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SUMMARY

In the analysis of survival times, the logrank test and the Cox model have been

established as key tools, which do not require specific distributional assumptions.

Under the assumption of proportional hazards, they are efficient and their results

can be interpreted unambiguously. However, delayed treatment effects, disease pro-

gression, treatment switchers or the presence of subgroups with differential treat-

ment effects may challenge the assumption of proportional hazards. In practice,

weighted logrank tests emphasizing either early, intermediate or late event times

via an appropriate weighting function may be used to accommodate for an expected

pattern of non-proportionality. We model these sources of non-proportional hazards

via a mixture of survival functions with piecewise constant hazard. The model is

then applied to study the power of unweighted and weighted log-rank tests, as well

as maximum tests allowing different time dependent weights. Simulation results

suggest a robust performance of maximum tests across different scenarios, with little

loss in power compared to the most powerful among the considered weighting

schemes and huge power gain compared to unfavorable weights. The actual sources

of non-proportional hazards are not obvious from resulting populationwise survival

functions, highlighting the importance of detailed simulations in the planning phase

of a trial when assuming non-proportional hazards.We provide the required tools in

a software package, allowing to model data generating processes under complex

non-proportional hazard scenarios, to simulate data from these models and to per-

form the weighted logrank tests.

1 | INTRODUCTION

Comparing survival distributions based on censored data is in general challenging since conclusions are sought about distri-
butions which are observed incompletely. In medical statistics, and in particular in oncology, the logrank test and the Cox
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proportional hazards model have been established as key tools. Under the assumption of proportional hazards, they are effi-
cient and their results can be interpreted unambiguously. The proportional hazards assumption implies that the benefit
gained through active treatment over control is the same at each time-point. Even though this assumption may be reason-
able in a homogeneous population and over a limited time span, it is increasingly challenged in more complex settings.1

Here we investigate four different sources of non-proportional hazards which are frequently encountered in oncol-
ogy trials with survival endpoints. We address (1) the effect of delayed onset of treatment action, which has been
described particularly for the new class of immuno-oncology drugs.2 We take into account (2) the possibility of reduced
survival probabilities after a disease progression event. This is a source of non-proportional hazards if, for example, the
active treatment prolongs the time to progression in addition to reducing the hazard rate in each disease state. We fur-
ther study (3) the impact of differential effect of the treatment in different subgroups. This is of particular interest if
stronger effects are expected in patients who are positive for a certain biomarker. For example, in metastatic colorectal
cancer, targeted therapy inhibiting the epidermal growth factor receptor is effective only against tumors that are free
from mutations in the KRAS or NRAS genes.3 Subgroup effects have also been described in settings where a fraction of
patients is permanently cured (see for example, the examples in Reference 4).

Finally (4), in an actual trial patients may at some time-point receive medication that is different from the planned
medication in their trial arm, for various reasons. One focus of the paper is on treatment switching where patients from
the control group may receive the potentially active treatment after they have experienced disease progression, or in an
alternative scenario, patients from either group may receive an effective follow-up medication after disease progression.
For example, in a randomized controlled trial in metastatic non-small-cell lung cancer, 33% of patients in the control
group received the treatment group medication after disease progression.5 In the standard intention-to-treat analysis
non-proportional hazards arise since the observed treatment effect is reduced with time as a consequence of treatment
switching. Alternative methods to analyze data in presence of treatment switching been studied extensively. In particu-
lar, accelerated failure time models accounting for the time under control and active treatment have been proposed.6,7

Our focus is on investigating the effect of switching in an intention-to-treat analysis.
When comparing two hazard functions which are not proportional, the power of the logrank test can be restored by

weighting observed events. Optimal weights would correspond to the actual event time specific log hazard-ratio,8 which
is unknown. In practice, weighted logrank tests emphasizing either early, intermediate or late event times via an appro-
priate weighting function may be used to accommodate for an expected pattern of non-proportionality.

In this manuscript, we focus on the Fleming-Harrington ρ − γ family of weighted logrank tests.9 Since the choice of
a powerful weighting function is subject to prior assumptions, we further consider the properties of maximum-type
tests9-11 that combine a set of differently weighted logrank test.

To study the operating characteristics of these tests under the aforementioned sources of non-proportional hazards,
we propose a data generating model based on mixtures of survival distributions that are defined via piecewise constant
hazards. Similar methods have been applied in the literature to study the sole impact of delayed onset,12 of a subpopula-
tion of cured patients4,13 and the combined effect of delayed onset, disease progression and treatment switching, though
not subgroups of patients.14 However, subgroups with different response characteristics are an important element to be
considered in trials for targeted therapies such as immuno-oncology drugs. Even in studies with restrictive inclusion
criteria, the study population may consist of previously unknown subpopulations.

Furthermore, the recruitment scheme and trial duration have an impact on the distribution of observed event times.
Under non-proportional hazards, the power of hypothesis tests is also depending on this distribution, see for example,
Reference 13. Consequently, we also study the influence of different recruitment rates under the considered non-
proportional hazards scenarios.

In the manuscript, we aim to provide guidance on the methods for the primary analysis under differently complex
non-proportional hazard settings. To this end we further provide software as an R package labeled nph15 which allows
one to model data generating processes under complex non-proportional hazard scenarios, to simulate data from these
models and to analyze datasets using the weighted logrank tests we studied.

The remainder of the manuscript is structured as follows. In Section 2 the proposed data generating model is
defined. In Section 3 the weighted logrank tests are described. In Section 4 we present a case study based on an actual
trial.5 In Section 5 the power of weighted logrank and maximum tests depending on different sources of
non-proportional hazards and their extents is investigated systematically by simulation. Details on R package nph15

providing functions to simulate and analyze data under non-proportional hazards are given Section 6. We conclude
with a discussion in Section 7. Additional information on the simulation scenarios and results for further simulation
scenarios are provided in the online supplemental material.
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2 | MODELING NON-PROPORTIONAL HAZARDS

Let subscripts i ∈ {ctr, trt} denote the control and treatment group in a randomized controlled clinical trial with survival
as main endpoint. For a patient in group i, let the survival time T ∈ [0, ∞) be a continuous non-negative random vari-
able with distribution function Fi(t), survival function Si(t) = 1 − Fi(t) and density fi(t). The hazard function is defined
as λi(t) = limh # 0P(T ∈ (t, t + h] j T > t)/h = fi(t)/Si(t). The cumulative hazard is defined as Λi tð Þ=

Ð t
0λi sð Þds. The survival

function can be expressed as Si(t) = exp(−Λi(t)).
For traditional study planning, the survival functions are often modeled via constant hazards over time, resulting in

exponentially distributed survival times. Such a model may fail to address the complexity of actual trial data and in par-
ticular, does not cover non-proportional hazards. In this section, we propose a model that is still simple and easy to
apply but allows for increasingly complex hazard functions and in particular addresses several sources of non-
proportional hazards. Figure 1 illustrates the different states and rates assumed in this model.

2.1 | Piecewise constant hazards and delayed onset of treatment effect

The hazard rates λi(t), i ∈ {trt, ctr} may be modeled as piecewise constant functions to provide an intuitively simple
model with non-proportional hazards that still allows for complexity when needed.

Define k time intervals [tj − 1, tj), j = 1,…, k with 0 = t0 < t1 < tk = ∞ and constant hazards λij. The resulting hazard
function in group i is λi tð Þ=

Pk
j=1λij1t∈ tj−1,tj½ Þ , the cumulative hazard function is Λi tð Þ=

Ð t
0λi sð Þds=Pk

j=1

tj− tj−1
� �

λij1t> tj + t− tj−1
� �

λij1t∈ tj−1,tj½ Þ
� �

and we obtain the survival function as Si tð Þ= e−Λi tð Þ.
In particular, we apply the piecewise constant hazard approach to model the effect of delayed onset of treatment

action. Assume that the treatment has an effect on the hazard rate only after a certain time span tonset from initiation of
the treatment. The hazard rate in the treatment group is modeled as λtrt tð Þ= λpreonset1t< tonset + λpostonset1t≥tonset whereas the
hazard rate in the control group is constantly λctr(t) = λpreonset. The resulting survival curves are identical until time tonset
and are separating afterward (assuming λpostonset is different from λpreonset).

FIGURE 1 Multi-state representation of the modeled sources of non-proportional hazards. Different states are represented by boxes,

transitions are represented by arrows. The transition rates are indicated next to the respective arrows. All transition rates may be piecewise

constant functions of time. For simplicity of representation, biomarker dependent subgroups are shown only in the experimental group and

treatments switching is only indicated in the control group. However the proposed framework allows for both, subgroups and treatment

switching, in each group
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A similar model has been used by Hasegawa12 to provide a sample size formula for weighted logrank tests under
the scenario of a delayed treatment effect. While we focus on models used for study planning, piecewise constant haz-
ard models may also be estimated given observed data, see for example, References 16,17.

2.2 | Changing hazards after disease progression

The piecewise constant hazard functions defined above allow for changing hazards at defined time-points. However,
the hazard rate may also change at random time-points, in particular after progression of disease (PD). To model this
aspect, we assume that the time to disease progression TPD is governed by a separate process with hazard function ηi(t),
i ∈ {trt, ctr}, which does not depend on the hazard function for death λi(t). ηi(t), too, may be modeled as piecewise con-
stant or, for simplicity, as constant over time. Define λi,prePD(t) and λi,postPD(t) as the hazard functions for death before
and after disease progression. Conditional on TPD = s, the hazard function for death in group i is λi(tj TPD = s) = λi,pre-

PD(t)It ≤ s + λi,postPD(t)It > s and the conditional survival function is Si tjTPD = sð Þ=exp −
Ð t
0 λi tjTPD = sð Þds

� �
. The uncon-

ditional survival function results from integration over all possible progression times as Si tð Þ=
Ð t
0Si tsð ÞdP TPD = sð Þ. Note

that, even though ηi(t) does not depend on λi(t), progression free survival and overall survival times will be correlated
since progression free survival time is min(T,TPD).

2.3 | Biomarker subgroups

A further element in our model are subgroups in the patient population that may exhibit different hazard functions.
Patients who are positive with respect to certain biomarkers may show a better response to treatment. For modeling dif-
ferential subgroup effects, we assume the number and relative sizes of subgroups are known, however in the analysis
we regard the presence of subgroups as an unknown aspect. Thus, we are interested in the marginal survival functions
over the full population. Given m subgroups with relative sizes p1, …, pm and subgroup-specific survival functions Si,l(t),
the marginal survival function is the mixture Si tð Þ=

Pm
l=1plSi,l tð Þ. Note that the respective hazard function is not a lin-

ear combination of the subgroup-specific hazard functions. It may be calculated by the general relation
λi tð Þ= − dSi tð Þ

dt
1

Si tð Þ.
Other authors have focused on the presence of a subgroup of long-term survivors or completely cured patients and

their implications in study planning,4,13 sample size reassessment18 and data analysis.19

2.4 | Treatment switching after progression

The final aspect in our model is the possibility that the study medication is changed, for example, to a further line treat-
ment, due to a disease progression event. Such treatment switching may occur with a certain probability only. We
address the probabilistic aspect by defining two subpopulations, nested within any subpopulation as defined previously,
of patients that will switch medication after disease progression and patients that will not switch with survival functions
Sl,switch(t) and Sl,noswitch(t). Denote the relative sizes of these two subpopulations as pl,switch and pl,noswitch, such that pl,
switch + pl,noswitch = pl and pl,switch/pl corresponds to the probability for switching in subgroup l. The marginal survival
function, covering subpopulations and switching, is Si tð Þ=

Pm
l=1

P
s∈ switch,noswitchf gpl,sSi,l,s tð Þ. This approach is a specific

application of a scenario with changing hazards after disease progression as considered in Section 2.2.

2.5 | Sampling from the modeled survival function

Once the marginal survival functions Si(t), i ∈ {ctr, trt} are derived, we may draw random samples via the inverse
c.d.f. method. That is, draw a uniform random number U � Unif(0, 1) and calculate the random survival time as
S−1
i Uð Þ. In the numeric calculations we regard t as discrete with smallest increments of 1 day, which facilitates the com-

putation of the inverse function.
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Note that sampling n observations from the overall marginal distribution of the population is equivalent to first
sampling the subgroup status of n patients and then sampling the conditional survival times given the subgroups.

3 | HYPOTHESIS TESTING

We consider the setting of randomized clinical trials comparing an experimental treatment to a control treatment. The
aim of such trials typically is to show superiority of the experimental treatment over control. Under a proportional haz-
ards assumption the treatment effect is conveniently expressed as hazard ratio which facilitates formulating an appro-
priate null hypothesis and deciding on a testing procedure. Typically, to avoid any further assumptions on the
underlying distribution of survival times, the logrank test or, equivalently, a test based on the Cox proportional hazard
model is applied, which is an optimal strategy in this context.20

Under non-proportional hazards (in combination with censored data) deciding on a relevant parametrisation of the
testing problem is less straight forward. In this paper we focus on the general one-sided null hypothesis of (weighted)
logrank tests, which is H0 : λctr(t) ≤ λtrt(t), 8 t ≥ 0. Rejecting H0 means there is a treatment benefit at least in some time
interval. See Section 7 for further discussion on this approach and on alternative effect measures.

3.1 | (Weighted) logrank tests

The logrank test is frequently applied to test the one-sided null hypothesis H0 : λctr(t) ≤ λtrt(t), 8 t ≥ 0. Note that H0

implies Sctr(t) ≥ Strt(t), 8 t ≥ 0. The reverse implication Sctr(t) ≥ Strt(t), 8 t ≥ 0 ) λctr(t) ≤ λtrt(t), 8 t ≥ 0 is true under pro-
portional hazards but does not generally hold under non-proportional hazards (see8).

For a given sample, let D be the set of unique event times. For a time-point t∈D, let nt,ctr and nt,trt be the number of
patients at risk in the control and treatment group and let dt,ctr and dt,trt be the respective number of events. The
expected number of events in the control group is calculated under the least favorable configuration in H0, λctr(t) = λtrt(t),
as et,ctr = dt,ctr + dt,trtð Þ nt0

nt0 + nt1
. The conditional variance of dt,ctr is calculated from a hypergeometric distribution as

var dt,ctrð Þ= nt0nt1 dt0 + dt1ð Þ nt0 + nt1−dt0−dt1ð Þ
nt0 + nt1ð Þ2 nt0 + nt1−1ð Þ . Further define a weighting function w(t). The weighted logrank test statistic for a

comparison of two groups is

z=
X
t∈D

w tð Þ dt,ctr−et,ctrð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
t∈D

w tð Þ2var dt,ctrð Þ
s

Under the least favorable configuration in H0, the test statistic is asymptotically standard normally distributed and
large values of z are in favor of the alternative.

Under proportional hazards and for local alternatives (ie, the hazard ratio approaching 1), the unweighted logrank
test is the most powerful rank-invariant test for H0.

20 With arbitrary hazard functions, optimal weights for testing H0

would correspond to the true log-hazard ratio w(t) = log(λctr(t)/λtrt(t)) when λctr(t) > λtrt(t) and w(t) = 0 otherwise.8 The
true hazard function is of course unknown. However, by defining particular weight functions w(t) the effect size at early
or late event times may receive greater influence on the test statistic.

In this paper we consider particular weights in the Fleming-Harrington ρ − γ family9 w tð Þ= Ŝ tð Þρ 1− Ŝ tð Þ� �γ
. Here,

Ŝ tð Þ=Q
s∈D:s≤ t1−

dt,ctr + dt,trt
nt,ctr +nt,trt

is the pooled sample Kaplan-Meier estimator. Weights ρ = 0, γ = 0 correspond to the stan-
dard logrank test with constant weights w(t) = 1. Choosing ρ = 0, γ = 1 puts more weight on late events, ρ = 1, γ = 0
puts more weight on early events and ρ = 1, γ = 1 puts most weight on events at intermediate time points.

3.2 | Maximum logrank test

Depending on the true unknown alternative, differently weighted logrank tests may differ substantially in power. In
general hypothesis testing problems, instead of deciding a-priori for a single test, a viable strategy is to combine differ-
ent tests for the same hypothesis via the mean or maximum of their individual test statistics.21 In many applied prob-
lems, including weighted logrank tests, the asymptotic joint distribution of test statistics is multivariate normal, which
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facilitates the derivation of an approximate distribution of a combination statistic. In this context Tarone10 studied the
distribution of the maximum of the unweighted logrank test statistic and the generalized Wilcoxon statistic which uses
as weights the total number at risk at each event time. Lee11 compared the operating characteristics of combination
tests based on the maximum or an average of ρ = 0, γ = 1 and ρ = 1, γ = 0 weighted logrank test statistics.
The simulation results of Lee suggest that the maximum was the more robust combination statistic in terms of preserv-
ing power across various scenarios. Li et al22 studied the performance of the same statistics and several other test statis-
tics, which are based on integrated differences of estimates of the survival functions or cumulative hazard functions,
under scenarios of crossing survival functions. The robustness of the maximum test was confirmed also in this setting.

Karrison23 describes the implementation of a maximum-type logrank test based on different ρ − γ weights for the
software Stata. Recently, the idea to apply maximum-type combination tests to analyze survival data with non-
proportional hazards is gaining increasing attention.24

To perform a maximum-type combination test, a set of r different weight functions w1(t),…, wr(t) is specified and the
correspondingly weighted logrank statistics z1,…, zr are calculated. The maximum test statistic is zmax = maxi = 1, rzi. If
at least one of the selected weight functions results in high power, we may expect a large value of zmax. Under the least
favorable configuration in H0, approximately (Z1, Zr) � Nr(0, Σ). The P-value of the maximum test,
PH0 Zmax > zmaxð Þ=1−P Z1 ≤ zmax ,Zr ≤ zmaxð Þ , is calculated based on this multivariate normal approximation via
numeric integration.

This approach automatically corrects for multiple testing with different weights and does so efficiently since the cor-
relation between the different tests is incorporated in Σ. For actual calculations, Σ is replaced by an estimate.

Note that cov(wi(t)dt,ctr, wj(t)dt,ctr) = wi(t)wj(t)var(dt,ctr), at least approximately assuming weights are converging in
probability to a non-random function. Thus the i, jth element of Σ is estimated as

côv Zi,Zj
� �

=
X
t∈D

wi tð Þwj tð Þvar dt,ctrð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
t∈D

w2
i tð Þvar dt,ctrð Þ

X
t∈D

w2
j tð Þvar dt,ctrð Þ

s

Since the individual tests are typically highly correlated, the required multiplicity adjustment can be moderate while
there is a good chance to gain from the most powerful among the included weighted test.

4 | CASE STUDY

To investigate increasingly complex examples for a trial under non-proportional hazards we devised five case study
scenarios. As example for an actual trial which shared several characteristics of these scenarios see Reference 5.
For easier interpretation, piecewise constant hazard functions are described by the median event time
corresponding to the respective hazard rate in each time interval, that is, the presented median event time for
interval i equals log(2)/λi.

4.1 | Scenario A

As reference, we assume a scenario with proportional hazards, with the hazard for death corresponding to median sur-
vival times of 20 months and 12 months for the treatment and control arm, respectively.

4.2 | Scenario B

For the treatment arm we assume a hazard for death before PD corresponding to a median survival time of
24 months, a hazard for death after PD corresponding to a median survival time of 16 months, and a hazard for PD
corresponding to 12 months median time to progression. For the control arm, the respective hazards correspond to
median times of 22, 7 and 7 months, for the hazard of death before and after PD and for the hazard of PD,
respectively.
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4.3 | Scenario C

In this scenario we assume a delayed effect. During the first 2 months, the treatment group has the same hazards as the
control group. After the first 2 months, the hazards used in scenario B for the treatment group are used.

4.4 | Scenario D

We consider delayed effect and the subgroup of female patients (prev 50%) with an additional benefit. During the first
2 months, the treatment group has the same hazards as the control group (irrespective of subgroups). After 2 months,
and for the subgroup of male patients, we keep the true underlying parameters as in Scenario B. For the subgroup of
female patients, we assume no disease progression and a hazard for death corresponding to a median time of 24 months
is used.

4.5 | Scenario E

Here we consider treatment switching after disease progression for patients under the control treatment. Building on
the previous scenarios, now we assume that 1/3 of the patients in the control group switch to the treatment group after
progression. Note that for these patients, we also account for female/male subgroups with a prevalence of 50% each.

4.6 | Scenario F

Finally, we study a scenario where treatment switching to an effective follow-up medication occurs in both groups after
disease progression. Similar to scenarios A and B, we assume that before PD the hazard for death corresponds to a
median of 20 and 12 months, in the treatment and control group respectively, and the rates for PD correspond to
median times of 12 and 7 months. After progression, patients in either group are switched to an effective follow-up
medication with 75% probability, and the subsequent hazard for death corresponds to 18 months. For patients who are
not switched we assume subsequent median survival times of 12 and 7 months.

We present the theoretical survival, hazard and hazard ratio functions over time in Figure 2. An interesting aspect
is that the survival curves are similar across the scenarios, even if we compare the case where the proportionality
assumption holds with the cases where it does not. In an actual trial, the investigator will only examine a single realiza-
tion from the theoretical survival function and, therefore, it may not be easy to identify non-proportionality from the
observed curves.

Table 1 shows the power for the weighted logrank test and the maximum test across the four scenarios under design
assumptions similar to Reference 5. We assumed that patients are recruited over 1 year with a constant rate of
616 patients per year and are randomized between the treatment and control arm with a 2:1 allocation ratio.

The study ends when 190 events have been observed. This value corresponds to 80% of the number of events
observed in Reference 5 and was chosen such that the power of the considered tests in our case study is approximately
between 80% and 90%.

Censoring was included only in terms of administrative censoring at the end of the study. The one-sided level of sig-
nificance was 0.025. The power was calculated from 50 000 simulation runs. As expected, the usual logrank test
(ρ = γ = 0) outperforms the others in Scenario A since the proportional hazards assumption holds. However, in
Scenarios C, D and E, using the weighted logrank test with stronger weights on late events provides higher power and
in Scenario F stronger weights on early events provides higher power. In this sense, the maximum logrank test per-
forms the best, since its power is among the highest in all cases.

5 | SIMULATION STUDIES

In this section we evaluate the effect of the different sources of non-proportional hazards on the power of unweighted
logrank tests, the ρ − γ weighted logrank tests with (ρ, γ) ∈ {(0, 1), (1, 1), (1, 0)}, and two maximum-type tests. The first
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maximum test combines all four logrank tests, the second one combines the unweighted logrank test and the test with
weights ρ = 0, γ = 1, which puts more weight in late events and should be beneficial under delayed onset.

We perform simulations for three study designs corresponding to slow, intermediate and fast recruitment. In all
simulation scenarios patients are randomly assigned to treatment or control with equal probabilities. The recruitment
periods are 2 years, 1 year and half a year for the scenarios of slow, intermediate and fast recruitment, with constant
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(solid black line) arms as described in Scenarios A-F
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recruitment rates of 100, 300 and 800 patients per year, respectively. In the simulations, trials stop for data analysis
when a total number of 130 events is reached. (Under proportional hazards this number of events would correspond to
approximately 80% power of the logrank test with a hazard ratio of 0.6 at one-sided level of significance of 0.025.) To
focus on the effects of non-proportional hazards we did not consider random censoring due to drop outs in the simula-
tion. However, the R package nph15 we provide does allow for additional random censoring.

Data are simulated from survival functions that were defined using the methods described in Section 2 and with
parameters detailed below in this section. All tests are performed at a one-sided level of significance of 0.025. For each
scenario we performed 50 000 simulation runs.

Details on the survival functions and hazard functions in the considered scenarios can be found in Supplemental
material S1.

5.1 | Effect of subgroup prevalence

Here we assume a subgroup of patients has increased benefit from treatment. We modeled patients under control have
a constant hazard corresponding to median survival of 11 months, and patients under treatment to have constant haz-
ards with 18 months median survival if they do not belong to the subgroup and 30 months median survival if they
do. The prevalence of the subgroup was varied in (0,0.2,0.4,0.6). Not that these are population prevalences, with
observed sample proportions deviating according to random sampling.

In a second set of scenarios we added a delay of 100 days before onset of the treatment effect, meaning that in the
first 100 days the hazard rate under treatment is the same as under control (for both subgroups) and afterward corre-
sponds to the values of the previous scenario.

Visualizations of the resulting survival and hazard functions are included in the online supplemental material.
Figure 3 shows the resulting power curves. Without delayed onset the extent of non-proportionality of hazard rates is
limited (see Supplement), hence the logrank test is superior to the other tests. Also there is little dependence on the
recruitment scheme. In scenarios with delayed effect, however, there is a strong non-proportionality and, both, putting
too much weight on early events as well as recruiting too fast and hence observing mainly early events results in
reduced power. Both maximum tests perform similar and the drop in power when using either maximum test compared
to the best single weighted logrank test is small.

5.2 | Effect of hazard ratio in subgroup

Here we assume a setup identical to Section 5.1, except that the subgroup prevalence is held constant at
40% whereas the extra benefit in the subgroup is varying in terms of a multiplicative factor of the base haz-
ard ratio in {1,0.72,0.6,0.45}, which corresponds to median survival times in the subgroup under treatment of
{18,25,30,40}. As before, we considered an additional set of scenarios with delayed onset of treatment effect
of 100 days. Resulting survival and hazard functions are found in the supplement and resulting power curves
are shown in Figure 4. The observed pattern of power values is similar to that of the scenarios with varying
subgroup prevalence, with increasing treatment benefit in the subgroup having a similar effect as increasing
the subgroup prevalence.

TABLE 1 Power of weighted

logrank tests in the studied scenarios

for weighted logrank tests with (ρ, γ) �
{(0, 0), (0, 1), (1, 1), (1, 0)}, and a

maximum test combining all four

logrank tests (denoted by Max log-rank

4). The weighted logrank tests with

(ρ = 0, γ = 0) corresponds to the

conventional logrank test

Scenario

Test ρ γ A B C D E F

Max logrank 4 91.8 92.4 86.1 89.3 77.1 78.1

Weighted logrank 0 0 93.0 90.9 78.8 78.1 65.3 80.9

Weighted logrank 0 1 82.4 91.1 87.3 91.3 79.8 57.5

Weighted logrank 1 1 85.9 92.7 88.3 91.4 80.6 63.8

Weighted logrank 1 0 92.6 87.8 71.8 69.3 57.0 81.7
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5.3 | Effect of treatment switching

We again start from a setup with hazard rates as in Section 5.1 and the subgroup prevalence held constant at 40%. We
now add the possibility to switch from control to active treatment after disease progression. Progression is modeled as
an independent process with constant hazard and median time to progression of 5 months (fast progression scenarios)
or 9 months (slow progression scenarios). In the treatment group progression has no further effect. In the control,
groups patients will switch to the treatment group with a probability varying between scenarios in {0,0.2,0.4,0.6}. After
switching, former control patients will have the same hazards as a patient in the treatment group. The beneficial sub-
group effect will come into effect for a switcher with a probability of 40%, since belonging to the subgroup is modeled
as an intrinsic property of each patient. To calculate the power we assume an intention-to-treat analysis, that is, each
patient is counted according to the initial randomization and with the full available observation time, regardless of
potential subsequent switching.
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FIGURE 3 Power as a function of subgroup prevalence. Upper row: Scenarios without delayed onset of treatment effect. Lower row:

Scenarios with delayed onset of treatment effect after 100 days. We show the power for the logrank test and three weighted logrank tests

with (ρ, γ) � {(0, 1), (1, 1), (1, 0)} and maximum tests (i) combining the logrank and (ρ = 0, γ = 1) (denoted by Maximum 2) and

(ii) combining all four weighted logrank tests (denoted by Maximum 4)
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As before, survival and hazard functions are shown in the supplement. Resulting power curves are shown in
Figure 5. As the possibility of switching decreases the hazard ratio with time, tests with more weight on early
events have more power and the loss in power when using less optimal weights can be substantial. As seen before,
the maximum tests are able to recover most of the power of the best test they include. The maximum test that
includes only the ρ = 0, γ = 0 and the ρ = 0, γ = 1 weighted tests is less powerful than the maximum test that
includes all four considered weighted logrank tests. However, the difference is only up to few percentage points,
since the unweighted logrank test still has considerably power if the effect is mostly present at early event times.
When switching is the main cause of non-proportional hazards, fast recruitment, and hence observing more early
events, results in larger power values for all considered test, since in this scenario the observed treatment effect is
then strongest at early event times. Similarly, the reduction in power with increasing switching probability is less
pronounced in a fast recruitment regimen.
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delayed onset of treatment effect. Lower row: Scenarios with delayed onset of treatment effect after 100 days. We show the power for the
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5.4 | Effect of disease progression

We finally study the impact of altered hazard rates after disease progression. This results in non-proportional hazards
for death if disease progression is occurring at a different rate in the two groups, or if the between-group hazard ratio is
different before and after progression. Here we consider the former case. We assume constant hazard rates before and
after progression, respectively, corresponding to median survival times of 18.33 and 15 months under treatment and
11 and 9 months under control. Hence the hazard ratio is 0.6, both, before and after progression. The rate of progres-
sion is constant with median time to progression of 5 months in the control group and a value in {5,7,9,11} months
under treatment. Slower progression under treatment results in an initial decrease (stronger effect) in the hazard ratio
over approximately 200 days and subsequent increase, however the extent of this non-proportionality is rather small
(see Supplement). Consequently, the logrank test is most powerful for this setting, closely followed by maximum tests
and the ρ = 1, γ = 0 weighted test. The recruitment scheme does not have a notable impact in these tests, however, the
power of other weighted tests, which emphasize late events, are affected by too fast recruitment. As expected, a stronger
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FIGURE 5 Power as a function of the probability to switch from control to treatment after disease progression. Upper row: Fast

progression scenarios with a median time to progression of 5 months. Lower row: Slow progression scenarios with a median time to

progression of 9 months. We show the power for the logrank test and three weighted logrank tests with (ρ, γ) � {(0, 1), (1, 1), (1, 0)} and
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treatment effect with respect to delaying progression increases the power in all scenarios. Figure 6 shows the detailed
power curves.

5.5 | Summary of simulation results

The extent of non-proportionality caused by different sources of non-proportional hazard varies strongly. In the studied
scenarios, delayed onset and the possibility of treatment switching resulted in the strongest deviations from propor-
tional hazards. However, under more extreme scenarios also the presence of subgroups with different response to treat-
ment and progression effects have the potential for more pronounced non-proportionality. Delayed onset and
treatment switching have opposing effects with respect to the time points of strongest observable effects, hence
weighting early vs late events has opposing effects on power with these two sources on non-proportionality. See Table 2
for a concise overview of the conclusions drawn from the simulation studies and literature. In line with previous simu-
lation studies,11,22,23 the maximum test has the potential to safeguard against misspecification of a single weighed test.
Interestingly, the price of combining two or four tests in the maximum test, in terms of reduced power compared to the
best test single test in the simulation, was almost identical. This can be attributed to the strong correlation between the
included tests and supports the idea of using the maximum tests as robust variant in the analysis of trials where the pat-
tern of non-proportional hazards cannot be predicted well.

6 | SOFTWARE IMPLEMENTATION

In Section 5 we studied the effect of different sources of non-proportional hazards separately, while Section 4 provided
a case study of a clinical trial in which at least two sources were present. Naturally, different diseases and trial charac-
teristics will exhibit different patterns in terms of non-proportionality mechanisms. We provide the R package nph15

which is available at the CRAN repository so that researchers can explore different scenarios using the theory presented
in this paper. The package includes functions to model survival distributions in terms of piecewise constant hazards
and with differential effects due to disease progression and subgroups, to simulate data from the specified distributions,
and to perform the weighted logrank tests and maximum tests described in Section 3.1.

Functions for modeling/setting the underlying survival model include:
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• pchaz: Calculate survival functions defined through piecewise constant hazards
• subpop_pchaz: Calculate survival functions defined through piecewise constant hazards, allowing for a change in

the piecewise constant hazard regimen after a random progression time
• pop_pchaz: Calculate survival functions for a mixture of subpopulations. In each subpopulation the survival func-

tion is defined through piecewise constant hazards and these are allowed to change after a random progression time.

Functions for generating simulated datasets given a specified survival model are:

• sample_fun: Sample survival times based on study settings
• sample_conditional_fun: Sample conditional survival times based on study settings and given observed

interim data

Functions for performing statistical tests:

• logrank.test: Weighted logrank test
• logrank.maxtest: Maximum logrank test

Plotting functions:

• plot.mixpch: Generic plot function for mixpch objects, which result from pchaz, subpop_pchaz and
pop_pchaz

• plot_diagram: Creates the diagram for the model, similar to Figure 1
• plot_shhr: Plot of survival, hazard and hazard ratio of two groups as function of time

Additionally, we provide in the supplementary material (S2 file) a document with basic usage instructions for the
package and outlining further more complex examples of non-proportional hazards along with the R code to model
these situations.

TABLE 2 Summary of the effect of considered population characteristics and design aspects on the proportionality of hazards and the

power of between group comparisons of survival times

Aspect Effect on non-proportional hazards or on power Key message

Delayed onset
of treatment
effect

Treatment effect increases with time, since the treatment is
effective only with some delay.

Reducing the weight of early events increases
power. Zero weight for early events may be
considered as most extreme case.19

Disease
progression

Treatment effect changes with time if active treatment delays
disease progression or the treatment effect is different before
and after progression.

Optimal weights depend on treatment effect on
progression and hazard ratios before and after
progression. The effects can be explored by
simulation in the proposed piecewise constant
hazards framework.

Biomarker
subgroups

Treatment effect is increasing with time, when a biomarker
positive subgroup with particularly strong treatment benefit is
included, since this subpopulation is enriched with time.

More weight on late events increases power. As
an alternative to weighted logrank test,
parametric cure rate models may be
considered.4

Treatment
switch after
progression

Treatment effect is decreasing with time, if patients may switch
to a common medication after disease progression.

More weight on early events may increase
power. Accelerated failure time models
accounting for different failure rates before
and after treatment switch have been proposed
as parametric alternative.6,7

Recruitment
scheme

Fast recruitment with short follow up results in larger power if
the treatment effect decreases with time. Slow recruitment
with long follow up results in larger power if the treatment
effect increases with time.

Under non-proportional hazards, the power of
logrank tests also depends on the timing of
observed events. This in turn depends on
recruitment speed and total study duration.
The effect of different recruitment schemes
should be considered during study planning.
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7 | DISCUSSION

The proportional hazards assumption may be violated due to different inherent features of a study design, patient popu-
lation or mode of treatment action. The modeling approach pursued in this paper allows one to study the effect of dif-
ferent sources of non-proportional hazards on the survival and hazard functions. It also allows for easy simulation of
study data and comparison of different testing strategies under complex non-proportional hazard scenarios.

Under proportional hazards the standard unweighted logrank test corresponds to the optimal test in the family of
weighted logrank tests, whereas under non-proportional hazards other weighting schemes may result in larger power.
If the shape of the hazards function for an actual trial is well understood, for example, through modeling the assumed
data generating process, and well known from available data, a suitable weighting function may be selected. For exam-
ple, Liu et al25 proposed nearly optimal weights under a specific cure rate model with delayed onset. In many cases,
however, different hazard functions may be considered reasonable. In this situation the combination of several
weighting functions in terms of the maximum test may be preferable. The power of this test is typically closely below
that of the best included individual test, providing a robust method. Other combination functions with similar proper-
ties may be explored though, for example, the combination of individual tests via the harmonic mean of their P-
values.26

Group sequential methods have been proposed as another approach to tackle the planning uncertainties under
unknown patterns of non-proportional hazards. Jimenez et al27 describe sample size reassessment methods in the set-
ting of the delayed onset and comparing two groups with ρ − γ weighted logrank test. They propose to plan the sample
size under a model of delayed onset, for example, for a ρ = 0, γ = 1 weighted test. If, however, the assumption about
the delay was not correct, the sample size might be too small and in this case sample size reassessment based on interim
is proposed to increase the sample size (and power) if necessary. Korn and Freidlin28 study the loss in power when futil-
ity stopping rules at interim are applied in the setting of delayed onset. To reduce the influence of the suspected delayed
onset phase, they propose to modify stopping rules by the additional condition that a reasonable fraction (eg, at least
two-thirds) of the events observed at interim have occurred at least a sufficient time (eg, 3 months) after randomization.
In the presence of a potential subgroup of long term survivors, the planned number of events may be reached later than
anticipated. In this context, Chen4 proposed to select and fit a parametric model, choosing from a set of distributions
such as lognormal and Weibull, with blinded interim data and thereon predict the remaining study duration.

We focused on testing the null hypothesis of ordered hazard functions. Here rejecting H0 using a (weighted) logrank
test first of all means that at least for t in some time interval λtrt(t) < λctr(t). In the clinical trial setting this means the
experimental treatment has some beneficial effect at least in some time interval. However, which time intervals are
actually observed and how strongly their information contributes to the test decision depends on the censoring distribu-
tion and the applied weights (see Reference 8). A definite assessment of the treatment benefit should therefore include
considerations on possible detrimental effects in time intervals which were not observed or which received less weight.
In some cases subject matter knowledge on the safety of the treatment may even allow for the assumption λtrt(t) ≤ λctr(t)
for all t.

However the survival of two (or more) groups may also be compared in terms of other parameters. A simple strategy
is so the called landmark or milestone analysis in which the values of the survival functions for a pre-specified time
point, for example, one-year survival, are compared between groups. However, selecting a fixed time point in the plan-
ning phase is difficult and an inappropriate choice could lead to power loss. In addition, this approach suffers from
information loss as only one point of the estimated survival curve is considered. Logan and Mo19 combine both
approaches. They argue that under non-proportional hazards and under potential crossing of survival curves, long term
survival is a relevant outcome. They propose a (group sequential) test for the intersection null hypothesis of equal sur-
vival function at a pre-specified time point t0 and equal hazard functions after t0. Alternative effect measures which we
did not consider here include the difference in restricted mean survival times29 and the average hazard ratio.

A well-known alternative, the difference in restricted mean survival times29 of two groups may be used as effect
measure. Tests based on this parameter can be more powerful than the unweighted logrank test, however depending
on the actual hazard functions and the chosen time point trestr up to which the restricted means are calculated.30 The
interpretation of this parameter is entirely focused on the hazards before trestr, as the difference in restricted mean sur-
vival times corresponds to the expected life time gained up to the time trestr. Note that under crossing survival functions,
the probability to survive longer than time trestr may be larger in one group while the restricted mean survival time up
to time trestr is larger in the other group.
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Also the general non-parametric effect measure P(Ttrt > Tctr) may be utilized, which is referred to under various
names such as relative effect or probabilistic index. In this context Ttrt and Tctr are the event times of two randomly cho-
sen subjects under treatment and control, respectively. Under proportional hazards, the hazard ratio equals P Ttrt >Tctrð Þ

1−P Ttrt >Tctrð Þ,
see for example, Reference 31. For non-proportional hazard settings, several authors propose to use as effect measure

an average hazard ratio32-35 defined as

Ð
λtrt= λtrt + λctrð ÞdW tð ÞÐ
λctr= λtrt + λctrð ÞdW tð Þ, with W(t) a survival function that serves as weighting function.

When choosing W(t) = Sctr(t)Strt(t), the average hazard ratio conveniently equals P Ttrt >Tctrð Þ
1−P Ttrt >Tctrð Þ. However other choices of

W(t) may result in larger power depending on the true hazard functions. With censored data, the average hazard ratio
needs to be computed in a truncated fashion up to some time ttrun, which is within the time span of observed events. In
this case it can be interpreted to compare the survival times Ttrt and Tctr conditional on at least one of the two event
times being smaller than ttrun.

Explicit modeling of non-proportional hazards may be considered, see for example, the parametric approach in Ref-
erence 4 discussed above. However, to allow for unambiguous interpretation of observed effects in a parametric analysis
model, the model must be predefined and should be supported by subsequent model diagnostics.

There is not a unique answer on how to address the impact of different disturbances of the proportional hazards
assumptions. As key finding from our investigation with respect to choosing a hypothesis test we conclude that the
maximum test has the potential to safeguard against deviations from optimal assumptions and is robust with respect to
the number of subsumed tests. With respect to identification of sources non-proportionality we conclude that inspection
of estimated survival curves, for example, from previous trials, does in general not reveal underlying sources of non-
proportional hazards. In part as consequence of the difficulty to empirically identify these sources, we conclude that
simulations are essential to understand the operational characteristics of a planned trial under all relevant deviations
from the proportional hazards assumption.

The modeling approach, the hypothesis tests and the according software we described provide a comprehensive set
of tools to address these challenges. While we focused on weighted logrank test for statistical inference on hazard func-
tions, the set of method can readily be extended with analysis methods based on further parameters of interest.
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