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Abstract: A strategy was described to design antimicrobial peptides (AMPs) with enhanced salt
resistance and antiendotoxin activities by linking two helical AMPs with the Ala-Gly-Pro (AGP)
hinge. Among the designed peptides, KR12AGPWR6 demonstrated the best antimicrobial activities
even in high salt conditions (NaCl ~300 mM) and possessed the strongest antiendotoxin activities.
These activities may be related to hydrophobicity, membrane-permeability, and α-helical content
of the peptide. Amino acids of the C-terminal helices were found to affect the peptide-induced
permeabilization of LUVs, the α-helicity of the designed peptides under various LUVs, and the LPS
aggregation and size alternation. A possible model was proposed to explain the mechanism of LPS
neutralization by the designed peptides. These findings could provide a new approach for designing
AMPs with enhanced salt resistance and antiendotoxin activities for potential therapeutic applications.
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1. Introduction

Antimicrobial peptides (AMPs) have been found in the innate defense systems of plants,
insects, and animals [1–5]. AMPs can incorporate and disturb microbial membranes and hence
cause their death [6,7]. The modes of action of AMPs have been widely described to include the
barrel-stave model, the toroidal pores model, and the carpet model [5,8]. Moreover, AMPs can
act synergistically with current antibiotics to reduce bacterial resistance and reduce the amount of
antibiotics needed [9–11]. Owing to these unique mechanisms, AMPs may be the solution to the
problem of bacterial resistance [12,13].

Problems such as salt sensitivity, cost of synthesis, bioavailability, and stability have limited the
therapeutic applications of antimicrobial peptides [14,15]. Among these problems, salt sensitivity is
directly related to the microbicidal mechanism of antimicrobial peptides. For example, the efficacy of
the clinically active peptide P-113 is greatly reduced in high salt conditions [15]. Similar problems
have also been found with other antimicrobial peptides [16–18].

Lipopolysaccharide (LPS, endotoxin) is the major outer surface membrane component of
Gram-negative bacteria [19]. LPS forms an amphiphilic structure that consists of three regions:
a conserved lipid A motif, a highly variable polysaccharide or O antigen, and a core oligosaccharide.
LPS released from bacteria into the bloodstream during infection may interact with Toll-like receptor
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4 (TLP4) on macrophages and subsequently activate the transcription factor nuclear factor-kappa
B (NF-kB) to cause serious unwanted stimulation of the host’s immune system and lead to septic
shock of the patient [20,21]. Neutralization of LPS using anti-LPS or anti-TNF-α antibodies had only
limited success in the treatment of sepsis [22,23]. Various studies have shed light on AMPs with
antiendotoxin properties [24–35]. Some AMPs have been shown to bind to LPS and neutralize LPS
stimulated proinflammatory responses [26,29,36]. However, rules governing the design of AMPs with
antiendotoxin properties are still not very clear [26,29,36].

Recently, solution structures of S1 (Ac-KKWRKWLAKK-NH2) and S1-Nal-Nal
(Ac-KKWRKWLAKKNal-Nal-NH2) in complex with LPS micelles have been reported [37].
Both S1 and S1-Nal-Nal bound to LPS through the hydrophilic surface of their helices to the
negatively charged region of LPS. S1-Nal-Nal further inserted deeper into the hydrophobic core
of LPS micelles and created better hydrophobic interactions of its C-terminal β-naphthylalanine
end-tags with the lipid A motif of LPS. The LPS-induced inflammation might then be prohibited.
Moreover, a strategy was developed to increase salt resistance and LPS neutralization activities
of P-113 (AKRHHGYKRKFH-NH2) by replacing histidines with phenylalanine- (Phe-P-113),
β-naphthylalanine- (Nal-P-113), β-diphenylalanine- (Dip-P-113), and β-(4,4′-biphenyl)alanine-
(Bip-P-113). Structure−activity relationships of P-113 and its derivatives were evaluated [38]. Among
these peptides, Bip-P-113 with the longest bulky non-nature amino acid sidechains was discovered
to possess enhanced salt resistance, serum proteolytic stability, peptide-induced permeabilization,
zeta potentials, LPS aggregation, and in vitro and in vivo LPS neutralizing activities.

Cecropins are a family of antimicrobial peptides widely found in the innate immune system
of Cecropia moth. Cecropins exhibit broad spectra antimicrobial and anticancer activities [39–41].
The structures of cecropins are composed of 34−39 amino acids with an N-terminal amphipathic α-helix,
an AGP hinge and a hydrophobic C-terminal α-helix. Recently, cecropin A and the cecropin-like
peptide papiliocin were found to possess anti-inflammatory activities in LPS-stimulated murine
macrophage [42,43]. Studies of cecropin analogues [44], cecropin A/cecropin B hybrids [45], and cecropin
A, LL-37, and magainin hybrids also revealed potential antimicrobial and anticancer activities [46].

We hypothesize that the binding and neutralization of LPS of cecropin and cecropin-like peptides
is through similar structural features like S1-Nal-Nal (i.e., amphipathic helix−linker−hydrophobic
terminus). Here, we use this structural feature to create a new type of antimicrobial peptides by linking
an amphipathic peptide and a hydrophobic peptide with the AGP sequence. The antimicrobial and
LPS neutralization activities of these designed peptides were determined.

2. Results

2.1. Antimicrobial Peptides

To investigate the amphipathic helix–AGP–hydrophobic helix on the antimicrobial and
neutralization activities of LPS, two peptides KR12 and RW6 were used for the N-terminal and
C-terminal helices. KR-12 (KRIVQRIKDFLR) was derived from human host defense cathelicidin
LL-37 and was found to possess antimicrobial activities against Gram-negative and Gram-positive
bacteria. RW6 (RRWWRW) was derived from the reversed sequence of WR6 (WRWWRR) which had
moderate antimicrobial activities [47–50]. Sequences of the designed peptides are listed in Table 1
and their helical wheel analyses are shown in Figure 1. KR12AGPKR6 was named based on the
“KR12–AGP–KR6 sequence”. KR12AGPWR6 was named based on the “KR12–AGP–WR6 sequence”.
KR12AGPVR6 were named based on the “KR12–AGP–VR6 sequence”. KR12AGPKR6, KR12AGPWR6
and KR12AGPVR6 were designed to compare the effects of hydrophobicity, membrane-permeability,
and α-helical contents. All peptides were acetylated and amidated at the N- and C-terminus.
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Table 1. Primary structure, charge, hydrophobicity and molecular weight of Ala-Gly-Pro (AGP)
series peptides.

Peptide Sequence Charge Hydrophobicity
<H>

Molecular Weight
(Da)

KR12 Ac-KRIVQRIKDFLR-NH2 +4 0.193 1517.93
RW6 Ac-RRWWRW-NH2 +3 0.62 1045.22

KR12AGPKR6 Ac-KRIVQRIKDFLR-AGP-IKDFLR-NH2 +4
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2.2. Antibacterial Activity and Salt Resistance

Minimal inhibitory concentration values (MICs) of the peptides were determined against
Gram-positive and Gram-negative bacteria in Mueller−Hinton (MH) broth or LYM broth media (with 50,
100, 200 or 300 mM NaCl added) (Figure 2). KR12 was very effective against both Gram-positive
and negative bacteria in LYM medium (MIC ~1 µg/mL). However, MIC values of KR12 increased
to 4~16 µg/mL in MH broth and ~32 µg/mL in LYM broth with 300mM NaCl added. RW6 had
only limited antimicrobial activity (8~32 µg/mL) in LYM broth and lost its antibacterial activity in
MH broth and in LYM broth with >100 mM NaCl added. Similar to KR12, KR12AGPKR6 had
MICs 1~2 µg/mL against both Gram-positive and negative bacteria in LYM medium. However,
KR12AGPKR6 lost its antibacterial activity gradually to ~32 µg/mL in MH broth. KR12AGPKR6 was
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completely inactive in LYM broth with 300 mM NaCl added for Escherichia coli, Staphylococcus aureus,
and Pseudomonas aerginosa Migula. Surprisingly, KR12AGPKR6 still possessed effective antibacterial
activity against Acinetobacter sp. In MH broth (~2 µg/mL) and in LYM broth with 300 mM NaCl added
(~1 µg/mL). On the other hand, KR12AGPWR6 displayed superior antibacterial activities against
both Gram-positive and Gram-negative bacteria in MH and LYM media even in NaCl ~300 mM
(MIC 2~4 µg/mL). KR12AGPVR6 exhibited moderate activities in MH broth (4~32 µg/mL), and lost its
activity in LYM broth with 300 mM NaCl added. In addition, KR12, KR12AGPKR6, KR12AGPWR6
and KR12AGPVR6 were more effective to inhibit Acinetobacter sp. than the other three bacteria strains.
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2.3. Limulus Amebocyte Lysate (LAL) Assay

The ability of binding and neutralizing LPS in vitro was measured by the LAL assay which
is well-known as the most sensitive and specific method [29,33,49,51]. As shown in Figure 3,
KR12AGPWR6 blocked the interaction between LPS and factor C (an LPS sensitive serine protease
isolated from the hemocyte granules of the horseshoe crab Limulus), and neutralized the downstream
reaction dose-dependently (greater than 60% inhibition at 64 µg/mL). KR12, RW6, KR12AGPKR6 and
KR12AGPVR6 had only limited effects (less than 25% inhibition at 64 µg/mL).
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2.4. Cytotoxicity

Cytotoxicity of the designed peptides was evaluated by MTT assay using murine macrophage
J744A.1 cells. RW6, KR12AGPKR6, KR12AGPWR6, and KR12AGPVR6 all exhibited little or even no
cell toxicity (Figure 4). However, KR12 showed greater toxicity at 64 µg/mL (cell survival rate less
than 40%).

Int. J. Mol. Sci. 2020, 21, 6810 5 of 18 

 

 
Figure 3. Lipopolysaccharide (LPS) -neutralizing activities determined by limulus 
amebocyte lysate (LAL) assay. The experiments were performed in triplicate. Results are 
presented as means ± standard deviations (SD). 

2.4. Cytotoxicity 

Cytotoxicity of the designed peptides was evaluated by MTT assay using murine macrophage 
J744A.1 cells. RW6, KR12AGPKR6, KR12AGPWR6, and KR12AGPVR6 all exhibited little or even no 
cell toxicity (Figure 4). However, KR12 showed greater toxicity at 64 μg/mL (cell survival rate less 
than 40%). 

 
Figure 4. Cytotoxicity to murine macrophage J744A.1 cells of KR12, RW6, KR12AGPKR6, 
KR12AGPWR6 and KR12AGPVR6. Data are representative of at least three independent experiments 
and results are presented as means ± standard deviations (SD). 

2.5. Inhibition of Endotoxin-Induced Inflammation 

LPS (lipopolysaccharide) can induce nitrite oxide production in macrophage cells [52]. Among 
the peptides studied, KR12AGPWR6 demonstrated the best ability to inhibit LPS-induced NO 
production in murine macrophage J744A.1 cells (Figure 5A). 

Figure 4. Cytotoxicity to murine macrophage J744A.1 cells of KR12, RW6, KR12AGPKR6, KR12AGPWR6
and KR12AGPVR6. Data are representative of at least three independent experiments and results are
presented as means ± standard deviations (SD).



Int. J. Mol. Sci. 2020, 21, 6810 6 of 18

2.5. Inhibition of Endotoxin-Induced Inflammation

LPS (lipopolysaccharide) can induce nitrite oxide production in macrophage cells [52]. Among the
peptides studied, KR12AGPWR6 demonstrated the best ability to inhibit LPS-induced NO production
in murine macrophage J744A.1 cells (Figure 5A).
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TNF-α plays an important role in septic shock and is generally used as an indicator for septic
shock [52]. Similar to the results of LPS-induced nitrite oxide production in murine macrophage
J774A.1 cells above, KR12AGPWR6 showed the best ability to inhibit TNF-α release (Figure 5B).

2.6. Endotoxemia Mouse Model

To evaluate the anti-LPS effect of KR12AGPWR6 in vivo, the mice were divided into three groups
and received PBS, LPS, and a mixture of LPS and peptide, respectively [29]. Blood was collected via the
tail veins of the mice 1.5 h after injection. Serum TNF-α production increased dramatically in the LPS
group. The KR12AGPWR6-treated mice displayed a significantly lower level of TNF-α (Figure 6A).
Pathological evaluation of the lung tissues revealed that the proliferation of alveolar epithelial cells
and pulmonary hemorrhage were reduced in mice treated with KR12AGPWR6 (Figure 6B–D).

2.7. Peptide-Induced Permeabilization, Circular Dichroism (CD) Spectroscopy, and LPS Aggregation

We have used peptide-induced permeabilization of large unilamellar vesicles (LUVs),
CD spectroscopy, and LPS aggregation studies to investigate the factors attributed to the differences of
antibacterial and antiendotoxin activities among KR12AGPKR6, KR12AGPWR6 and KR12AGPVR6.

The membrane-permeabilizing abilities of peptides were investigated by releasing calcein from
phospholipid vesicles with different surface charge densities. POPC/cholesterol LUVs with neutral
charge were used to mimic the mammalian cell membrane. POPC/POPG LUVs with negative
charge were used to mimic the anionic bacterial membrane, and POPC/LPS LUVs were serving as
Gram-negative bacterial membranes which contain lipopolysaccharides.
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Figure 6. Suppression of LPS-stimulated inflammation in endotoxemic mice (C57BL/6) by KR12AGPWR6.
(A) LPS-stimulated TNF-α release 1.5 h after injection. Excised lungs from the sacrificed mice 24 h after
injection were subjected to H&E staining (B) control, (C) LPS (D) LPS and peptide. KR12AGPWR6
displayed the protective activity on LPS-stimulated endotoxemic mice. All scale bars = 50 µm. Results are
presented as means ± standard deviations (SD); n = 5. * p < 0.05 versus LPS.

2.8. Peptide-Induced Permeabilization

When peptides lysed or disrupted lipid membrane, the entrapped calcein got released into
the buffer. All three peptides displayed weak leakages on POPC/cholesterol LUVs (Figure 7A).
KR12AGPKR6, KR12AGPWR6 and KR12AGPVR6 were shown to possess dose-dependent calcein
leakage activities on POPC/LPS and POPC/POPG LUVs (Figure 7B,C). Among these peptides,
KR12AGPWR6 demonstrated the strongest calcein leakage on POPC/LPS and POPC/POPG LUVs with
about 80% and 70% leakage rate, respectively. The results of dye leakages indicated that the activities
of the peptides to induce calcein release from negatively charged LUVs were concordant with their
antibacterial and anti-LPS activities.
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2.9. CD Spectroscopy

The secondary structures of these designed peptides dissolved in 20 mM phosphate buffer with
30% TFE or various lipid membranes were evaluated by CD spectra. All of the three peptides showed
random or weak structure in aqueous solution and POPC/cholesterol LUVs (Figure 8A,C). However,
these three peptides formed α-helical structures in TFE, POPC/LPS and POPC/POPG environments
(Figure 8B,D,E). The degree of helicity in the POPC/LPS and POPC/POPG environments was found
to be KR12AGPWR6 > KR12AGPKR6 > KR12AGPVR6. This data demonstrated that helicity of
the peptides in negatively charged model membranes were inconsistent with their antibacterial and
anti-LPS activities.
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Figure 8. Circular dichroism spectra of the designed peptides. CD spectra were recorded at 60 µM
concentration of KR12AGPKR6, KR12AGPWR6 and KR12AGPVR6 in (A) 20 mM phosphate buffer,
(B) 30% TFE buffer, (C) 1 mM POPC/cholesterol, (D) 1 mM POPC/LPS and (E) 1 mM POPC/POPG
LUVs at pH7.4, 25 ◦C.

2.10. LPS Aggregation

It has been reported that LPS aggregation promoted by polymyxin B and rBPI21 might inhibit the
interaction of LPS with its cell receptors and hence block cytokine production [27,53]. Dynamic light
scattering (DLS) was used to measure the size increase of the designed peptides [27,53]. The results
indicated that KR12AGPWR6 promoted POPC/LPS LUVs aggregation and increased their mean sizes.
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KR12AGPKR6 and KR12AGPVR6 did not have the abilities in aggregating and increasing particle size
(Figure 9).
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Figure 9. Size distribution of LPS aggregates in the presence of the designed peptides. Plots showed
the size alterations of LPS aggregates in the absence or presence of KR12AGPKR6, KR12AGPWR6 and
KR12AGPVR6 in 25 µM POPC/LPS solutions.

3. Discussion

It has been shown that hydrophobicity is a key factor in the development of salt resistant and
LPS-neutralizing AMPs [25,36,54]. For example, the effect of the hydrophobicity to net positive
charge ratio on antibacterial and antiendotoxin activities has been reported [55]. Studies of NK-2
and N-acylated lactoferricin-derived LF11 also demonstrated that a hydrophobic interaction would
increase LPS neutralization significantly for AMPs [36]. Recently, a strategy to increase salt resistance
and LPS neutralization of short AMPs was developed by adding β-naphthylalanine end-tags to their
termini [15,16,55]. The addition of fatty acid, vitamin E, or cholesterol to the termini of AMPs was
shown to have similar results [25,56–60]. Along with the present studies, it is suggested that modulating
the lipophilicity of the termini is very important in the design of AMPs with improved salt resistance
and LPS neutralization effects.

It was shown that the solution structure of the Trp-rich antimicrobial peptide PEM-2-W5K/A9W
could inset more deeply into the DPC micelles and possessed a larger buried hydrophobic surface than
its parent peptide PEM-2 [61]. Results from fluorescence quenching and dye leakage experiments also
showed a direct relationship between membrane-bound hydrophobic surface area and the salt-resistance
of antimicrobial peptides [61]. Herein, we have calculated the hydrophobicity of the N-terminal
amphipathic helix and the hydrophobicity of the C-terminal helix of each designed peptide (Table 1).
Surprisingly, the hydrophobicity of the C-terminal helices of KR12AGPKR6, KR12AGPWR6 and
KR12AGPVR6 correlated well with the antimicrobial and salt resistant activities as well as the in vitro
and in vivo LPS-neutralizing activities. Moreover, results of the peptide-induced permeabilization
of LUVs, α-helicity of the designed peptides under various LUVs, and LPS aggregation and size
alternation also correlated with the calculated hydrophobicity of the C-terminal helices.
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In addition to cecropin-like AMPs, many other anti-LPS AMPs may adopt similar structural
features. For example, the chicken cathelicidin fowlicidin-2, MSI-594, SMAP-29, pardaxin, cecropin A,
and papiliocin all have an N-terminal amphipathic helix, a central hinge, and a C-terminal hydrophobic
helix [34,43,62–65]. The reversed structural features (i.e., hydrophobic helix–hinge–amphipathic helix)
are also found in the chicken cathelicidins fowlicidin-1 and fowlicidin-3 [66].

Based on our present results and the above-mentioned anti-LPS AMPs, we propose a possible model
to explain the mechanism of the helix−hinge−helix peptides in the interaction with LPS (Figure 10).
Firstly, the peptide is attracted to LPS by the electrostatic interactions between the N-terminal
amphipathic helix and the negatively charged region of LPS. Then the C-terminal hydrophobic helix
inserts itself into LPS by hydrophobic interactions with the lipid A region of LPS. The LPS-induced
inflammation is then prohibited by the blocked lipid A region and aggregated LPS vesicles.
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Figure 10. A proposed model of interaction of the designed peptide with LPS. The N-terminal helix
of designed peptides shown in red and C-terminal hydrophobic helix shown in light blue. Structure
of LPS consists three regions: polysaccharide O antigen (purple), core oligosaccharide (blue presents
outer core and green presents inner core) and lipid A region. Lipid A consists of two glucosamine
(yellow) units with attached acyl chains.

In summary, we describe a strategy to design AMPs with enhanced salt resistance and antiendotoxin
activities by linking two helical AMPs with the AGP hinge. Among the designed peptides,
KR12AGPWR6 demonstrated the best antibacterial activities even in high salt conditions (NaCl
~300 mM) and possessed the strongest antiendotoxin activities. These activities may be related to
hydrophobicity, membrane-permeability, and α-helical content of the peptide. Our results provide a
new approach to design and development of AMPs with antimicrobial and antiendotoxin activities for
potential therapeutic applications.

4. Methods

All peptides were purchased from Kelowna Int’l Scientific Inc. (Taipei, Taiwan). The identity of
the peptides was checked by matrix-assisted laser desorption-ionization/time-of-flight (MALDI-TOF)
Autoflex III mass spectroscopy (Bruker Daltonik GmbH, Bremen, Germany)) and the purity (>95%)
was assessed by Waters 2796 BioSeparations Module HPLC (Waters, Milford, MA, USA). POPC and
POPG were purchased from Avanti Polar Lipids, Inc. (Alabaster, AL, USA). Lipopolysaccharides
from Escherichia coli O26:B6, cholesterol and calcein were purchased from Sigma Aldrich (St. Louis,
MO, USA).
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4.1. Bacteria Culture

Escherichia coli strain (ATCC 25922), Staphylococcus aureus sp. strain (ATCC 25923),
Pseudomonas aeruginosa Migula strain (ATCC 27853) and Acinetobacter sp. (BCRC number 14B0100) were
used to test the antibacterial activity of the peptides. All bacteria were purchased from Food Industry
Research and Development Institute (Hsinchu, Taiwan), and Acinetobacter sp. is multiresistant to
Ampicillin, Cefazolin, Cefoxitin, Ceftazidime, Ceftriaxone, Ciprofloxacin, Penicillin, Tetracycline and
Imipenem. Bacteria were cultured in sterilized MH (Müller−Hinton) broth at 200 rpm and 37 ◦C for 8 h.
After 8 h of culture, the concentrations of the inoculums were determined by measuring absorbance of
optical density at 600 nm (OD 600 = 1, equal to approximately 108 CFU/mL) with Ultrospec 2100 pro
UV−Visible spectrophotometer (Biochrom Ltd., Cambridge, UK)).

4.2. Antimicrobial Activity

The antibacterial activities were determined by the standard broth microdilution method of the
National Committee for Clinical Laboratory Standards with the MH and LYM broth. The LYM broth
contains 5.4 mM KCl, 5.6 mM Na2HPO4, 0.5 mM MgSO4, and 1.0 mM sodium citrate. In addition,
0.4 mg of ZnCl2, 2.0 mg of FeCl3·6H2O, 0.1 mg of CuSO4·5H2O, 0.1 mg of MnSO4·H2O, 0.1 mg
of Na2B4O7·10H2O, 700 mg of amino acid mixtures without tryptophan (Clontech), and 20 mg of
L-tryptophan were added per liter of medium. A vitamin mixture (100X, Sigma) and glucose at final
concentration of 2% were also added. We made 1 µL peptide solutions (ranging from 3200 µg/mL to
100 µg/mL in serial dilution) and mixed with 99 µL inoculum (5 × 105 CFU/mL) in a polypropylene
96-well plate. We measured the turbidity at OD 600 nm by ELISA plate reader (Thermo Max, Molecular
Devices, Sunnyvale, CA, USA). The absorbance of culture medium and inoculum suspension without
peptides were used as the negative and positive control, respectively. The MIC value is the lowest
concentration of peptide at which there is no obvious growth (equal or more than 90%). MICs were
converted to a color scale and displayed using the TreeView Program [57,67]. All peptides were tested
in triplicate.

4.3. Binding and Neutralization of Peptides to LPS

The abilities of designed peptides to bind and neutralize LPS were assessed using Limulus
amebocyte lysate (LAL) assay (Cape Cod Inc., East Falmouth, MA, USA). LAL is an extract of
amebocytes from the Atlantic horseshoe crab Limulus Polyphemus. LAL reacts with lipopolysaccharide
(LPS) from bacteria. Different concentrations (5, 4, 2, 1, 0.5 EU) of control standard LPS (CSE) were
mixed with LAL reagent water at the same volume of 25 µL to make a standard curve. The samples of
25 µL of different peptide concentrations (128, 64, 32, 16, 8 µg/mL) were mixed with 25 µL CSE (5 EU)
in a 96-well plate. A portion of 50 µL of pyrochrome reagent was added to the wells immediately.
The absorbance at 405 nm was measured by microplate reader at 37 ◦C every minute until 25 min.

4.4. Cell Culture

The murine macrophage cell line J774A.1 was received from Dr. Wen-Ching Wang, Institute of
Molecular & Cellular Biology, National Tsing Hua University [68]. Cells were cultured in DMEM
(Dulbecco’s modified minimal essential medium) medium supplemented with 10% bovine calf serum
and antibiotic at 37 ◦C in 5% CO2.

4.5. Cytotoxicity Assay

The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay is a colorimetric
assay to measure cellular metabolic activity as an indicator of cell viability, proliferation and cytotoxicity.
J744A.1 cells were seeded in a 96-well plate with concentration 104 cells/100µL/well and incubated for
24 h. After the medium was removed, 100 µL fresh medium containing peptide (ranging from 64 µg/mL
to 2 µg/mL) was added to the wells. Following 24 h incubation, fresh medium with MTT (0.5 mg/mL)
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was replaced and incubated for 3 h. After the medium/MTT was removed, DMSO was added at 100 µL
for dissolving the formazan crystal. Cell survival rate was calculated by measuring the absorbance at
540 nm using a Tecan Sunrise microplate reader (Tecan, Männedorf, Switzerland). Medium without
peptide and mixed with H2O2(aq) represented positive and negative controls, respectively.

4.6. Preparation of Large Unilamellar Vesicles (LUVs)

Large unilamellar vesicles (LUVs) of POPC: LPS (12.5:1, mol/mol), POPC: cholesterol (2:1, mol/mol)
and POPC: POPG (3:1, mol/mol) were prepared by the extrusion method with an Avanti small-volume
extrusion apparatus (Avanti Polar Lipids) as described elsewhere [13]. Extrusion procedure is the
sequential passage of a dilute liposome preparation through polycarbonate filters of decreasing pore
size, using a hand-held syringe and filter holder attachment, in order to produce a homogeneous size
distribution [69,70]. Briefly, phospholipids were weighed and dissolved in chloroform: methanol
(4:1, v/v) and then evaporated by nitrogen gas to form the lipid film. After suspending in PBS buffer,
the lipid suspensions were frozen and thawed 6−8 times. Lipid suspensions were extruded with an
extruder ten times through a 0.4 mm pore size polycarbonate filter (Avanti Polar Lipids), followed by
ten times through a 0.1 mm filter.

Calcein-filled LUVs were prepared from calcein-containing buffer (70 mM calcein and 10 mM
Tris at pH 7.4). Unencapsulated calcein was removed by gel filtration with a Sephadex G-75 column
loaded with iso-osmotic buffer (100 mM sodium chloride and 10 mM Tris). The phospholipid content
of vesicles was determined by assessing inorganic phosphate according to John Charles Marshall
Stewart [71].

4.7. Dye Leakage Experiments

Peptide-induced calcein leakages were measured by Perkin–Elmer luminescence
spectrofluorimeter at excitation and emission wavelengths of 496 and 515 nm, respectively.
The concentration of calcein-entrapped LUVs was diluted to 10 µM. Leakage of 100% was induced
by 100 mg/mL Triton X-100. The degree of leakage induced by various concentrations of peptides
was estimated by: %leakage = ((F − F0)/(Fr − F0)) × 100%, where F0 and Fr are the initial fluorescence
intensities observed without peptide and after addition of 100 mg/mL Triton X-100, respectively.

4.8. Circular Dichroism Spectroscopy

CD spectra were recorded with an AVIV 202 spectropolarimeter after calibration with
d-l0-camphorsulfonic acid. All the measurements reported were carried out in 20 mM phosphate buffer
and scanned wavelength from 190 to 260 nm at 25 ◦C in a 1 mm path-length cuvette. Three scans were
averaged for each spectrum with a 0.2 nm step size. Peptide and liposome concentrations were diluted
to 60 µM and 1 mM by using 20 mM phosphate buffer at pH 7.4. The appropriate baselines were used
to subtract the data and the corrected data were converted to molar ellipticity (deg·cm2

·dmol−1).

4.9. Dynamic Light Scattering

The LPS molecules were dissolved in chloroform: methanol (2:1) then the stock solution was
sonicated at 40 ◦C for 20 min and then kept at 4 ◦C overnight. The stock solution was diluted to
25 µM by using 20 mM sodium phosphate buffer with 150 mM sodium chloride at pH 7.4 and then
kept at 4 ◦C overnight before measurements. Peptide concentrations were diluted to 8 or 16 µg/mL.
The particle size and distribution analysis was measured by dynamic light scattering measurements in
Malvern Zetasizer ZS (Malvern, UK), equipped with a He-Ne laser. Three measurements (with 10 runs
each) were taken by using disposable polystyrene cells at 37 ◦C.
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4.10. Inhibition of Endotoxin-Induced Inflammatory

J744A.1 cells were seeded in a 24-well plate with 3 × 105 cells per well and incubated for 24 h.
Cells were washed by PBS and 300 µL phenol red-free DMEM medium containing lipopolysaccharides
(LPS) from Escherichia coli 026:B6 (sigma Aldrich, 150 ng/mL) and peptide (ranging from 32 µg/mL to
2 µg/mL) were added to the wells. Untreated cells and LPS only treated cells served as positive and
negative controls, respectively. Following 24 h incubation, culture supernatant was harvested and
centrifuged at 1000 rpm for 10 min.

To investigate nitric oxide (NO) production, 50 µL culture supernatant was mixed with 50 µL
Griess reagent (Sigma Aldrich, St. Louis, MO) in a 96-well plate and incubated at room temperature
for 10 min. The absorbance at 540 nm was measured and the NO concentration was calculated by a
standard curve generated with sodium nitrite (NaNO2). The medium only was used as blank control.

Concentrations of proinflammatory cytokine (TNF-α) in the culture supernatant were evaluated
using mouse enzyme-linked immunosorbent assay kits for TNF-α (eBiosciences).

4.11. Endotoxemia Mouse Model

The animal model was described in our previous study [55]. Briefly, 5-week-old male C57BL/6 mice
were purchased from the National Laboratory Animal Center (Taiwan). All animal experiments were
performed in accordance with the animal guidelines of the National Tsing Hua University Institutional
Animal Care and Use Committee. All experimental protocols were approved by the National Tsing
Hua University Institutional Animal Care and Use Committee. All mice were sacrificed under CO2,
and all efforts were made to minimize suffering. The weight of each mouse was approximately 22.5 g at
the start of the experiments. Mice were divided into three groups (5 in each group with intraperitoneal
(i.p.) injection of 18 mg/kg of body weight Escherichia coli O26:B6 LPS alone or 18 mg/kg LPS plus
10 mg/kg peptides or no treatment control). Blood was collected via tail vein 1.5 h after injection. Whole
blood was centrifuged at 3000 rpm at 4 ◦C for 10 min, and supernatant was collected and measured by
mouse TNF-α enzyme-linked immunosorbent assay (ELISA) kits (eBioscience). After 24 h, all mice
were sacrificed. The lungs were removed and fixed in 4% formaldehyde buffer. Paraffin-embedded
tissues were cut into 2 µm-thickness sections, and deparaffinized in ultraclear buffer (J.T. Baker) and
graded ethanol. The morphology of the lungs was obtained by H&E stained sections. Tissue images
were captured using light microscope (ECLIPSE TE2000-E, Nikon) with a camera (D50, Nikon) at
40X fields.

4.12. Statistical Analysis

All in vitro results are presented as means ± SD. Levels of significance were calculated using
one-way ANOVA, followed by student’s t-tests, using GraphPad Prism software (significance between
data with a threshold of * p < 0.05; ** p < 0.01; *** p < 0.001).
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Abbreviations

AMPs antimicrobial peptides
ATCC American Type Culture Collection
BCRC Bioresource Collection and Research Center
Bip β-(4,40-biphenyl)alanine
CD circular dichroism
CFU colony forming unit
CSE control standard endotoxin
Dip β-diphenylalanine
DLS dynamic light scattering
DMEM Dulbecco’s modified eagle’s medium
DMSO dimethyl sulfoxide
ELISA enzyme-linked immunosorbent assay
EU endotoxin unit
H&E hematoxylin and eosin
HPLC high performance liquid chromatography
i.p. intraperitoneal
LAL Limulus amebocyte Lysate
LPS lipopolysaccharide
LUV large unilamellar vesicles
MH broth Mueller−Hinton broth
MIC minimal inhibitory concentration
MALDI-TOF matrix-assisted laser desorption-ionization time-of-flight
MTT 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide
Nal β-naphthylalanine
NF-κB nuclear factor-kappa B
NO nitrite oxide
PBS phosphate-buffered saline
POPC 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine
POPG 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(10-rac-glycerol)
SD standard deviation
TLR4 Toll-like receptor 4
TNF-α tumor necrosis factor-alpha
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