUPHAR/BPS, BindingDB,
and Probes & Drugs showed narrower distributions. Interestingly, molecules annotated in
IUPHAR/BPS tended to comprise fewer aromatic rings. Molecular similarity analysis by
extended connectivity fingerprints (ECFP, 1024 bits, radius = 2) [18] and uniform manifold
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approximation and projection for dimension reduction (UMAP) [19] also demonstrated a
similar chemical space coverage of the source databases, despite their incomplete overlap
(Figure 1e).

2.2.3. Activity Analysis

We also evaluated and compared the activity landscape/distribution of the compounds
from the different databases. For this, all annotated bioactivity data were classified by
their potency and assigned one of the bioactivity labels of either “active”, “weakly active”,
“inactive”, “no data point”, or “not specified”, which were inspired by previous work [20].
Experimental bioactivities with a log-value greater than six or with an assay comment
“active” were classified as “active”. Bioactivity annotations with a log-value between
five and six were assigned to the “weakly active” group. The “inactive” label denoted
bioactivities with a log-value below five or with the assay comment “inactive”. Where
no value was present, the label “no data point” was added, and all other bioactivities
were labeled as “not specified”. Comparison of the source databases in terms of activity
distribution (Figure 1f) and coverage of large target families (Figure 2) demonstrated that
each source contributed differently to the final consensus dataset.

• In ChEMBL, there were 6,575,449 annotated bioactivities covering 4081 targets for the
1,131,947 selected molecules, of which 23.3% were active, 19.8% weakly active, 43.5%
inactive, 13.2% not specified, and 0.2% had no data point;

• In PubChem (for comparison/curation), there were 11,587,761 annotated bioactivities
on 3199 targets for 444,152 selected molecules, of which 47.1% were active, 37.2%
weakly active, 15.6% inactive, 0.01% not specified, and 0% had no data point;

• In BindingDB, there were 51,424 annotated bioactivities on 758 targets for 26,856
molecules, of which 52.7% were active, 23.3% weakly active, 22.2% inactive, 0% not
specified, and 1.8% had no data point;

• In IUPHAR/BPS, there were 15,557 annotated bioactivities covering 1657 targets for
7371 molecules, of which 79.8% were active, 11.5% weakly active, 5% inactive, 3.3%
not specified, and 0.5% had no data point;

• In Probes & Drugs, there were 930,209 bioactivities on 4042 targets for 34,211 molecules,
of which 22.9% were active, 17% weakly active, 16.2% inactive, 30.4% not specified,
and 13.5% had no data point.

This analysis aligned with the focus of the different source databases. ChEMBL
provided the most bioactivity tags, including the most inactive labels. However, there
were also many unspecified, non-traceable bioactivity marks. IUPHAR/BPS focusing on
potent, expert-selected chemical tools contained the highest frequency of active labels.
Probes & Drugs additionally emphasizes on selectivity information and hence had the
highest bioactivity information per compound ratio, many of which were not specified,
however. PubChem showed a high ratio of specified bioactivity data, which was very
useful for curation.

Information on biological targets and target families is another critical aspect for a
bioactivity database. ChEMBL provides valuable information on target families, which was
extracted and applied to the other databases in order to assign each target a family. Analysis
of the coverage of seven large pharmacologically relevant target families in terms of number
of compounds, targets, bioactivities, and distribution of bioactivity labels revealed further
key differences in the source databases (Figure 2). ChEMBL had the greatest coverage of all
seven target families in terms of covered targets and active compounds but contained a
high proportion of unspecified activities. The greatest number of bioactivities was obtained
from PubChem, although it was only used to add information to molecules contained in
at least one of the other sources. Most bioactivities were retrieved for kinases followed
by G protein-coupled receptors, potentially due to the large size of these protein families.
Overall, the different coverage provided by diverse source databases further supports the
benefit of a consensus dataset.
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2.3. Consensus Database Assembly

The analysis of public compound/bioactivity databases (Section 2.2) demonstrated
remarkable differences in terms of the numbers of molecules, annotated bioactivities, and
target coverage, supporting a need for a consensus database. To compile such a set, we
gathered the entire public databases, which were provided in different formats, and fed
them into the Konstanz Information Miner (KNIME) [21]. The datasets from different
sources were then prepared for merging by unifying the data format, standardizing target
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names according to the HUGO Gene Nomenclature Committee (HGNC) [22], flagging
assay types (cell-based, cell-free, functional, and unspecified) by keywords, and converting
molar activity/affinity values to a negative decadic logarithm format where possible. Only
molecules with a molecular weight below 1500 and bioactivity on a target of the organism
homo sapiens were considered. After this pre-processing, the records of each database
were grouped based on their compound IDs (ChEMBL ID or PubChem CID). Structural
information (e.g., SMILES) was not used for merging to enable a structure check for the
grouped compound entries. After grouping by compound IDs, information on targets,
activity types, and assay types was grouped to provide an overview of the activity values
for each compound–target pair. Activities for the same compound on different targets
were retrieved for 2.9% of the contained compounds and were kept separate. This small
fraction of compounds occurring in more than one line (as different compound–target
pairs) indicated that the number of true duplicates—if any—was very small. Bioactivities
referring to the same compound–target pair were grouped and compared. For multiple
annotated bioactivities for a compound–target pair within one log unit difference (e.g.,
<10-fold), their mean was calculated and kept together with the number of the underlying
values. When the difference was more than one log unit, each annotated bioactivity was
kept separately in multiple columns. The databases were then merged into a consensus
dataset by aggregating compound/bioactivity data based on compound IDs (ChEMBL
ID, PubChem CID), gene symbols, activity type, assay type and unit. After this, a bioac-
tivity check was performed by comparing values from the different sources and adding
an activity check annotation to provide automated activity validation for additional confi-
dence. In addition, we performed a molecular structure check and compared the structural
information stored in the databases after harmonization of structural information from
different sources [23]. For this task, we removed salts from the molecular structures, created
canonical SMILES, and canonicalized tautomers for each entry from all databases, and
checked if the SMILES matched. We introduced a “Structure check (Tanimoto)” column
to denote matching or differing compound structures and to give information about the
similarity between non-matching structures.

Previous work to assemble a target-focused dataset for nuclear receptor ligands
(NURA) [20] inspired the structure of this dataset. The consensus dataset comprises
the following information and the format exemplified in Figure 3.

• Compound information: ChEMBL ID, PubChem ID, IUPHAR/BPS ID, and all unique
names contained in the five source databases are listed. The molecular structure is
expressed as canonical SMILES. The biological target is given using HGNC symbols
and the corresponding target family;

• Experimentally determined bioactivity (including unit of measure, activity type, assay
type), pivoted/grouped by the ligand, target, unit of measure, activity type, and assay
type. For IUPHAR/BPS, BindingDB, and Probes & Drugs, the assay type is defined
by the activity type (Ki, Kd = cell-free; IC50, EC50 = cell-based) and for ChEMBL and
PubChem through keyword search in the assay description (cell-free: e.g., “binding
affinity”, “recruitment”, “displacement”, “fret”, “htrf”; cell-based: e.g., “cell” in com-
bination with “reporter” or “receptor”, “transfection”, “transactivation”, “luciferase”,
“galactosidase”; functional: e.g., “cell proliferation”, “cell” without “reporter” or “re-
ceptor”; unspecified: any other). After pivoting, the dataset has multiple columns
representing different bioactivities from the different databases and up to four rows
for different assay types per compound/target pair. In addition, the number of activity
values for the respective compound/target pair in the respective database is noted;

• Activity check annotation: For automated curation and to add confidence on annotated
bioactivity data, bioactivity values with common activity type and assay type from
different source databases were compared and flagged as: no comment: bioactivity
values are within one log unit; check activity data: bioactivity values are not within
one log unit; only one data point: only one value was available, no comparison and no
range calculated; no activity value: no precise numeric activity value was available;
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no log-value could be calculated: no negative decadic logarithm could be calculated,
e.g., because the reported unit was not a compound concentration;

• Structure check (Tanimoto): To denote matching or differing compound structures
in different source databases, we added a structure check label as follows: match:
molecule structures are the same between different sources; no match: the structures
differ; one structure: no structure comparison was possible, because there was only
one structure available; no structure: no structure comparison was possible, because
there was no structure available. For structure annotations that did not match, we
computed the Jaccard–Tanimoto similarity coefficient on Morgan fingerprints [24] for
sets of structures for one compound from the different sources to reveal true structural
differences. The minimum similarity value is presented in the final dataset together
with the structure check.
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Figure 3. Structure of the consensus dataset.

2.4. Analysis of the Consensus Database

The final dataset contains 1,144,648 molecules with 10,915,362 bioactivities on 5613 targets
(including isoforms, cell lines, phenotypic experiments, etc.) with an activity distribu-
tion of 25.8% active, 27% weakly active, 36.9% inactive, 5.8% not specified, and 4.6%
with no data point (Figure 4). A total of 5,779,130 (52.9%) bioactivities were retrieved
from cell-free, 4,031,770 (36.9%) from cellular, and 917,120 (8.4%) from functional as-
says. A total of 187,342 (1.7%) referred to other or unspecified test systems. A total of
51,912 (0.5%) bioactivity annotations differed in different sources according to our thresh-
old of one log unit and were flagged. Figure 4 further shows that the number of com-
pounds and bioactivity data for the seven important target families increased in the
consensus dataset.

Detailed analysis of the activity check annotation for bioactivity data retrieved from
more than one source (1,352,614 bioactivities; Table 1) showed an exact match for
987,022 (73%) bioactivity annotations, while 45,831 (3.4%) values were within the range of
one log unit. A total of 51,912 (3.8%) reported bioactivities were outside this range and
hence were considered as not matching. A total of 192,951 (14.3%) bioactivity annotations
only referred to a comment with no precise value, and no log value could be calculated for
74,898 (5.5%). The bioactivity check could thus not be performed for these data.
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Figure 4. Percentage pie chart of the bioactivity labels of the complete consensus dataset for seven
important target families with detailed numbers of associated targets, compounds, and bioactivities.

Table 1. Analysis of activity check annotation for bioactivities in at least two source databases.
Percentage values refer to bioactivities that were found in at least two sources.

Category Total Number Percentage

Exact match of the activity values 987,022 73
Match within one log change 45,831 3.4

Outside one log change (no match) 51,912 3.8
No activity value 192,951 14.3

No log value could be calculated 74,898 5.5

A total of 9,562,748 (87.6%) bioactivities were only available from one source and no
SMILES string was documented for 110,947 (0.9%) bioactivities; thus, no structure check
could be performed. Among the bioactivities annotated in at least two source databases
(1,352,614), 1,322,851 (97.8%) were for the same canonical SMILES and 29,763 (2.2%) referred
to different canonical SMILES. A total of 65% (19,510) of entries with differences in the
SMILES string revealed a Jaccard–Tanimoto similarity computed on Morgan fingerprints
of one, indicating no relevant structural difference. In the remaining 10,253 entries with
different SMILES and a similarity <1, structural differences were due to different or missing
stereochemical information, tautomers that were not normalized in the preprocessing
(mostly involving sulfur atoms as center), salt and complex bonds that were annotated
as covalent bonds in the source data, and true structural differences/errors (examples are
shown in Figure 5).
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3. Discussion

The diverse publicly available compound/bioactivity databases constitute a key re-
source for data-driven applications in chemogenomics and drug design. Analysis of their
coverage of compound entries and biological targets revealed considerable differences,
however, suggesting a benefit of a consensus dataset. Therefore, we combined and curated
information from five esteemed databases to assemble a consensus compound/bioactivity
dataset comprising 1,144,648 compounds with 10,915,362 bioactivities on 5613 targets (in-
cluding defined macromolecular targets as well as cell-lines and phenotypic readouts). The
dataset provides simplified information on assay types underlying the bioactivity data as
well as a bioactivity confidence notice and a structure check based on the comparison of
data from different sources. Interestingly, this automated curation and evaluation proce-
dure revealed a considerable number of relevant differences in the structural data provided
by different sources.
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We unified the source databases, brought them into a common format, and com-
bined them, easing its use for multiple generic applications such as chemogenomics and
data-driven drug design. Nevertheless, there remain some limitations. Importantly, a
considerable fraction of bioactivity data in the consensus dataset were only found in one
source database, mainly ChEMBL, obscuring automated comparison and curation in these
cases. In addition, ChEMBL contains many units of measurement and activity types that
are not found in the other databases, thus preventing further automated comparison. Our
keyword-based classification of assay types additionally may not be optimal for the Pub-
Chem and ChEMBL databases, therefore, some matching bioactivities were not merged.
Conversely, the automated approach towards assay classification and matching of bioac-
tivities may have merged data from incomparable assay setups in some cases. The flags
in the bioactivity check should therefore be treated with some care and manually exam-
ined in cases where precise bioactivity data matter. Another limitation may arise from
using compound IDs for matching. Although the number of duplicates after merging was
small and the structural information matched for a very large fraction of molecules in
the consensus set, which was merged based on the compound IDs, the IDs might have
not been fully up-to-date and consistent in all source databases, which may have led to
incomplete merging.

Still, our results show that the consensus dataset provides increased target coverage
and contains a higher number of molecules compared to the source databases, which is
also evident from a larger number of scaffolds. These features render the consensus dataset
a valuable tool for machine learning and other data-driven applications in (de novo) drug
design and bioactivity prediction. The increased chemical and bioactivity coverage of the
consensus dataset may improve robustness of such models compared to the single source
databases. In addition, semi-automated structure and bioactivity annotation checks with
flags for divergent data from different sources may help data selection and further accurate
curation. The final consensus dataset is available at 10.5281/zenodo.6398019.

4. Materials and Methods
4.1. Data Collection and Database Merging

Data from all source databases were curated by a common procedure with the follow-
ing sequential steps:

1. Download the databases and the additional compound identifier mapping informa-
tion between the different databases (ChEMBL ID, PubChem CID, and UniProt ID)
and loading all data into the Konstanz Information Miner (KNIME);

a. ChEMBL downloaded as PostgreSQL database;
b. PubChem downloaded as RDF-files;
c. BindingDB downloaded as SDF-file;
d. IUPHAR/BPS downloaded as CSV-file;
e. Probes & Drugs downloaded as PostgreSQL database.

2. Mapping the compounds to the compound identifier information;
3. Only records for the organism homo sapiens and for compounds with a molecular

weight lower than 1500 were considered;
4. Standardization of target names using HGNC (gene symbols);
5. Calculation of the negative decadic logarithm of experimental readouts with a molar

unit; all other experimental readouts with other units were not changed;
6. Classification of records from ChEMBL and PubChem into cell-free, cell-based, and

functional using keywords from the assay description (assay type); for IUPHAR/BPS,
BindingDB, and Probes & Drugs, the activity type defined the assay type;

7. Pivoting the data of each source database first by compound ID (ChEMBL ID, Pub-
Chem ID) and then pivoting data referring to one molecule by gene symbol, activity
type, assay type, and unit. After that, the ranges of log-values were calculated:

a. range ≤ 1 -> calculate mean of log-values + frequency;
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b. range > 1 -> split into several columns + frequency;
c. no activity value deposited -> searching for information in assay comments and

write them in columns + frequency.

8. Merging the different databases based on their compound ID (ChEMBL ID, PubChem
ID), gene symbol, activity type, assay type, and unit;

9. Activity check annotation between databases: Calculating range between highest and
lowest value in the new dataset:

a. range ≤ 1 -> no comment;
b. range > 1 -> ‘check activity data’;
c. range not calculable -> ‘only 1 data point’;
d. no activity value deposited -> ‘no activity value’;
e. no log-value -> ‘no log-value could be calculated. Please check the matches

by yourself’.

10. Salts were removed from the molecular structures and the remaining structures were
converted into canonical SMILES strings. Lastly, the molecules were screened for
tautomers and the canonical tautomer was generated.

11. Structure check: The structure check was performed on the standardized SMILES by
string comparison. Only for entries that did not match, we compared the structures
with the Jaccard–Tanimoto coefficient computed on Morgan fingerprints and noted
the minimum value.

4.2. Software and Code

Data aggregation and curation were performed in KNIME 4.3.3 [21]. Salts were
removed and SMILES were canonicalized using the nodes ‘RDKit Salt Stripper’ and ‘RDKit
Canon SMILES’. Extended connectivity fingerprints (ECFPs) were calculated in Python v3.7
with RDKit 2021.03.4 with the following settings: “Bits per pattern” = 1024 and “radius” = 2.
Morgan Fingerprints and the Jaccard-Tanimoto similarity coefficient were calculated in
Python v3.7 with RDKit 2021.03.4. Canonical tautomer generation was done with Python
v3.7 using RDKit 2021.03.4. UMAP projection was done with Python v3.7 and the module
umap-learn v0.5.2 with the following parameters: “n_neighbors” = 500, “min_dist” = 0.99,
“metric” = correlation, “random_state” = 16. Murcko scaffolds, molecular weight, number
of aromatic rings, rotatable bonds, and octanol–water partition coefficients were computed
with RDKit 2021.03.4 in Python v3.7 with default settings. The Venn diagrams were created
using the module venn v0.1.3. in Python v3.7.
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