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Abstract  
Previous studies on the mechanisms of peripheral nerve injury (PNI) have mainly focused on the 
pathophysiological changes within a single injury site. However, recent studies have indicated that 
within the central nervous system, PNI can lead to changes in both injury sites and target organs at the 
cellular and molecular levels. Therefore, the basic mechanisms of PNI have not been comprehensively 
understood. Although electrical stimulation was found to promote axonal regeneration and functional 
rehabilitation after PNI, as well as to alleviate neuropathic pain, the specific mechanisms of successful 
PNI treatment are unclear. We summarize and discuss the basic mechanisms of PNI and of treatment 
via electrical stimulation. After PNI, activity in the central nervous system (spinal cord) is altered, 
which can limit regeneration of the damaged nerve. For example, cell apoptosis and synaptic stripping 
in the anterior horn of the spinal cord can reduce the speed of nerve regeneration. The pathological 
changes in the posterior horn of the spinal cord can modulate sensory abnormalities after PNI. This 
can be observed in cases of ectopic discharge of the dorsal root ganglion leading to increased pain 
signal transmission. The injured site of the peripheral nerve is also an important factor affecting 
post-PNI repair. After PNI, the proximal end of the injured site sends out axial buds to innervate 
both the skin and muscle at the injury site. A slow speed of axon regeneration leads to low nerve 
regeneration. Therefore, it can take a long time for the proximal nerve to reinnervate the skin and 
muscle at the injured site. From the perspective of target organs, long-term denervation can cause 
atrophy of the corresponding skeletal muscle, which leads to abnormal sensory perception and 
hyperalgesia, and finally, the loss of target organ function. The mechanisms underlying the use of 
electrical stimulation to treat PNI include the inhibition of synaptic stripping, addressing the excessive 
excitability of the dorsal root ganglion, alleviating neuropathic pain, improving neurological function, 
and accelerating nerve regeneration. Electrical stimulation of target organs can reduce the atrophy of 
denervated skeletal muscle and promote the recovery of sensory function. Findings from the included 
studies confirm that after PNI, a series of physiological and pathological changes occur in the spinal 
cord, injury site, and target organs, leading to dysfunction. Electrical stimulation may address the 
pathophysiological changes mentioned above, thus promoting nerve regeneration and ameliorating 
dysfunction.
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Introduction 
Peripheral nerve injury (PNI) can lead to severe sensorimotor impairment 
and chronic neurogenic pain (Li et al., 2021; Xing et al., 2021), and is a 
prevalent cause of disability worldwide (Martínez-Marcos and Sañudo, 2019). 
Sunderland (1951) classified PNI into five grades according to the extent of 
injury and loss of function. The first grade describes a conduction block, which 
is the physiological interruption of nerve conduction along the axon at the site 
of injury, with an intact nerve structure and no Wallerian degeneration. Self-
repair is expected in these cases. The second grade is characterized by axonal 
interruption, an intact endoneurium, and Wallerian degeneration. In these 
cases, nerve self-repair is observed with a speed of 1 mm/d. The third, fourth, 
and fifth grades involve injury to the endoneurial tubes, perineurium, and 
epineurium, respectively. Although self-repair is expected in the third grade, 
this is usually slow and incomplete. Thus, surgical intervention may eventually 
be required. Patients with grades four and five PNI are not expected to exhibit 
self-repair capacity, and surgical intervention is often necessary (Davis, 2020). 
The last decade has brought many surgical innovations in the treatment of 
PNI. However, there have been no significant improvements in the success of 
rehabilitation, as patients continue to experience somatosensory disorders. 
Moreover, 57% of patients with PNI are between 16 and 35 years of age, and 
25% of patients with upper limb PNI are unable to return to work within 1.5 
years post-operation (Kouyoumdjian et al., 2017). Therefore, PNI is associated 

with long-term disability and financial difficulties.

Treatments for PNI range from conservative approaches to surgical 
interventions. Conservative approaches include pharmacological treatments, 
cell-based therapies, and physical therapy. Pharmacological treatments have 
been found to improve axonal regeneration. Commonly used neurotrophic 
drugs include B vitamins, methylcobalamin, and exogenous neurotrophic 
factors (Ehmedah et al., 2019; Karagyaur et al., 2020; Sawangjit et al., 2020). 
However, because local drug concentrations in the peripheral blood tend to 
be low, pharmacological treatments often fail to achieve sustained clinical 
benefits. Recent years have seen tremendous progress in cell-based therapies 
such as those employing Schwann cells (SCs), mesenchymal stem cells (MSCs), 
bone marrow stromal stem cells, and skin precursor cells (Kubiak et al., 
2020). Among these, MSCs can secrete various growth factors and support 
both nerve cells and SCs. A recent study indicated that exosomes from MSCs 
may be useful in a novel therapeutic strategy for PNI, as they can promote 
neurite outgrowth in dorsal root ganglion (DRG) and cortical neurons (Dong 
et al., 2019). However, difficulties associated with obtaining and sustaining 
such materials severely limit the clinical applications of cell therapy. Common 
physical therapies include phototherapy, magnetic therapy, acupuncture, and 
functional training. Despite the large variety of options, the treatment effects 
are not satisfactory. When spontaneous recovery is not observed in clinical 
practice, surgical interventions are often necessary. However, it is difficult to 
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determine the optimal time for surgical intervention (Midha and Grochmal, 
2019).

Compared with conservative approaches and surgical treatment, electrical 
stimulation (ES) is a safe and effective treatment option that can be applied 
in the vast majority of patients. Generally, patients without malignant 
tumors, high fever, coma, active bleeding, skin damage, or acute suppurative 
inflammation are eligible to receive ES. A previous study showed that ES 
can cause twisting of the axons and cytoarchitecture, leading to edema 
(Martellucci, 2015). However, recent studies reported that ES is efficacious in 
promoting axonal regeneration and functional rehabilitation in PNI patients 
(Gordon, 2016; Barber et al., 2018; Power et al., 2020). In addition, ES can be 
used to treat neuropathic pain after PNI. However, the physiological changes 
underlying PNI and the therapeutic effects of ES are complex. In this review, 
we summarize the physiological changes associated with PNI and the specific 
mechanisms of ES treatment at three levels: the cell body, the site of injury, 
and the target organ, to reflect a holistic view. Our goal was to generate 
theoretical guidance for further clinical ES applications.

Search Strategy and Selection Criteria
We used PubMed (https://www.ncbi.nlm.nih.gov/pubmed) to collect relevant 
papers published from inception to 2021 for inclusion in this narrative review. 
Our search keywords were: “peripheral nerve injury”, “electrical stimulation”, 
“peripheral nerve regeneration”, “spinal cord dorsal stimulation”, “dorsal horn 
stimulation”, “dorsal root ganglion stimulation”, “neuropathic pain”, “brain-
derived neurotrophic factor”, “axonal transport”, “transcutaneous electrical 
nerve stimulation”, and “skeletal muscle stimulation”. After eliminating 
duplicates from the retrieved studies, we read the titles and abstracts of 
each article as a preliminary screening process, and then read the full texts 
to eliminate studies that did not cover the mechanisms of peripheral nerve 
injury and stimulation. The literature search process was primarily completed 
by author XLC.

The Mechanisms of Peripheral Nerve Injury
PNI is a common neurological condition that may cause motor and sensory 
disturbances as well as neuropathic pain. Pathological changes occur not 
only at the site of direct injury, but also throughout the affected regions of 
the central nervous system. In addition, target organs can be affected due to 
prolonged denervation. Therefore, the pathological mechanisms are complex, 
necessitating a holistic view. Changes at different levels are discussed in the 
following sections (Table 1).

horn, interposing themselves between ventral horn cell bodies and synapses 
undergoing detachment. The phenomenon in which microglia ‘lift’ these 
synapses has been termed “synaptic stripping” (Salvany et al., 2021). Synaptic 
stripping can induce Ia axons and synapses to withdraw from the ventral horn. 
Although motor and Ia axons can reinnervate muscles, Ia axons cannot return 
to the ventral horn. Consequently, individuals with this type of PNI show 
deficits during high force-related motor tasks due to the absence of Ia axons 
(Lyle et al., 2017).

Given this information, we hypothesized that motor neuron apoptosis can 
cause the dendritic tree to shrink, thereby creating a need for reactive 
microglia to scavenge debris. After neuronal apoptosis, microglia aggregate 
around neuronal debris. Thus, immune surveillance appears to play an 
important role in the injured nervous system during neuronal cell death.

Ectopic DRG activity in the dorsal horn of the spinal cord
The DRG, also called the sensory ganglia, is a gathering place for the syncytium 
of most primary sensory neurons. Most DRG neurons are pseudounipolar, and 
are located in the intervertebral foramen between the vertebrae. Every cell 
body has two axons: one peripheral axon and one central axon that transmits 
electrical signals from the peripheral to the dorsal horn of the spinal cord 
(Esposito et al., 2019). Morphologically, DRG neurons can be divided into 
three types: large, medium, and small, according to diameter size. Large DRG 
neurons are associated with proprioceptive sensation, and play an important 
role in transmitting non-nociceptive sensation and inhibiting nociceptive 
sensation. Medium neurons relay tactile information, while small neurons 
are implicated in sensations of pain and touch, and often form unmyelinated 
C-fiber sensory nerves. Therefore, the DRG is closely associated with sensory 
abnormalities and pain (Esposito et al., 2019). Excessive neuronal firing is 
believed to be a critical factor in neuropathic pain (Moutal et al., 2019), 
and the inflammatory response induced by PNI commonly causes DRG 
neurons to fire excessively. A large number of inflammatory cells, including 
leucocytes, glial cells, T lymphocytes, SCs, and histocompatibility complex 
class II macrophages have been detected in the DRG following PNI. Even if 
the original peripheral nerve is restored, these inflammatory cells continue to 
deliver excitatory cytokines, and thus contribute to extended pain. 

The relationship between microglia and pain has received widespread 
attention. Animal studies have shown a number of spinal dorsal horn 
microglia and morphological changes following PNI, and these are considered 
to underlie the pathogenesis of neuropathic pain (Inoue and Tsuda, 2018). 
PNI rapidly activates NK-κB in the DRG, and colony stimulating factor 1 (CSF1) 
is transported anterogradely along axons to the spinal dorsal horn. A DAP12-
dependent pathway via CSF1R contributes to the local expansion of resident 
microglia via proliferation in the spinal dorsal horn. These microglia convert 
from having normal morphology to over-reactive morphology in response 
to inflammatory factors. Cell morphological analyses have revealed that 
PNI induces microglia to change their phenotype to a reactive hypertrophic 
shape, for instance, that with a reduced process length and complexity, and 
an increased volume (Batti et al., 2016; Gu et al., 2016). Several studies have 
reported that activated microglia produce and release a variety of bioactive 
diffusible factors in response to extracellular ligands via their cognate 
receptors, and that these factors can influence spinal dorsal horn neuronal 
function. Furthermore, reciprocal microglia appear to play a causal role in 
spinal dorsal horn neuronal signaling related to neuropathic pain (Tsuda, 
2016; Inoue and Tsuda, 2018). Such signaling can lead to the secretion of 
brain-derived neurotrophic factor (BDNF) by activated microglial cells, which 
can enhance excitatory synaptic transmission to excitatory neurons.

A study conducted using a neuropathic pain model indicated that greater 
neuropathological damage may be correlated with changes in nerve growth 
factor (NGF), neurotrophin 3, and insulin-like growth factor, while vascular 
endothelial growth factor may attenuate pain behavior and prevent neuronal 
stress by influencing transient receptor potential ankyrin 1 activity (Hulse et 
al., 2015). These changes can increase the excitability of the DRG (Hilz et al., 
2000; Simmons and Feldman, 2002; Generaal et al., 2016). The T-junction, 
which is located between the axon and cell soma, is also regarded as a key 
region in aberrant neuronal activity. The T-junction acts as a low-pass filter 
that limits the rate at which peripheral signals can be transported centrally. 
Previous studies have shown that the T-junction in DRG neurons permits an 
increased amount of high-frequency burst firing after PNI. This alteration in 
the filtering action of the T-junction may also cause hyperexcitability following 
PNI (Liem et al., 2016).

The injury site
After PNI, axons sprout from the broken ends of proximal axons. The speed 
of axon regeneration is affected by axonal transportation and neurotrophic 
growth factors, which are secreted by SCs in the reconstructed basement 
membrane tube.

Staggered axonal regeneration
Wallerian degeneration is initiated immediately after PNI in the distal nerve 
stumps, suggesting that these axons denature and disintegrate. Thus, one aim 
of therapeutic treatments is to create a microenvironment that is conducive 
to axonal regrowth and reinnervation (Conforti et al., 2014). During neuronal 
degeneration, macrophages play a main role in clearing the resulting myelin 
debris. Studies have suggested that non-neuronal cells and axotomized 
neuronal cell bodies express chemokines that are targeted at macrophages. 
In the early stage of injury, these signals appear to mainly recruit M1 
macrophages, which secrete pro-inflammatory cytokines. This can thereby 

Table 1 ｜ Summary of the basic mechanism of peripheral nerve injury

The first to study 
this field 

The greatest 
contributions to 
this field

The affected 
site Main mechanism

Adams et al., 1966 Shen et al., 2019 Skeletal muscle Oxidative stress and 
inflammatory reactions 
results in skeletal muscle 
atrophy

Bray and Aguayo, 
1974

Mackinnon and 
Dellon, 1992

Peripheral nerve 
axons

Wallerian degeneration and 
axonal staggered regeneration

Schmalbruch, 1988 Navarro et al., 
2007

Spinal cord 
ventral horn

Motor neuron apoptosis and 
synaptic stripping

Sato and Perl, 1991 Duraku et al., 
2012

Sensory 
receptors

The thresholds of 
thermoreceptors and 
nociceptors are decreased

Kajander et al., 
1992

Hussain et al., 
2020

Spinal cord 
dorsal horn

Excessive discharge of dorsal 
root ganglion neurons caused 
by inflammatory response; 
the numbers of microglia and 
morphological change

Rabinovsky et al., 
1992

McGregor and 
English, 2018 

The inner tube 
of nerve fibers 
and growth 
factors

The inner tube of nerve 
fibers narrows gradually and 
the ability of express growth 
factor decreases gradually

Neurophysiological changes associated with PNI-induced spinal cord injury 
Motor neuron apoptosis and synaptic stripping in the ventral horn of the 
spinal cord
After PNI, motor neurons in the anterior horn of the spinal cord often 
undergo apoptosis. Current research suggests that there are two explanations 
for motor neurons apoptosis after PNI (Hart et al., 2008). The first is oxidative 
stress, and the second is significant upregulation of the expression of 
apoptosis-related genes Caspase-3, Caspase-8, tumor necrosis factor-related 
apoptosis-inducing ligand receptor, tumor necrosis factor receptor, and Fas 
after PNI. Consistent with the abovementioned mechanism, injection of a Bcl-
12-expressing vector 1 week prior to root avulsion was found to increase the 
survival of lesioned motor neurons by 50% (Natsume et al., 2002).

Synaptic stripping is another cause of functional loss after PNI. PNI usually 
causes activation and proliferation of microglia in the spinal cord. Upon 
activation, microglia proliferate and migrate toward the axotomized ventral 
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enhance inflammatory reactions and tissue necrosis (Zigmond and Echevarria, 
2019).

SCs are activated and involved in the entire process of injury and regeneration. 
After Wallerian degeneration, the proximal section begins axonal regeneration 
by forming a growth cone. The proliferating SCs form Bungner bands, which 
guide the growth of newly sprouting axons. If a growth cone reaches the 
endoneurial tube, it has a better chance of reaching the target organ (Gordon, 
2020). NGF is upregulated in SCs during injury, which promotes the growth 
and proliferation of SCs and provides trophism to the outgrowing axon. In 
theory, the speed of axonal regeneration is 1–3 mm/d, but this speed is much 
slower through damaged regions. In reality, it takes 8–10 weeks for axons to 
regenerate by 25 mm, which is much longer than the theoretical time (Al-
Majed et al., 2000b; Gordon, 2016). 

Unfortunately, exhausted nerve growth factors may limit the degree to 
which SCs can sustain regenerated axons. Liu et al. explored the factors 
associated with long nerve recovery durations, and found that SC atrophy and 
changes in the endoneurial microenvironment were responsible for delayed 
nerve recovery (Reinhold and Rittner, 2017; Liu et al., 2018). Ronchi et al. 
(2017) found that prolonged denervation led to the atrophy of SCs, which 
downregulated the expression of factors that sustain nerve regeneration 
(such as glial fibrillary acidic protein, a SC-specific cytoskeleton constituent 
expressed by nonmyelinating SCs) and upregulated the expression of 
molecules that inhibit axon regeneration [such as low-affinity nerve growth 
factor receptor (p75), a member of the tumor necrosis factor receptor family]. 
These changes had an overall effect on nerve regeneration. Furthermore, 
endothelial cells form a physical barrier called the blood-nerve barrier. The 
inflammatory reactions induced by PNI can break this barrier and disrupt the 
stable internal microenvironment, which can also contribute to slow axonal 
regeneration (Yi et al., 2017).

Growth factors and the inner tube of nerve fibers
Progressive decreases in the levels of growth factors are another reason for 
postponed neuronal regeneration after PNI. The secretion and expression of 
growth factors by SCs peaks 15 days after nerve injury, and returns to normal 
levels 35 days later (McGregor and English, 2018). In cases of prolonged 
nerve injury, the ability of SCs to express growth factors in the distal region of 
injured axons gradually decreases. As it is difficult to maintain the proliferation 
of supporting axons for a long duration, the rate of axonal growth may 
gradually decrease. 

The state of the nerve fiber tube is an important factor affecting the recovery 
of peripheral nerve function. As macrophages engulf and clear away the 
fragments of the degenerated axon and myelin sheath, it may be a long 
time before new axon buds enter the inner tube of nerve fibers (Cattin and 
Lloyd, 2016). This long absence of tube components can decrease the tube 
pressure, which can lead to collapse or a progressive decrease in the caliber 
of endoneurium tubes. In addition, the absence of tube components may 
enable the number of collagen fibers in the endoneurium to slowly increase, 
which can lead to thickening of the endoneurium tube and decreased ease of 
growth for new axial buds (Krarup et al., 2017).

In summary, after axonal injury, axons near the injury site begin to produce 
new axon buds. However, staggered axonal growth may lead to a progressive 
prolongation of the amount of time required for the axons to pass through 
the injury site. This increase in time can weaken the proliferation-promoting 
ability of SCs at the far end of the injury. Cumulative narrowing of the inner 
neural membrane tube and nonspecific reinnervation can also exacerbate the 
passage of injured axons.

Target organs 
Atrophy of skeletal muscles
PNI often leads to impaired sensory motor function. Skeletal muscles, 
which control human movement, are innervated by the nervous system. All 
voluntary movements in daily life are made possible by muscle contractions. 
Compared with the atrophy of skeletal muscles, that of denervated muscle 
has received more attention from researchers. Once a nerve is transected, 
target muscles lose their ability to “pump” muscles due to the loss of nerve 
innervation. This leads to relatively reduced perfusion of the target muscle, 
which can result in skeletal muscle atrophy. A previous study indicated that 
PNI causes the cross-sectional width of skeletal muscles to decrease by 70% 
within 2 months (Willand et al., 2015).

During skeletal muscle atrophy, a series of biochemical and physiological 
alterations occur in atrophic muscle, which trigger changes in gene expression. 
Shen et al. (2019) identified thousands of genes that were differentially 
expressed in the anterior tibial muscle at different times after sciatic nerve 
transection via cDNA microarray. They divided the period encompassing the 
28 days after nerve injury into four transcriptional phases, and examined the 
activation of different functional genes and signaling pathways within each 
phase. PNI has been found to induce four transcriptional phases: the “oxidative 
stress stage” (0–12 hours), “inflammation stage” (12 hours–3 days), “atrophy 
stage” (3–14 days), and “atrophic fibrosis stage” (14–28 days) (Mancinelli 
et al., 2019). The oxidative stress stage is characterized by an increase in 
cytochrome P450 enzymes, which are responsible for the production of 
reactive oxygen species (ROS). This can be interpreted to mean that a large 
number of ROS are produced due to oxidative stress in transcription phase 
1 (He et al., 2017). Hypoxia-inducible factor 1 (HIF-1) signaling pathways are 
activated to eliminate ROS, and thus avoid cellular damage (Eyrich et al., 
2019). Then, in the inflammation stage, inflammation-related genes, such 

as tumor necrosis factor (TNF) and transforming growth factor-beta, are 
triggered by ROS.

Inflammatory proteins are activated by upstream signals and increases in 
the expression of cachexia-related genes. ROS and inflammatory proteins 
persistently damage skeletal muscles, causing the activation of proteasome 
signaling pathways. The proteasome signaling pathways promote protein 
degradation, leading to muscle atrophy. Inactivation of insulin can also 
activate the ubiquitin proteolytic system, causing skeletal muscle hypertrophy 
(O’Neill et al., 2016). Furthermore, the metabolic shift from glycolytic to 
oxidative processes can lead fast fibers to gradually transition to slow fibers. 
For example, a study by Ma et al. (2019) confirmed that the ratio of MyHC II-
positive fibers in the soleus rose significantly after denervation, suggesting 
that denervation leads to the slow transformation of skeletal muscle fibers 
into fast skeletal muscle fibers in the soleus muscle. Hence, oxidative stress 
and inflammatory reactions are both associated with denervated skeletal 
muscle atrophy. Accordingly, antioxidant and anti-inflammatory therapy may 
be an important strategy for preventing the initial atrophy of denervated 
skeletal muscle.

Sensory perception degeneration and nociception overactivity
Initially, changes in skeletal muscle strength are a primary concern for 
patients. However, their attention may shift to positive sensory symptoms as 
motor function is gradually regained. Sensory receptors can be divided into 
mechanoreceptors, thermoreceptors, and nociceptors. A mechanoreceptor 
is a sensory neuron that responds to mechanical pressure or distortion. 
PNI results in the loss of mechanical pressure because of the absence of 
mechanoreceptors. In clinical settings, neuropathic pain is measured in terms 
of cold intolerance. Aδ and C fibers transmit the sensation of temperature, 
and have free nerve endings that terminate in the skin. A main difference 
between the two fibers is that Aδ fibers are myelinated while the C fibers are 
not myelinated. Aδ fibers mainly convey sensitivity to cold and pain (rapid 
pain, “pinprick” sensations), and carry this information from the peripheral to 
the dorsal horn of the spinal cord. C fibers receive and transmit information 
primarily related to heat and pain (slow pain, “burning” sensations) (Sène, 
2018). Both fibers contain neurotransmitter receptors in the skin that are 
known as transient receptor potential (TRP) channels. TRP channels are 
important mediators of sensory signals, and have a strong impact on cellular 
function and signaling pathways. As “cellular sensors”, they respond to 
changes in temperature, pH, stretch/pressure, and chemicals in the cellular 
environment (Sakaguchi and Mori, 2020). Kambiz et al. (2014) found that 
thermosensitive TRP channels in the skin contribute to thermal intolerance 
via three mechanisms. Specifically, thermal intolerance can result from 1) an 
increase in the expression of TRP channels on nerve fibers and keratinocytes, 
2) a reduction in the threshold of TRP channels, leading the receptors to 
be activated by lower intensity stimuli, or 3) sprouting from non-injured 
nerve fibers. For example, Duraku et al. (2012) observed reinnervation 
that occurred in transected rat tibial and peroneal nerves due to sprouting 
of uninjured saphenous and sural nerves. Upon PNI, cell damage-related 
mediators increased nerve fiber excitation by activating TRP channels directly. 
This manifested as mechanical and cold hypersensitivity. This viewpoint 
was further confirmed by Mickle et al. (2016), who blocked TRP channels 
individually and found that peripheral fiber excitation was reduced.

The nociceptive system modulates peripheral pain signal transduction. 
Peripheral nociceptive neurons are initially excited when free nerve endings 
(Aδ and C fibers) receive noxious stimuli or undergo injury. Over time, primary 
afferent Aδ- and C-nociceptors in the injured nerve area start to respond 
to noxious stimulation in an amplified way, leading to the development of 
hyperexcitability and spontaneous activity. This can be explained by the 
dramatically reduced firing thresholds of the Aδ fibers. Previous studies 
have explored the underlying mechanisms by which primary nociceptors 
are remodeled by the inflammatory effects of chemicals that infiltrate the 
injured site. Generally speaking, primary nociceptors are more likely to fire 
following an injury. Inflammatory factors can cause changes in the genetic 
and molecular composition of nociceptors, leading to an increase in primary 
nociceptor excitability (Bjorgen et al., 2018).

The peripheral nerve contains sensory and motor fibers. Previous studies have 
suggested that injured sensory fibers are responsible for neuropathic pain. 
However, recent evidence has indicated that motor fiber injury is essential 
to neuropathic pain. The expression of voltage-gated sodium channels is 
altered in DRGs after PNI. This change forms the basis of ectopic discharges, 
and eventually leads to neuropathic pain. Chen et al. (2011) reported that 
the selective injury of motor fibers can lead to the upregulation of voltage-
gated sodium channels in DRGs, and that this process might be mediated by 
the over-production of TNF-α in bilateral DRGs. In their follow-up study, they 
showed that the overexpression of TNF-α induced hyperalgesia via calpain-2, 
which activated satellite glia to produce extra NGF. This, in turn, enhanced 
nociceptor excitability, resulting in apparent mirror-image pain. In addition, 
Liu et al. (2016) reported that injury to motor fibers may induce long-term 
potentiation at spinal C-fiber synapses, indicating that noxious inputs from 
muscle afferents induce long-lasting central sensitization. Hence, in contrast 
to sensations at the skin level, changes in muscle innervation should be 
investigated to fully understand neuropathic pain.

Summary of the basic mechanisms of PNI
The above-mentioned data indicate that regenerated axons cannot effectively 
reinnervate target-end organs. Therefore, a large number of patients with PNI 
fail to completely recover normal function. The reasons are listed as follows:
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Sensory changes affect the peripheral nerves, spinal cord organization, 
and plasticity of the brain, and all three can affect early regeneration and 
later neuropathic pain. The slow speed of regeneration delays the rate at 
which the proximal end crosses the surgical gap. Furthermore, nonspecific 
reinnervation reduces the chance of regeneration. Generally, SCs support 
axonal regeneration after injury in the peripheral nervous system. However, 
SCs gradually lose regeneration-supporting features and eventually die. The 
denervation of skeletal muscle cells and sensory abnormalities can lead to 
early loss of function. Furthermore, decreases in the activation threshold 
of thermoreceptors and nociceptors can gradually lead to neuropathic 
pain. The slow rate of nerve regeneration may account for negative sensory 
symptoms. However, the negative sensory symptoms that can recover the 
remaining positive sensory symptoms associated with PNI are difficult to 
treat. Nociceptor excitability can increase as the result of decreased firing 
thresholds. Furthermore, common noxious stimuli are still likely to cause 
hyperexcitability in nociceptors. Hence, treatments are needed for the 
positive symptoms of PNI.

The Mechanisms of Electrical Stimulation for 
the Treatment of Peripheral Nerve Injury
As stated above, PNI can trigger a series of pathophysiological changes 
at the level of the cell body, at the site of injury, and in the target organ, 
thus reflecting the overall structure of the nervous system. ES has received 
much attention from PNI researchers as an effective treatment for nerve 
regeneration. Several studies have examined the effects of ES on the cell 
body and target organ in models of PNI, including the stimulation of sites 
aside from the sites of injury, and most have reported a good outcome. In the 
sections that follow, we discuss the mechanisms of ES for the treatment of 
PNI in terms of changes in the cell body, local sites, and end organs (Table 2).

Table 2 ｜ Summary of the studies regarding neuron electrostimulation in PNI

The first to study 
this field

The greatest 
contributions to 
this field

The stimulation 
site

The main mechanism of 
stimulation

Kosman et al., 
1948

Salmons, 2009 Skeletal muscle 
electrical 
stimulation

Promote skeletal muscle 
regeneration and prevent 
skeletal muscle atrophy

Taub et al., 1974 Linderoth and 
Foreman, 1999

Spinal cord 
stimulation

Inhibit apoptosis and synaptic 
stripping

Burton, 1976 Johnson and 
Tabasam, 2003

Transcutaneous 
electrical nerve 
stimulation

Mediate decreased local 
inflammatory mediators and 
elevated pain thresholds

Kadekaro et al., 
1985

Schmidt, 2019 Dorsal root 
ganglion 
stimulation

Suppress the excitability of the 
dorsal root ganglion

Gybels and 
Vancalenbergh, 
1990

Gordon, 2016 Peripheral nerve 
stimulation 

Promote axon regeneration 
and the exactness of axon 
growth; activated Schwann 
cells secrete glutamate and 
exosomes to enhance the 
ability of regeneration and 
inhibit apoptosis

Leem et al., 1995 Wang et al., 2019 Subcutaneous 
electrical 
stimulation

Reduce inflammatory response 
and neuronal apoptosis and 
activate Aβ and Aδ fibers to 
relieve pain

2020). This suggests that glial cells may directly respond to ES and therefore 
contribute to motor recovery. As we discussed above, neuroglia can play an 
important role in PNI. 

Accordingly, we speculate that ES can accelerate the speed of functional 
recovery and reduce neuropathic pain in cases of PNI. However, complications 
from SCS have been reported to occur in 30% to 40% of patients, such 
as electrode migration, infection, and wound breakdown (Sakaguchi and 
Mori, 2020). For uninsured patients, typical out-of-pocket costs for SCS 
are $15,000–$50,000 or more. Thus, the potential complications and cost 
of SCS limit its use in PNI. Many studies have explored easy-to-perform 
and safe techniques for stimulating the spinal cord. For example, electrical 
acupuncture and interference electrotherapy may be alternatives to SCS in 
promoting functional recovery after PNI.

Suppressing DRG excitability 
SCS relieves pain by retraining primary sensory neurons. However, DRG 
stimulation has a similar effect. ES can directly suppress the excitability of the 
DRG, which is also a site of pain pathogenesis, and can bring about changes 
in DRG neuronal activity by altering activity in the T-junction. DRG stimulation 
blocks nociceptive signals from the periphery and enhances the filtering 
properties of the T-junction (Schmidt, 2019).

Koopmeiners et al. (2013) used neurophysiological techniques to measure the 
excitability parameters of uninjured cultured DRG cells after the application of 
ES. After ES, they found that fewer neurons could produce bursts of multiple 
action potentials, and that the conduction velocity was greatly reduced. This 
suggests that ES can lead to reduced neuronal excitability.

Computational modeling analyses have revealed stimulation-induced failure 
of action potentials traveling from the periphery in nociceptive neurons after 
PNI. Low-pass filtering of afferent pain signals occurs at the T-junction, and 
takes place via hyperpolarization of the soma and the mismatch in impedance 
between the peripheral stem and central axons. When the filter is attenuated, 
pain signals can pass through the T-junction at a faster frequency. Elevated 
T-junction filtering can be explained by the subsequent enhancement 
of Ca2+-dependent K conductivity. The activated K channels produce a 
sustained somatic hyperpolarization offset in the stem axon and T-junction. 
Hyperpolarization of the T-junction increases the degree of change in the 
transmembrane potential, which is essential to the propagation of action 
potentials. When the pain signals are generated from the periphery, T-junction 
filtering is not amplified due to the absence of Ca2+ and K channels. 

One study compared over 500 DRG stimulator and 2000 spinal cord stimulator 
implants over a 1-year period. The researchers reported that DRG stimulation 
had a remarkable safety profile, with fewer adverse events compared with 
SCS. A pooled analysis further verified the effectiveness and safety of DRG 
stimulators (Huygen et al., 2020). 

Local sites
Staggered axonal regeneration
Recent studies indicating that ES can enhance reinnervation after PNI have 
consistently focused on ES of a proximal nerve at the injury site. However, the 
exact cellular mechanisms by which ES accelerates nerve regeneration are still 
unclear. The intracellular Ca2+ wave, which is initiated at the site of axotomy 
induced by ES, plays a key role in nerve regeneration. The intracellular Ca2+ 
wave can travel along the axon to the neuronal body. In the neuronal soma, 
increased Ca2+ induces upregulation of BDNF and its receptor tropomyosin 
receptor kinase B (TrkB). The overexpression of BDNF can inhibit the 
phosphodiesterases that degrade cyclic adenosine monophosphate (cAMP), 
leading to sustained elevated levels of cAMP (Al-Majed et al., 2000a).

Raised cAMP levels can increase the expression of regeneration-associated 
genes such as Tα1 tubulin and growth-associated protein-43. Cytoskeletal 
assembly is enhanced through activation of the cAMP response element 
binding (CREB) protein, regulation of Tα1 tubulin, and the inhibition of Rho, 
which is a protein in the p75 NgR receptor (p75-NgR) pathway (McGregor 
and English, 2018). CREB activation is induced by the mitogen-activated 
protein kinase (MAPK) pathway. When a specific p38 MAPK inhibitor is 
implemented, CREB activation and neurite outgrowth are also suppressed. 
Hence, it is believed that ES-induced activation of the p38 MAPK pathway 
may play an important role in promoting neurite outgrowth (Kawamura and 
Kano, 2019). To further confirm that the potential effect of ES is produced by 
the neuron cell body, Al-Majed et al. (2000b) inhibited propagation from the 
injury site to the axon, and found no therapeutic effects on PNI. However, in 
addition to BDNF and TrkB, reports have examined other possible pathways. 
In PC12 mutant cells with injured NGF-induced neurite outgrowth, ES can 
also enhance neurite outgrowth through p38 mitogen activation (Huang et 
al., 2010). As explained earlier, ES of the proximal nerve at the injury site can 
produce substantial therapeutic effects via the cell body (Figure 1). 

In recent years, ES at the injury site has gradually attracted increased 
attention. The long and variable delays in the regeneration process can inhibit 
regenerating axons from successfully crossing the surgical gap and entering 
the distal nerve stumps. Axonal regeneration can be accelerated by 1 hour 
of ES (Gordon, 2000). Brushart et al. (2002) also found that 1 hour of 20-Hz 
stimulation could temporally compress staggered regeneration. Furthermore, 
they found that ES could synchronize distal sump reinnervation. The number 
of regenerated axons that cannot cross the transected nerve increases after 
ES. This is because ES facilitates the onset of motor axon regeneration without 
accelerating its speed. Moreover, continuous 20-Hz ES of the axons proximal 

Cell body arrangement in the dorsal horn of the spinal cord 
Most previous studies have prioritized ES of the site of injury for treating PNI. 
However, we anticipate that proximal neuronal cell bodies will be important 
PNI therapeutic targets in the future. Previous studies have confirmed that 
activity of the wide-dynamic range neurons of the dorsal horn is decreased 
by spinal cord stimulation (SCS). However, even after SCS is switched off, 
the alleviating effects last for a long time (Jensen and Brownstone, 2019). A 
clinical trial indicated that SCS can produce coordinated spinal motor output 
and facilitate the restoration of the sensorimotor network of the spinal cord 
(Formento et al., 2018). Apoptosis and synaptic stripping are the reasons for 
the functional loss following PNI. Accordingly, a previous study investigated 
whether SCS can promote functional recovery by inhibiting apoptosis and 
synaptic stripping (Pei et al., 2015). The researchers found that SCS could 
reduce the Ca2+ influx and stabilize the intracellular environment, which led to 
reduced motor neuron apoptosis in the ventral horn of the spinal cord (Pei et 
al., 2015).

La et al. (2019) showed that an electric field targeting the spinal cord also 
increased the expression of anti-apoptotic Bcl-2 and decreased the expression 
of the apoptosis-related Bax gene after sciatic nerve transection. Glial cells are 
also involved in the effects of ES. Some studies have indicated that, if directly 
applied to the spinal cord, ES will have a robust effect on gene expression 
(Sun et al., 2017; Stephens et al., 2018). For instance, levels of glial cell-
related proteins glial fibrillary acidic protein and cFBJ osteosarcoma oncogene 
increased after ES in a PNI mouse model (Tilley et al., 2017; Shinoda et al., 
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to the repair site can remarkably accelerate referential reinnervation of the 
muscle nerve.

Correct reinnervation is regarded as a reason for the therapeutic effects of ES. 
Al-Majed et al. (2000) found that 1 hour of stimulation not only accelerated 
the speed of neuroregeneration, but also reduced staggered regeneration in 
a mouse model of PNI. Further, the stimulation lead to a similar distribution 
of neurons in PNI mice and control mice. This occurs by redirecting neurons 
back to the tissue they served originally, rather than by redistributing them 
(Brushart et al., 2005). Selective motor axon regeneration can be promoted 
by guidance factors expressed by the regenerating axons and distal targets. 
Franz et al. (2008) found that brief periods of ES could increase polysialic acid 
expression in regenerating axons. This could promote increases in collateral 
sprouting and in the size of arborization fields, which improve the exactness 
of axon growth. 

SC activation 
SCs are also believed to be involved in proximal ES therapy. ES can stimulate 
SCs to secrete glutamate, which can increase SC-derived exosomes and 
intracellular Ca2+ concentrations (Lopez-Leal and Court, 2016). Since cAMP 
and BDNF are Ca2+-dependent, increases in Ca2+-dependent protein may result 
from ES-induced glutamate secretion.

The role of SCs in vesicular transfer has recently received increased attention. 
Indeed, crucial proregenerative molecules delivered by SCs might contribute 
to axonal extension. As mRNAs are deposited on the distal axon in a dormant 
state, the transfer of mRNA from SCs to axons may supply transcripts for 
translation induced by electrical stimulation (Rigoni and Negro, 2020). SC-
derived exosomes include mRNA, miRNA, and protein cargoes, which 
can promote damaged axonal regeneration, as verified via in vitro and in 
vivo studies. P75NTR is present in SC-derived exosomes, and is also found 
in abundance in the injury site. This protein can modulate growth from 
filopodia via the regulation of RhoA. SCs have previously been found to 
secrete exosomes that can be selectively internalized by axons in vitro and 
in vivo. Furthermore, SC-secreted exosomes, but not fibroblast-derived 
exosomes, markedly increase axonal regeneration by acting locally on axons 
and decreasing RhoA GTPase activation in growth cones (Sohn et al., 2020). 
Wang et al. (2020) demonstrated in vivo that the regenerative capabilities 
of injured sciatic nerves can be greatly enhanced by delivering SC-derived 
exosomes to axons. In addition, Zhou et al. (2018) verified that while cyclic 
mechanical strain affected the proliferation of DRG cells, SC-derived exosomes 
could enhance the proliferation of injured DRG cells and decrease the rate of 
positive staining for SA-β-gal, which is a cytochemical biomarker for senescent 
cells. Hence, SC-derived exosomes inhibited apoptosis and the senescence of 
DGR cells in vitro, providing support for a novel therapeutic strategy.

A recent study reported that ES could shift the macrophage phenotype 
from a proinflammatory to a pro-repair phenotype (McLean and Verge, 
2016). In this way, ES could rapidly remove myelin debris. As SCs restore 
the nonreactive myelinating state, they maybe be useful in remyelinating 
nerves. Remyelination has a protective effect on nerves, and could enhance 
functional recovery after PNI. ES briefly decreases inflammatory reactions and 
increases neuronal activity, favorably altering the immune microenvironment 
in demyelinated nerves. Thus, ES may have beneficial therapeutic effects 
when applied to other pathologies.

The major drawbacks of ES include the need for surgery and the risk of 
possible complications at the electrode implantation site, such as infection 
and wire movement. Most ES of the injury site for the treatment of PNI is 
based on animal experiments. However, there is a significant difference in 
nerve length and width between humans and animals. Power et al. (2020) 
applied ES in a clinical setting by placing two electrodes proximal to the site 
of the injured nerve. They observed that ES enhanced muscle reinnervation 
and promoted functional recovery after surgery for cubital tunnel syndrome. 
Wong et al. (2015) also affirmed that ES of a proximal nerve at the injury 
site promoted the recovery of sensory function in a randomized controlled 
trial. Although these clinical studies have demonstrated the efficacy of this 
method, the optimal electrode arrangement and treatment parameters 
are still unclear. In addition, according to the molecular mechanisms, the 
major therapeutic effects of ES are mediated by the cell body. Thus, SCS and 
DRG, which have direct effects on the cell body, may be more effective than 
stimulation at the injury site. However, spinal cord-related simulation does 
not facilitate the promotion of local SCs or correct regeneration across the 
gap. Hence, combined stimulation of the spinal cord and injury site may be 
the best treatment option. Given the complicated causes of PNI, it is difficult 
to determine whether implanted electrodes are ideal in terms of costs 
and benefits. Currently, some physicians have implanted electrodes under 
ultrasound guidance, which reduces the risk and cost of the procedure. 
However, further investigations are needed to identify the optimal treatment 
approach.

The end organs
The peripheral nerve is responsible for providing sensory and motor 
innervation to the skin, muscles, and subcutaneous tissue. ES can be 
divided into skeletal muscle stimulation, transcutaneous stimulation, and 
subcutaneous stimulation, according to the targeted layer. ES based on 
electrode position can be divided into three broad categories: transcutaneous 
electrical nerve stimulation, skeletal muscle stimulation, and subcutaneous 
electrical stimulation. In transcutaneous electrical nerve stimulation, pads 
are attached directly to the skin. The method of placing electrodes within 

the subcutaneous space is called subcutaneous electrical stimulation. 
Electroacupuncture (EA) is the most common form of subcutaneous electrical 
stimulation. When an electrode is implanted into skeletal muscle, electricity is 
directly delivered to the nerves.

Skeletal muscle electrical stimulation
Many studies have shown that skeletal muscle ES is beneficial to motor 
function (Willand et al., 2016; Fu et al., 2020). Muscle stem cells, such as 
satellite cells, are responsible for the growth and repair of skeletal muscle. 
They can be activated by myogenic precursor cells (MPCs), and thereby 
promote skeletal muscle regeneration. To further investigate the underlying 
mechanisms of this process, a study examined whether skeletal muscle 
stimulation (SMS) could affect MPCs in healthy older adult subjects. The in 
vitro study revealed that SMS could increase the fusion of adult stem cells 
with the existing myofibers by increasing cytoplasmic free Ca2+ concentration 
and the gene expression of MYOD, as well as that of MYOG on MPCs. As the 
regenerative capacity of skeletal muscle was affected by myogenic precursor 
cell proliferation, the oxidative status of these MPCs was also evaluated. The 
researchers found that SMS greatly reduced O2

– production, and tended to 
reduce super oxide dismutase activity. Thus, SMS promoted skeletal muscle 
regeneration through the reduction of oxidative status in the satellite cells of 
healthy older adult subjects (Di Filippo et al., 2017).

Another study found that ES led to heightened myotube hypertrophy and 
elevated mTORC1 and ERK1/2 activity in a human skeletal muscle model 
(Khodabukus et al., 2019). Increased glucose consumption and reduced acetyl 
carnitine in myobundles observed after ES indicate that SMS can enhance 
changes in glycolytic and fatty acid metabolic processes. This is because ES 
increases the transport of glucose transporter type 4 (GLUT-4) to the plasma 
membrane. 

Muscle contractions are known to activate AMP-activated protein kinase 
(AMPK), which increases glucose uptake (Nedachi et al., 2008). Thus, ES 
may trigger the phosphorylation of AMPK, increasing GLUT-4 protein levels. 
However, when the AMPK kinase cascade is inhibited, the effects of SMS are 
not altered. One study found that ES releases ATP (Christensen et al., 2015), 
and ATP was observed to increase GLUT-4 transmission by activating P2γ 
purinergic receptors and AKT phosphorylation (Osorio-Fuentealba et al., 2013).

Although ES increases the consumption of ATP, like exercise, it does not 
increase oxidative stress in muscle. However, the relationship between 
inflammation and ES is still unclear. Lambernd et al. (2012) found that ES 
decreased the protein levels of IKKβ/NF-κB, implying an anti-inflammatory 
effect. However, Scheler et al. (2013) reported increased activation of NF-
κB after ES. Time may be the major influential factor. Whitham et al. (2012) 
confirmed that ES in an in vitro model activated the IKKβ/NF-kB signaling 
pathway within 4 hours. However, the activated signaling pathways returned 
to normal after 4 hours of ES. In addition, measurements of oxidative stress 
status and inflammation state have not been adapted for ES, especially in the 
short term. Mancinelli et al. (2019) demonstrated that oxidative stress and 
inflammation began immediately after PNI and ended after 3 days.

When denervated skeletal muscle reaches the atrophy and atrophic fibrosis 
stage, ES increases insulin activation by inhibiting the ubiquitin proteolytic and 
lysosomal hydrolysis systems. Therefore, the application of ES may be optimal 
3 days after PNI.

Subcutaneous electrical stimulation
Recent studies have confirmed that EA is effective for the treatment of 
PNI. Animal experiments have indicated that EA can improve facial muscle 
function by reducing inflammatory responses and neuronal apoptosis. In 
rabbits, increases in glial cell line-derived neurotrophic factor and N-cadherin 
expression in facial motoneurons are considered major cellular mechanisms 
of EA (Fei et al., 2019). The type 2 cannabinoid receptor-mediated activation 
of microglia induced by EA may also be involved in the repair of PNI (Wang et 
al., 2019).

When a metal EA needle is inserted into the body, it usually penetrates 
skeletal muscle, passing the skin and subcutaneous tissue. Thus, EA combines 
the effects of transcutaneous electrical nerve stimulation (TENS), SMS, and 
subcutaneous electrical stimulation (SQS). While EA is proficient in terms of 
affecting tissue via depth, this is not the case for width. The selection of EA 
electrode targets usually depends on traditional Chinese medicine, and does 
not consider the properties of electrical transmission. Accordingly, EA does 
not usually have a large influence on the local area. Further work is needed 
to facilitate the selection of optimal parameters to form matrix arrangements 
that lead to enhanced treatment.

Transcutaneous electrical nerve stimulation
PNI-induced sensory function injury ranges from the early loss of cutaneous 
sensation to late hyperpathia. However, ES can dramatically increase tactile 
discrimination and pressure detection scale scores (Wong et al., 2015), and 
lead to cutaneous regeneration of DRG neurons (Koetsier et al., 2020). EA is 
not only a promising form of complementary medicine for PNI, but also for 
neuropathic pain. It can be used to activate Aβ and Aδ fibers, thus relieving 
pain by preventing nociceptive signals from entering the central nervous 
system and releasing analgesic opioid peptides (Huo et al., 2020).

The nociceptive system controls pain modulation in the peripheral nervous 
system. When a noxious stimulus is encountered or tissue injury occurs, 
primary nociceptive neurons in the periphery with free nerve endings (Aδ 
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and C fibers) respond. Nociceptive signals then travel into the spinal cord, 
where they synapse with second-order neurons in the gray matter of the 
dorsal horn. TENS only inhibits the transmission of the second-order neurons, 
because it only excites Aβ fibers, namely non-nociceptive afferent nerve fibers 
(Chakravarthy et al., 2016).

The analgesic effect of TENS is produced by mediation of the suppression of 
the descending system. Nociception from the descending nerve is inhibited 
during heavy noxious stimulation when endogenous opioids are released 
and diffuse in the rostral ventral medulla. These analgesic effects have 
been termed “diffuse noxious inhibitory control phenomena” (Ploner et al., 
2017; Wutz et al., 2018). TENS may directly reduce the regional number 
of biochemical mediators inducing pain reactions. Results from a study 
with human volunteers confirmed that TENS curbs pain neurotransmission 
by mediating decreased local inflammatory mediators and elevating pain 
thresholds (Chakravarthy et al., 2016). The electrical field induced by TENS 
might be able to reach more superficial Aδ fibers and release a greater 
amount of opioids than that induced by SQS because the electrodes are on 
the surface of the skin. It is also advantageous in treating superficial nerve 
injury because it is noninvasive.

In contrast, SQS might activate a large number of Aβ fibers because the 
electrodes are positioned in the subcutaneous space. SQS electrodes are 
inserted percutaneously into the muscle to avoid impedance resistance from 
fat. Hence, SQS appears to be better than TENS for treating PNI, especially for 
damage of deep nerves in the underlying skeletal muscle. One study indicated 
that SQS and TENS might recruit different numbers of fibers (Vera-Portocarrero 
et al., 2013). Hence, SQS and TENS may be individually selected or combined 
according to the activated fibers and injured nerves. 

Limitations 
There are several limitations to this review. First, we did not consider PNI-
induced changes in activity in the brain, which is the highest level of the 
nervous system. Moreover, although there are multiple causes of PNI and 
different degrees of nerve injury, we did not consider these variables. The 
parameters of electrical stimulation are an important consideration in 
the effects of electrical stimulation for PNI. Although most studies used a 
treatment strategy including 20 Hz of ES for 1 hour, identification of the 
optimal parameters will require further exploration. Finally, due to limited 
space, time, and energy, some relevant studies may have been excluded.

Future Prospects and Conclusions
Many researchers have examined the basic mechanisms of PNI, as well as 
potential treatment via electrical stimulation. However, previous studies 
have focused primarily on cellular and molecular changes in single sites 

after PNI, especially those in the injury site. Recently, an increasing number 
of studies have observed cellular and molecular changes at the level of 
the central nervous system, including at the site of injury and in the target 
organs following PNI. To the best of our knowledge, this is the first review of 
the existing literature to summarize and discuss changes after PNI and the 
mechanisms of ES from three different levels. As discussed, changes after PNI 
have been discovered at the level of the cell body (dorsal and ventral root), 
the site of injury, and in the target organs (Figure 2). 

Figure 2 ｜ Following PNI, several molecular and cellular changes are observed at the 
local site of injury and the target organs. 
The effects of ES therapy on peripheral neurogenesis vary according to the position 
of stimulation. See the text for a detailed description. DRG: Dorsal root ganglion; ES: 
electrical stimulation; PNI: peripheral nerve injury; SCs: Schwann cells; SDH: spinal cord 
dorsal horn; SQS: subcutaneous electrical stimulation; SVH: spinal cord ventral horn. 

Figure 1 ｜ Electrical stimulation elevates peripheral nerve regeneration-associated 
genes within the neuronal cell body. 
ES increased brain-derived neurotrophic factor (BDNF) and tropomyosin receptor 
kinase B (TrkB), which upregulates the expression of cyclic AMP (cAMP) through a Ca2+-
dependent mechanism. The signal Ras-mitogen activated protein kinase (Ras/MAPK) 
pathway, which is essential for the neurophin-induced differentiation of neuronal 
cells, is activated by BDNF as well. Ras, which is stimulated by the trkB receptor, also 
causes activation of kinases phosphatidylinositol 3-kinase/Akt (PI3K/Akt). The different 
neurotrophin signaling pathways activated by cAMP response element-binding protein 
(CREB) converge at the level of transcription in the nucleus. CREB induces increased 
expression of regeneration-associated genes such as growth-associated protein-43 
(GAP-43), which promotes axonal sprouting and prevents growth cone collapse, and Tα1 
tubulin, which is an integral protein for cytoskeletal assembly. See the text in the section 
“Staggered axonal regeneration” for a detailed description.

PNI mainly involves the skin, skeletal muscles, spinal cord, and brain. It 
implicates a nervous system injury axis that includes the peripheral nerves, 
corticospinal tract, and spinothalamic tract. The effects of ES therapy on 
peripheral neurogenesis vary according to the position of stimulation (Table 3).

SCS can block microglial activation and synaptic stripping-related excitability of 
the DRG, and subsequently dampen the pro-inflammatory cytokine response. 
This can delay the synaptic rearrangement of the dorsal horn. However, SCS 
treatment is expensive and challenging to implement, and many patients 
may find it difficult to cover the costs of medical care. ES of local sites is 
commonly applied to promote nerve regeneration after PNI, but the effects 
are mainly mediated by the cell body. TENS, which has a direct effect on the 
cell body, may be more effective in theory. However, its effects are less than 
those of SCS, especially for neuropathic pain. Currently, implanted electrodes 
are the main method of local ES, and this is associated with considerable 
risks for patients. End organ ES is usually conducted with exterior and needle 
electrodes. It is used to stimulate skeletal muscle, subcutaneous tissue, or 
skin to relieve neuropathic pain and skeletal muscle denervation. However, 
single-point electrical stimulation cannot restore PNI-induced changes in the 
peripheral nervous and central nervous system. Hence, a combination of 
ES and SCS may be better than ES alone in treating PNI. This consideration 
warrants further research. 

Although ES therapies are useful for treating PNI, they also have side effects. 
ES can lead to twisting of the axon and cytoarchitecture, leading to edema 
(Martellucci, 2015). In addition, extended periods of ES can lead to reduced 
skeletal muscle excitability and abnormalities in the neuromuscular junction. 
Furthermore, stimulation of innervated skeletal muscles can have adverse 
effects in surviving asynchronous nerves. If the stimulated nerves connect 
with the muscle in an asynchronous way, ES can compromise functional 
reinnervation (Hussain et al., 2018, 2020). Thus, more research is needed to 
address the side effects of ES and identify the optimal stimulation regimen.
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Table 3 ｜ Summary of trails about different electrical stimulation sites for PNI

Study
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5HT3ra: 5-Hydroxytryptamine (serotonin) receptor 3a; BDNF: brain-derived neurotrophic factor; BES: brief electrical stimulation; cFOS: c FBJ osteosarcoma oncogene; ES: electrical 
stimulation; GABAbr1: γ-aminobutyric acid B receptor 1; GDNF: glial cell line-derived neurotrophic factor; NM*: not mentioned in the text; PNI: peripheral nerve injury; RAG: 
regeneration-associated gene; SCS: spinal cord stimulation.
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