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Recent developments in extracting and processing biological and clinical data are allowing quantitative
approaches to studying living systems. High-throughput sequencing (HTS), expression profiles,
proteomics, and electronic health records (EHR) are some examples of such technologies. Extracting
meaningful information from those technologies requires careful analysis of the large volumes of data
they produce. In this note, we present a set of fractal-like distributions that commonly appear in the analysis
of such data. The first set of examples are drawn from a HTS experiment. Here, the distributions appear
as part of the evaluation of the error rate of the sequencing and the identification of tumorogenic
genomic alterations. The other examples are obtained from risk factor evaluation and analysis of relative
disease prevalence and co-mordbidity as these appear in EHR. The distributions are also relevant to
identification of subclonal populations in tumors and the study of quasi-species and intrahost diversity of
viral populations.

T
he large volumes of data obtained by recent technological developments, such as next-generation sequencing
and expression profiles, are providing novel and complementary ways to studying biological systems. In
order to extract meaningful, statistically significant information from such data, mathematical methods are

being developed, implemented, and tested in various contexts. For example, it is believed that most tumors are
due to somatic mutations that lead to an uncontrolled cell growth. Next-generation sequencing technologies
produce hundreds of gigabases of genetic data, providing a way to identify genes responsible for the tumorigenic
process by comparing the genome of the tumor and the normal tissue1–7.

In this note, we point out some interesting properties of the ratios of natural numbers obtained in a biological/
clinical setting. The ratios of interest can be seen as sampled from a distribution over the rational numbers in the
unit interval. Consider pairs of positive integers, n and m, sampled from a distribution with probability f(n, m).
The ratio q 5 n/(n 1 m) of one of these numbers by the sum of the two is a rational number in the unit interval. In
this way the distribution f(n, m) gives rise to a distribution g(q) supported on the rational numbers in the unit
interval. A case of particular interest is when the two integers are drawn independently from the same distribution
h(n). As we are going to see, in this case and for h being certain common distributions, such as exponential and
power-law, it is possible to have a closed-form expression for g. We will also see that the resulting distributions
over the rational numbers possess certain self-similarity properties. Namely, the overall shape of those distribu-
tions is similar to Thomae’s function (Figure 1, top left). Although irrelevant to our discussion we would like to
point out that, similar to Thomae’s function, the distributions which we study are rather interesting analytically,
because, viewed as functions over the reals, they are continuous on the irrational numbers but not on the rationals.

We will illustrate the appearance of such distributions in real life data with two examples: 1) a next-generation
sequencing experiment aimed at identifing genomic variations in cancers and 2) diagnosis data collected at the
New York Presbyterian Hospital in several consecutive years. Although the presence of irregular shapes and
spikes in empirically occuring distributions of ratios of natural numbers was reported before as a statistical
artifact8, the authors of this previous work failed to acknowledge the interesting mathematical structure of the
underlying distributions. In this work we propose the study of those naturally occurring distributions of rational
numbers as an interesting mathematical topic with important clinical and biological applications.
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Results
First example: identifying genomic alterations with next-generation
sequencing. Our first example comes from a next-generation sequenc-
ing experiment of a diffuse large B-cell lymphoma (DLBCL) sample6,7.
DLBCL is the most common B-cell non-Hodgkin lymphoma in adults,
accounting for <40% of all new lymphoma diagnoses. Tumor DNA
was extracted from a nodal tumor of a 63 year old female patient.
The coding part the genome (the exome) was enriched using
Roche NimbleGen Sequence Capture and the enriched product was
sequenced using Roche 454 sequencing. The data produced from the
experiment were 2 ? 106 reads (sequences of DNA) of average length
250 nucleotides. The reads were aligned to the hg18/NCBI36.1 re-
ference human genome. This resulted in a coverage of about 10x of
the human exome and the alignment was used to identify genomic
variants distinguishing normal and tumor cells. Figure 1 (top right)
shows a diagram of the alignment algorithm and the fractal-like
distributions obtained from the sequencing experiment (bottom).

Figure 2 (top, blue) shows the depth (5number of reads covering
a particular position) distribution (coverage) after alignment of the
reads. The figure also shows a negative binomial least-square fit of
the data. If the reads were obtained from the genome independently
and at random, one would expect the coverage to follow a Poisson
distribution. As it is, even though restricted to a small part of the
genome the coverage might be Poisson, overall, because of the way
the sample was processed before sequencing, the means of the
Poisson processes in different parts of the genome will vary. The
result will be an overdispersion of the depth distribution and a better
fit by the negative binomial, known to be a mixture of Poisson dis-
tributions with Gamma-distributed means.

Each of the 46 chromosomes of the human genome has two
strands and, with the exception of the sex chromosomes X and Y,
the human genome is diploid, i.e. each chromosome has a homolog-
ous copy. Since the reference genome is given as entirely haploid, the
information about which copy of the genome a sample read origi-
nates from is not recovered by the alignment. Nonetheless, assuming
that a read can originate from each copy of the genome with equal
probability and given the coverage of the reference, one can obtain a
theoretical coverage of a fixed copy of the genome. Thus the fraction
of positions on a fixed copy of the genome covered with k reads is

p kð Þ~
X?
t~k

q tð Þ
t

k

� �
2{t ,

where q(t) is the fraction of positions with coverage t, as given
in Figure 2 (top, blue). After a simple algebraic simplification it can
be shown that, if q is Poiss(l), then p is Poiss(l/2). Furthermore, since
the negative binomial is a mixture of Poissons with Gamma-distributed
means, we can obtain that if q is NegBin(r, s), then p is NegBin(r, (s/2)/
(12s/2)). Figure 2 (top, green) shows the theoretical coverage of a
fixed copy of the human genome obtained from these considerations.
Similar reasoning leads us to a predicted coverage of a fixed strand of
the human genome shown in Figure 2 (top, black).

Although the alignment to the reference does not provide exact
information about the origin of a read in the sample, we can still
test the prediction about the coverage of a fixed copy of the cancer
genome in the following way: take sufficiently many heterozygous
positions, i.e. positions at which the two copies of the genome differ,
and then consider the number of reads covering such a position and
containing one of the variants at that position and the number of

Figure 1 | Thomae’s function, a self-similar function over the rational numbers in the unit interval (top left). The human genome is diploid with two

strands per chromosome. The reads covering a position of the genome can originate from each of the four strands (top right). For every position, the ratio

between the number of reads from one of the strands to the total number of reads from the chromosome and the ratio between the number of reads from

the chromosome to the total number of reads covering the position are rational numbers. The distribution of each of these ratios follows a self-similar

distribution (bottom).
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reads containing the other variant. Those two depth distributions
should be close to the predicted distribution of the coverage of a fixed
copy of the genome. Figure 2 (bottom left, blue and red) shows the
result of these considerations. Here we took only the positions of
exonic single nucleotide polymorphisms documented in the NCBI’s
dbSNP database, which are covered sufficiently well in the experi-
ment (total of <3000 heterozygous positions). Figure 2 (bottom left,
green) contains the predicted coverage of the two copies of the
human genome as obtained earlier. Furthermore, Figure 2 (bottom
right) shows similar plots for a fixed strand of the genome. Since the
information about the strand from which a sample read originates
is also lost in the sequencing, here we used the orientation of a
read when aligned to the reference as a surrogate for its strand. As
can be seen, the predictions closely follow the data, confirming our
intuition that the reads come from the four strands of the genome
independently.

Our main observation is concerned with the heterozygous posi-
tions we used to obtain the data for Figure 2 (bottom). This time we
consider the distribution of the ratios of the number of reads covering
one of the variants at a particular position in the cancer genome to
the total number of reads covering this position and the ratio of the
number of reads covering one of the strands to the total number of
reads covering the variant. The resulting distributions of ratios are
given in Figure 1 (bottom, blue). There are two apparent features of
the distributions which drew us to studying them: first, their fractal-
like self-similar structure, and second, the spikes they contain. We
consider the topic of the self-similarity of the distributions in the
Methods section and quantify it by computing the fractal dimension
of related functions. From a biological point of view the spikes are
interesting because at first sight one might decide that they show
overrepresentation of certain ratios. For example, for the distribution
of variant depth over the total depth, the spike at 0.5 is expected, since

we are looking at heterozygous positions, but the spikes at 0.33 and
0.66 are harder to explain biologically since they would mean the
significant presence of variants with ploidity other than 2. While
such phenomena can occur in cancers because they can present
genome aberrations known as copy number alterations, the scale at
which the phenomenon is represented here is unusual. We will see
that the spikes are due to the discreteness of the data and could
actually be explained by a simple stochastic model. Hence regarding
the biological conclusions one can draw from next-generation
sequencing experiments, the message of our note is that when dealing
with biological data the stochastic effects due to the discreteness of
the data can be big and attention should be used when drawing
conclusions lest one confuse such effects with real biological phe-
nomena. A similar conclusion was drawn in8. In this note we further
study the mathematical properties of the resulting distributions.

To formalize the situation we first define the convolution over the
rational numbers of two functions defined over the natural numbers.
Let

Qu~Q\ 0,1½ �~ a
azb

: a [ N, b [ N, azbw0, a,bð Þ~1

� �

be the set of rational numbers in the unit interval. For any two
functions f,g : N?R define their convolution cf,g : Qu?R to be

cf,g
a

azb

� �
~
X?
m~0

X?
n~0

f mð Þg nð Þd a
azb

{
m

mzn

� �

~
X?
t~1

f tað Þg tbð Þ:

In Figure 1 (bottom left, red) we have also plotted the convolution
cp,p of the negative-binomially distributed predicted coverage p of the
two copies of the cancer genome as given in Figure 3 (bottom left,

Figure 2 | Coverage in the cancer sequencing experiment (top). Coverage of the two copies of the cancer genome (bottom left). Coverage of the two

strands of a fixed copy of the cancer genome (bottom right).
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green). In Figure 1 (bottom right, red) we have done the same for the
coverage of a fixed strand. As can be seen, the convolutions follow
closely the empirical distributions of ratios. This observation is con-
sistent with the null-hypothesis of reads originating from the four
strands of the human genome independently and covering a particu-
lar position on the genome with a negative-binomial distribution. No
further assumption seems to be necessary to explain the irregular
shapes of the ratio distributions.

We would like to finish the exposition in this section by noting that
the observed structures are not particular to the Roche 454 sequen-
cing technology and can be observed in sequencing experiments
performed with other sequencing platforms, e.g. Illumina’s Solexa
and Life Technologies’ SOLiD.

Second example: electronic clinical data. The development and
implementation of electronic clinical records has made available
large amounts of longitudinal clinical data. The primary applica-
tion of electronic clinical data is to improve the quality of health
care provided to the individual patients9. Although using this data
for uncovering large scale correlations and trends comes secondary
to this, the impact such data mining will have on the public health is
indisputable10. Some specific areas which will be influenced by such
analyses are the creation of alert systems for emerging infectious
diseases, identification of populations at risk, and measuring the
efficacy and efficiency of public health measures. A recent example
of this is provided by the 2009 H1N1 influenza pandemic. The first
wave of the new influenza strain infected a considerable part of the
world population at the end of spring 2009 and the beginning of the
summer 201011,12. Evaluating the impact of the new pandemic strain
on the public health involved analyzing large clinical datasets13–15.

The New York Presbyterian Hospital has an electronic repository
with the longitudinal clinical records of more than 2 million patients.
An example of the large scale analysis enabled by this data is the

identification of populations that are at higher risk of morbidity/
mortality from the new pandemic influenza virus versus seasonal
influenza, for instance, people with asthma, children, pregnant
women, etc15. The approach we took for this analysis was to compare
the number of people with a given condition who were affected by
seasonal or pandemic influenza at different time points. Towards this
goal, for every two diseases identified by their ICD9 codes, we can
obtain from the electronic health records the number of people who
have been affected by both diseases. Although this might differ from
the established terminology, for the purpose of this note we will call
this number the co-morbidity of the two diseases. In this way for a
fixed disease we can obtain its co-morbidity with all other possible
diseases. If we do this for two diseases, which in our analysis we take
to be seasonal and pandemic influenza, we can then compare the sets
of co-morbidities and look for conditions enriched with respect to
one of the diseases but not the other. Figure 3 (top left) shows the
distribution of co-morbidites with seasonal and pandemic influenza.
As can be seen, these distributions are long-tailed and can be mod-
eled with power-law distributions. The results of the power-law fits
are also shown in Figure 3 (top left).

For a particular health condition, an important measure of the risk
of being infected by seasonal versus pandemic influenza for people
who have had this condition is the ratio of the number people who
have had both that condition and seasonal influenza, i.e. the co-
morbitity with seasonal flu, to the total number of people who have
had the condition, i.e. the sum of the co-morbidities with seasonal
and pandemic flu. We have plotted the distribution of these ratios in
Figure 3 (top right, blue). As can be seen, its shape has the self-similar
structure of interest to us. From the discussion so far one might be
tempted to model this distribution as the convolution of the power-
law distributions modeling the two sets of co-morbidities. The result
of this attempt is shown in Figure 3 (top right, green). The graph
shows that in this case the convolution is not a good model because

Figure 3 | Comparing the co-morbidity of various conditions with the 2009 H1N1 pandemic versus seasonal influenza.
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the empirical ratios are shifted to the left, wheres the convolution is
not. In Figure 3 (bottom) we have plotted the pairs of co-morbidities
for all conditions. The Spearman correlation coefficient for the two
sets is 0.83 and linear regression shows that the co-morbidities for
pandemic influenza are 1.3 times the corresponding co-morbidities
for the seasonal influenza. Hence one might suppose that the dis-
crepancy is due to the fact that the pairs of co-morbidities are not
independent – the convolution defined above assumes that the two
distributions are independent.

To avoid this obstacle we reconsidered our model for the distri-
bution of co-morbidities and asked the following question: what is
the source of the long-tail of this distribution? Our stipulation is that
1) for a fixed pair of diseases the co-morbidity is Poisson distributed,
if you observe it at different time points; 2) the means of these
Poissons vary from pair to pair of diseases; and 3) the distribution
of these means is long-tailed. The first two stipulations are trivial if
one accepts the simplifying assumption that for every disease (or
pairs of diseases) there is a fixed probability that a particular person
will get afflicted with this disease at a particular moment. The third
stipulation is supported by our experience with the electronic health
records and is akin to the informal observation that there is no
universal scale at which diseases happen in the human population.
We use that the mixture of Poissons with power-law distributed
means has a power-law distributed tail (see the Methods section)
to model the long-tail distribution of the two sets of co-morbidities.
In Figure 3 (top left, black) we have plotted the result of a mixture of
Poissons with power-law distributed means.

Next we claim that the observed distribution of ratios is a mixture
of convolutions of pairs of Poissons where the mixing is with the same
power-law distribution used for the distribution of co-morbidities.
More precisely, let’s say that the co-morbidity of a fixed condition
with seasonal influenza is Poisson with mean ls and its co-morbidity
with the pandemic strain is Poisson with mean lp. From our obser-
vation on the dependance between the two sets of co-morbidities, we
can say that lp 5 cls for some c. Hence the risk ratio of this condition
with the two kinds of influenza will be distributed according to the
convolution of the two Poissons, which we denote with Rls,lp . Since
the mean of Rls,lp is ls/(ls 1 lp) 5 1/(1 1 c) (see the Methods
section), for c ? 1 this mean will be shifted away from 1/2 depending
on c. Our model of the distribution for pairs of co-morbidites is a
power-law mixture of distributions choosing the two co-morbidities
independently according to two Poissons, i.e.

f n,mð Þ~
ð?

1
ga lð ÞPl nð ÞPcl mð Þdl,

where ga(l) / l2a. Note that although f(n, m) is not a product
distribution, i.e. its marginals are not independent, it is a mixture of
such distributions. Finally, the distribution of risk ratios is given by

R
a

azb

� �
~
X?
m~0

X?
n~0

f m,nð Þd a
azb

{
m

mzn

� �

~

ð?
1

ga lð ÞRl,cl
a

azb

� �
:

Figure 3 (top right, green) shows the result of these considerations. We
observe a good fit between the empirical distribution to the right of 1/2
and the new model and the predicted overall shift of the model to the
left. The apparent discrepancy between the empirical and the mixture
model for ratios less than 1/2 can be attributed to the discrepancy at
low co-morbidities between the mixture and empirical co-morbidity
distributions observed in Figure 3 (top left). Since the goal of this note
is to give examples of and draw attention to the interesting self-similar
distributions appearing in empirical data, rather than to explore one
particular example in detail, we leave the further analysis of the dis-
tribution of co-morbidities and the risk ratios derived from them to a
future work.

Closed form for the convolution. As a step towards understanding
the mathematical properties of functions over the rational numbers
in the unit interval obtained as the convolution of functions over the
natural numbers, we attempted to obtain a closed form, i.e. in terms
of known functions, for some of them. Ideally, given the consider-
ations above, it would be interesting to obtain a closed form for the
convolution of two negative binomials or two Poissons. Although
we were not able to obtain a closed form in those cases, in the Me-
thods section we present a general method for computing arbitrary
moments of the convolution when moment generating functions are
available. The most general class of distributions for which we were
able to obtain a closed form is power-laws with geometric cut-off.
Note that the power-law and the geometric distributions belong to
this class, and it is known that the negative binomial is a sum of
geometric distributions.

Let g be the probability mass function of a variable distributed
according to a power-law with geometric cut-off with parameters
a, b $ 0 such that b . 0 or a . 1 , i.e.

g kð Þ~ k{ae{bk

Lia e{bð Þ ,

where Lia xð Þ~
P?

k~1 k{axk is the polylogarithm function. In par-
ticular

Lia 1ð Þ~f að Þ and Li0 x{1
� �

~
1

x{1
:

Then

cg,g
a

azb

� �
~

abð Þ{aLi2a e{ azbð Þb� �
Li2

a e{bð Þ :

Power-law. Take b 5 0 and a . 1. Then

cg,g
a

azb

� �
~

f 2að Þ
f2 að Þ

abð Þ{a:

Geometric. Take a 5 0, b . 0. Then

cg,g
a

azb

� �
~

eb{1
� �2

eb azbð Þ{1
:

Uniform. Although this example does not present a distribution
appearing naturally in the discussion above, we believe it is funda-
mental enough to mention here. Furthermore, as discussed in the
Methods section, this example is related to Thomae’s function, be-
cause a certain infinite analogue of it has the same fractal dimension.

For a natural number L let fL be the probability mass function
which is uniform on the set {1, 2, …, L}, i.e.

fL kð Þ~
1=L, k [ 1,2, . . . ,Lf g
0, o=w:

�

Then

cfL ,fL

a
azb

� �
~

1
L2

t L
max a,bð Þs

Thomae’s function.

fT
a

azb

� �
~

1
azb

:

This function, supported on the rational numbers in the unit
interval, is not a distribution. It is a classic example of a function
which is constant almost everywhere and yet discontinuous on a
dense set. It can be beautifully interpreted as the view from the corner
of Euclid’s orchard – an imaginary orchard which contains a tree at
every point with integer coordinates. Although it probably is not the
convolution of functions over the natural numbers, the fact that
versions of it appeared in our empirical data was a pleasant surprise
to us and one of the main motivations for this study. In the Methods
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section we will show that the graph of this function has a fractal
dimension 3/2.

Discussion
We have presented a set of self-similar distributions supported on
the rational numbers in the unit interval. These functions appear
pervasively in the analysis of large datasets when models for the
distribution of ratios of natural numbers are required. The examples
presented in this manuscript are drawn from next-generation
sequencing data obtained as part of a study on the identification
of somatic mutations, on one hand, and understanding disease co-
morbidity as it is reflected in electronic clinical data, on the other.
One can envisage further applications in clinical and biological set-
tings in which the estimation of a frequency or ratio is necessary.
Such examples are provided by the detection of subclonal popula-
tions in tumor samples, e.g. as part of a study on resistance to chemo-
therapy; the study of quasi-species and intrahost viral populations,
e.g. in HIV and influenza; and studies of drug effectiveness, popula-
tions at risk in a pandemic, and other topics in clinical research
approachable through the analysis of risk ratios. We hope that our
presentation will stimulate further study of the functions presented
here and provide a bridge between interesting theoretical work and
important clinical applications.

Methods
Fractal dimensions. The distributions we considered in this note
exhibit a self-similar fractal structure. We are interested in calcu-
lating the fractal dimension of those structures. More precisely,
given a function f : Qu?R, define G(f ) to be the set of line
segments in the plane from (q, 0) to (q, f(q)) for q [ Qu. The
fractal dimension of the set G(f ) is defined as

dim G fð Þ~ lim
e?0

log N eð Þ
log 1=e

where N(e) is the number of squares of size e needed to cover G(f ). If
f is such that

P
q[Qu

f qð Þv?, e.g. f is a probability distribution,
then dim G(f ) 5 1. Hence, our attention will focus on the fractal
dimension of more general non-normalizable functions defined on
the rational numbers in the unit interval.

For a given a $ 0, let fa : Qu?R

fa a= azbð Þð Þ~ abð Þ{a:

From the discussion on the closed form for the convolution follows
that for a . 1, fa is normalizble, and hence, in this case, dim G(fa) 5 1.
Also trivially dim G(f0) 5 2. It will be interesting to obtain dim G(fa)
for a g (0, 1]. The following calculations from16 should be helpful in
obtaining this dimension.

Let fT : Qu?R be Thomae’s function fT(a/(a 1 b)) 5 1/(a 1 b).
We will show that dim G(fT) 5 3/2. Since max{a, b} 5 H(a 1 b), one
can think of Thomae’s function as the infinite analogue of the con-
volution of the uniform distribution on {1,…, L} extended to L 5 ‘.

Let Fn be the n-th Farey sequence, i.e. Fn~ x0~0vx2v � � �vf
xmn~1g is the sequence of all rational numbers xi~ai= aizbið Þ~
ai=ci [ Qu, such that ai and ci # n, sorted in increasing order. Let A ið Þ

n

be the area of the trapezoid between the x-axis and the line segment
with points (xi21, fT(xi21)) and (xi, fT(xi)). Then

2A ið Þ
n ~ fT xi{1ð ÞzfT xið Þð Þ xi{xi{1ð Þ~ ci{1zci

c2
i{1c2

i
,

where we use that xi2xi–1 5 1/ci21ci.
Let An~

Pmn
i~1 A ið Þ

n be the area under the piece-wise linear curve
with points from Fn. We will calculate An2An–1 for n $ 3. Consider
two consecutive members ai21/ci21 and ai/ci of Fn21, which have an
element yj 5 (ai21 1 ai)/(ci21 1 ci) of Fn inserted between them.
Then ci21 1 ci 5 n and

2 A ið Þ
n{1{A jð Þ

n {A jz1ð Þ
n

� 	
~1=ci{1cin:

For every n . a . 0 if d 5 (a, n) there exist unique 0 , n9 , n and
0 # a9 , a such that d 5 (a9, n9), n9a2a9n 5 d2, a9 , n9, and a0 5

a2a9 # n2n9 5 n0. If a=n [ Qu{ 0,1f g, then (a, n) 5 1 and we have
that a9/n9, a0/n0 g Fn21 are consecutive and a/n g Fn is inserted
between them. Hence

An{An{1~{
1
2

Xn{1

a,nð Þ~1
a~1

1
n0n00n

~{
1

2n

Xn

c,nð Þ~1
c~1

1
c n{cð Þ

~{
1

n2

Xn

c,nð Þ~1
c~1

1
c
~{

Gn

n2
,

where we let Gn~
P

1ƒcƒn
c,nð Þ~1

1=c

.
Since A2 5 1 and limkR‘ Ak 5 0 we obtain that

Ak~1{
Xk

n~2

Gn

n2
~

X?
n~kz1

Gn

n2
:

Since Sbjn bGb 5 Hn, where Hn is the n-th harmonic number, from
Möbius inversion follows that

nGn~
X
b nj

m n=bð ÞbHb:

We are ready to obtain an asymptotic expression for Ak. Namely

X?
n~kz1

1
n2

X
b nj

m n=bð Þ
n=b

Hb~
X?
c~1

m cð Þ
c

X?
n~kz1

c nj

Hn=c

n2
*

ln k
k
:

Let ek 5 mini{xi2xi21} 5 1/k(k21), where the minimum is over
the elements of Fk. We need

Nk~H Ak



e2
k

� �
~H k3 ln k

� �
squares of size ek to cover the set G(fT). Hence dim G(fT) 5 3/2.

Let F0k~ y0~0vy2v � � �vymk~1f g be the sequence of rational
numbers x~a= azbð Þ [ Qu, such that a, b # k, sorted in increasing
order. Using similar arguments as above we can show that the length
La,k of the curve with points (yi, fa(yi)) satisfies

La,k~
Xk

a,bð Þ~1
a,b~1

abð Þ{a<
k2 1{að Þ{k1{a
� �

log k

f 2ð Þ 1{að Þ :

Let Aa,k be the area under the curve with points (yi, fa(yi)).
Furhermore, let dk 5 mini{yi2yi21} 5 H(k22) and Na,k be
the number of squares of size dk necessary to cover G(fa). Since
Na,k~H Aa,k



dk

2� �
~V dkLa,k



dk

2� �
we obtain that for a g [0, 1]

dim G fað Þ§2{a

We believe that this lower bound is an equality.

Moments of the convolution. In this section we derive an expression
for the moments of the convolution of distributions on the natural
numbers in terms of their moment generating functions. Using this
expression we show that the mean of the convolution of any
distribution with itself is 1/2. In the specific case of a convolution
of two Poissons with means l and m we show that the mean is
l/(l 1 m) and the variance is

lm

lzm
:Ein {l{mð Þ

1{elzm
~H

lm

lzmð Þ3

 !
,
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where

Ein xð Þ~
ðx

0

1{e{t

t
dt:

Consider two distributions f,g : N?R and define

ms~
X

a,bð Þ[Qu

as

azbð Þs
X?
t~1

f tað Þg tbð Þ~
X

mznw0

nsf nð Þg mð Þ
nzmð Þs :

Note that the s-th moment of the convolution of f and g is ms/m0. We
have that m0 5 12f(0)g(0) and for s . 0

ms~
X?

nzmw0~1

nsf nð Þg mð Þ
ð

D
e nzmð Þ

P
i

tidt1 . . . dts

~

ð
D

xg

X
i
ti

� 	
x

sð Þ
f

X
i
ti

� 	
dt1 . . . dts

where xf and xg are the moment generating functions of f and g, and
integration is over the domain D~ {?,0�ð s(Rs.

If f 5 g, then

m1~

ð0

{?
xf tð Þx0f tð Þdt~

x2
f tð Þ
2

�����
0

{?

~
1{f 2 0ð Þ

2
~

m0

2
:

Assume that f and g are Poisson with means l and m. Let s 5 l 1 m.
Then

m1~

ð0

{?
em et{1ð Þletel et{1ð Þdt~

l

s
m0

and

m2~
l

es

ð1

0

ð1

0
esu1u2 1zlu1u2ð Þdu1du2

~
l2

s2
z

lm

s2
:Ein {sð Þ

1{es

� �
m0:

Mixing Poissons. For a . 1 let Ma be a mixture of Poissons with
power-law with exponential a distributed means, i.e.

Ma kð Þ~ a{1
k!

ð?
1

xk{ae{xdx:

For k . . a21 we have that

Ma kð Þ~ a{1ð ÞC k{az1,1ð Þ
k!

*k{a:
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