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SUMMARY

Interval censoring arises frequently in clinical, epidemiological, financial and sociological
studies, where the event or failure of interest is known only to occur within an interval induced
by periodic monitoring. We formulate the effects of potentially time-dependent covariates on the
interval-censored failure time through a broad class of semiparametric transformation models
that encompasses proportional hazards and proportional odds models. We consider nonparamet-
ric maximum likelihood estimation for this class of models with an arbitrary number of moni-
toring times for each subject. We devise an EM-type algorithm that converges stably, even in the
presence of time-dependent covariates, and show that the estimators for the regression parame-
ters are consistent, asymptotically normal, and asymptotically efficient with an easily estimated
covariance matrix. Finally, we demonstrate the performance of our procedures through simula-
tion studies and application to an HIV/AIDS study conducted in Thailand.

Some key words: Current-status data; EM algorithm; Interval censoring; Linear transformation model; Nonparametric
likelihood; Proportional hazards; Proportional odds; Semiparametric efficiency; Time-dependent covariate.

1. INTRODUCTION

Interval-censored data arise when the event or failure of interest is known only to occur within a
time interval. Such data are commonly encountered in disease research, where the ascertainment
of an asymptomatic event is costly or invasive and so can take place only at a small number of
monitoring times. For example, in HIV/AIDS studies, blood samples are periodically drawn from
at-risk subjects to look for evidence of HIV sero-conversion. Likewise, biopsies are performed
on patients at clinic visits to determine the occurrence or recurrence of cancer.

There are several types of interval-censored data. The simplest and most studied type is called
case-1 or current-status data, which involves only one monitoring time per subject and is rou-
tinely found in cross-sectional studies. When there are two or k monitoring times per subject, the
resulting data are referred to as case-2 or case-k interval censoring (Huang & Wellner, 1997). The
most general and common type allows for varying numbers of monitoring times among subjects
and is termed mixed-case interval censoring (Schick & Yu, 2000).

The fact that the failure time is never observed exactly poses theoretical and computa-
tional challenges in semiparametric regression analysis of such data. Huang (1995, 1996) and
Huang & Wellner (1997) studied nonparametric maximum likelihood estimation for the propor-
tional hazards and proportional odds models with case-1 and case-2 data. The estimators are
obtained by the iterative convex minorant algorithm, which becomes unstable for large datasets.
Sieve maximum likelihood estimation for the proportional odds model was considered by
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Rossini & Tsiatis (1996) with case-1 data and by Huang & Rossini (1997) and Shen (1998) with
case-2 data; however, it is difficult to choose an appropriate sieve parameter space and, espe-
cially, to choose the number of knots. For the proportional odds model with case-1 and case-2
data, Rabinowitz et al. (2000) derived an approximate conditional likelihood, which does not
perform well in small samples. Gu et al. (2005), Sun & Sun (2005), Zhang et al. (2005) and
Zhang & Zhao (2013) constructed rank-based estimators for linear transformation models, but
such estimators are computationally demanding and statistically inefficient. None of the exist-
ing work accommodates time-dependent covariates or can handle case-k or mixed-case interval
censoring.

In this paper we consider interval censoring in the most general form, that is, mixed-case data.
We study nonparametric maximum likelihood estimation for a broad class of transformation
models that allows time-dependent covariates and includes the proportional hazards and propor-
tional odds models as special cases. We develop an EM-type algorithm, which is demonstrated to
perform satisfactorily in a wide variety of settings, even with time-dependent covariates. Using
empirical process theory (van der Vaart & Wellner, 1996; van de Geer, 2000) and semiparametric
efficiency theory (Bickel et al., 1993), we establish that, under mild conditions, the proposed esti-
mators for the regression parameters are consistent and asymptotically normal and the limiting
covariance matrix attains the semiparametric efficiency bound and can be estimated analytically
by the profile likelihood method (Murphy & van der Vaart, 2000). The theoretical development
requires careful treatment of the time trajectories of covariate processes and the joint distribution
for an arbitrary sequence of monitoring times.

2. METHODS

2·1. Transformation models and likelihood construction

Let T denote the failure time, and let Z(·) denote a d-vector of potentially time-dependent
covariates. Under the semiparametric transformation model, the cumulative hazard function for
T conditional on Z(·) takes the form

�(t; Z) = G

[∫ t

0
exp{βT Z(s)} d�(s)

]
, (1)

where G(·) is a specific transformation function that is strictly increasing and �(·) is an unknown
increasing function (Zeng & Lin, 2006). The choices of G(x) = x and G(x) = log(1 + x) yield
the proportional hazards and proportional odds models, respectively. It is useful to consider the
class of frailty-induced transformations

G(x) = − log
∫ ∞

0
exp(−xt) f (t) dt,

where f (t) is the density function of a frailty variable with support [0, ∞). The choice of the
gamma density with unit mean and variance r for f (t) yields the class of logarithmic transfor-
mations, G(x) = r−1 log(1 + r x) (r � 0), and the choice of the positive stable distribution with
parameter ρ < 1 yields the class of Box–Cox transformations, G(x) = {(1 + x)ρ − 1}/ρ. When
all the covariates are time-independent, model (1) can be rewritten as a linear transformation
model

log �(T ) = −βT Z + ε,

where ε is an error term with distribution function 1 − exp[−G{exp(x)}] (Chen et al., 2002).
Thus, β can be interpreted as the effects of covariates on a transformation of T .
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We formulate the mixed-case interval censoring by assuming that the number of monitoring
times, denoted by K , is random and that there exists a random sequence of monitoring times,
denoted by U1 < · · · < UK . We do not model (U1, . . . , UK ). Write Ũ = (U0, U1, . . . , UK+1),
where U0 = 0 and UK+1 = ∞. Also, define �̃ = (�0, �1, . . . , �K ), where �k = I (Uk < T �
Uk+1) (k = 0, . . . , K ) with I (·) denoting the indicator function. Then the observed data
from a random sample of n subjects consist of (Ũi , �̃i , Zi ) (i = 1, . . . , n), where Ũi =
(Ui0, Ui1, . . . , Ui,Ki +1) and �̃i = (�i0, �i1, . . . , �i Ki ). If Ki = 1 or 2 (i = 1, . . . , n), then the
observation scheme becomes case-1 or case-2, respectively.

Suppose that (Ũ , K ) is independent of T conditional on Z(·). Then the observed-data likeli-
hood function concerning parameters (β, �) takes the form

Ln(β, �) =
n∏

i=1

Ki∏
k=0

{
exp

(
−G

[∫ Uik

0
exp{βT Zi (s)} d�(s)

])

− exp

(
−G

[∫ Ui,k+1

0
exp{βT Zi (s)} d�(s)

])}�ik

.

Since only one �ik is unity for each subject and the others equal zero,

Ln(β, �) =
n∏

i=1

{
exp

(
−G

[∫ Li

0
exp{βT Zi (s)} d�(s)

])

− exp

(
−G

[∫ Ri

0
exp{βT Zi (s)} d�(s)

])}
,

where (Li , Ri ] is the smallest interval that brackets Ti , i.e., Li = max{Uik : Uik < Ti } and
Ri = min{Uik : Uik � Ti }. Clearly, Li = 0 indicates that the i th subject is left censored, while
Ri = ∞ indicates that the subject is right censored.

Remark 1. The sequence of monitoring times may not be completely observed and, in fact,
need not be for the purpose of inference. We only need to know the values of Li and Ri , since the
other monitoring times do not contribute to the likelihood. The theoretical development, however,
requires consideration of the joint distribution for the entire sequence of monitoring times.

2·2. Nonparametric maximum likelihood estimation

To estimate β and �, we adopt the nonparametric maximum likelihood approach, under which
� is regarded as a step function with nonnegative jumps at the endpoints of the smallest intervals
that bracket the failure times. Specifically, if 0 = t0 < t1 < · · · < tm denotes the set consisting of
0 and the unique values of Li > 0 and Ri < ∞ (i = 1, . . . , n), then the estimator for � is a step
function with jump size λk at tk and with λ0 = 0. Hence, we maximize the function

n∏
i=1

⎧⎨
⎩exp

⎛
⎝−G

⎡
⎣∑

tk�Li

exp{βT Zi (tk)}λk

⎤
⎦
⎞
⎠− exp

⎛
⎝−G

⎡
⎣∑

tk�Ri

exp{βT Zi (tk)}λk

⎤
⎦
⎞
⎠
⎫⎬
⎭ . (2)

Direct maximization of (2) is difficult due to the lack of an analytical expression for the parame-
ters λk (k = 1, . . . , m). An even more severe challenge is that not all the Li and Ri are informative
about the failure times, so many of the λk are zero and hence lie on the boundary of the parameter
space. For example, if there are no interval endpoints between some Ri and R j with Ri < R j ,
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then the jump size at Ri must be zero in order to maximize (2). The existing iterative convex
minorant algorithm works only for the proportional hazards and proportional odds models with
time-independent covariates (Huang & Wellner, 1997). In the following, we construct an EM
algorithm to maximize (2).

For the class of frailty-induced transformations described in § 2·1, the observed-data likelihood
can be written as

n∏
i=1

∫
ξi

(
exp

[
−ξi

∫ Li

0
exp{βT Zi (s)} d�(s)

]

− exp

[
−ξi

∫ Ri

0
exp{βT Zi (s)} d�(s)

])
f (ξi ) dξi ,

so that the estimation of the transformation model becomes that of the proportional hazards frailty
model. With �(t) as a step function with jumps λk at tk (k = 1, . . . , m), this likelihood becomes

n∏
i=1

∫
ξi

exp
{

−ξi

∑
tk�Li

λk exp(βT Zik)

}⎡⎣1 − exp
{

−ξi

∑
Li <tk�Ri

λk exp(βT Zik)

}⎤⎦
I (Ri <∞)

f (ξi ) dξi ,

(3)

where Zik = Zi (tk). We introduce latent variables Wik (i = 1, . . . , n; k = 1, . . . , m) which, con-
ditional on ξi , are independent Poisson random variables with means ξiλk exp(βT Zik). We show
below that the nonconcave likelihood function given in (3) is equivalent to a likelihood func-
tion for these Poisson variables, so the M-step becomes maximization of a weighted sum of
Poisson loglikelihood functions which is strictly concave and has closed-form solutions for λk

(k = 1, . . . , m). Similar Poisson variables were recently used by Wang et al. (2015) in spline-
based estimation of the proportional hazards model with time-independent covariates.

Define Ai =∑tk�Li
Wik and Bi = I (Ri < ∞)

∑
Li <tk�Ri

Wik . Suppose that the observed

data consist of (Li , Ri , Zi , Ai = 0, Bi > 0) (i = 1, . . . , n), where Ai = 0 means that Ai is known
to be zero and that Bi > 0 means that Bi is known to be positive, such that Wik = 0 for tk � Li

and at least one Wik � 1 for Li < tk � Ri with Ri < ∞. Then the likelihood takes the form

n∏
i=1

∫
ξi

⎧⎨
⎩
∏

tk�Li

pr(Wik = 0 | ξi )

⎫⎬
⎭
⎧⎨
⎩1 − pr

⎛
⎝ ∑

Li <tk�Ri

Wik = 0

∣∣∣∣∣∣ ξi

⎞
⎠
⎫⎬
⎭

I (Ri <∞)

f (ξi ) dξi , (4)

which is the same as (3). Thus, maximization of (3) is equivalent to maximum likelihood esti-
mation based on the data (Li , Ri , Zi , Ai = 0, Bi > 0) (i = 1, . . . , n).

We maximize (4) through an EM algorithm by treating ξi and Wik as missing data. The
complete-data loglikelihood is

n∑
i=1

( m∑
k=1

I (tk � R∗
i )
[
Wik log{ξiλk exp(βT Zik)}

− ξiλk exp(βT Zik) − log Wik!
]

+ log f (ξi )

)
, (5)
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where R∗
i = Li I (Ri = ∞) + Ri I (Ri < ∞). In the M-step, we calculate

λk =
∑n

i=1 I (tk � R∗
i )Ê(Wik)∑n

i=1 I (tk � R∗
i )Ê(ξi ) exp(βT Zik)

(k = 1, . . . , m), (6)

where Ê(·) denotes the posterior mean given the observed data. After incorporating (6) into the
conditional expectation of (5), we update β by solving the following equation using the one-step
Newton–Raphson method:

n∑
i=1

m∑
k=1

I (tk � R∗
i )Ê(Wik)

{
Zik −

∑n
j=1 I (tk � R∗

j )Ê(ξ j ) exp(βT Z jk)Z jk∑n
j=1 I (tk � R∗

j )Ê(ξ j ) exp(βT Z jk)

}
= 0.

In the E-step, we evaluate the posterior means Ê(Wik) and Ê(ξi ). The posterior density func-
tion of ξi given the observed data is proportional to {exp(−ξi Si1) − exp(−ξi Si2)} f (ξi ), where
Si1 =∑tk�Li

λk exp(βT Zik) and Si2 =∑tk�Ri
λk exp(βT Zik). Hence, we evaluate the posterior

means by noting that for tk � Li ,

Ê(Wik) = E(Wik | Ai = 0, Bi > 0, Li , Ri , Zi ) = 0,

and for Li < tk � Ri with Ri < ∞,

Ê(Wik) = Eξi

⎧⎨
⎩E

(
Wik

∣∣∣∣ ξi ,
∑

Li <tl�Ri

Wil > 0

) ∣∣∣∣∣∣ Ai = 0, Bi > 0

⎫⎬
⎭

= Eξi

{
ξiλk exp(βT Zik)

1 − exp{−ξi (Si2 − Si1)}
∣∣∣∣ Ai = 0, Bi > 0

}

= λk exp(βT Zik)

×
∫
ξi

ξi {exp(−ξi Si1) − exp(−ξi Si2)}[1 − exp{−ξi (Si2 − Si1)}]−1 f (ξi ) dξi

exp{−G(Si1)} − exp{−G(Si2)} ,

which can be calculated using Gaussian–Laguerre quadrature. In addition,

Ê(ξi ) = exp{−G(Si1)}G ′(Si1) − exp{−G(Si2)}G ′(Si2)

exp{−G(Si1)} − exp{−G(Si2)} ,

where f ′(x) = d f (x)/dx for any function f .
We iterate between the E- and M-steps until the sum of the absolute differences of the esti-

mates at two successive iterations is less than, say, 10−3. This EM algorithm has several desirable
features. First, the conditional expectations in the E-step involve at most one-dimensional integra-
tion, so they can be evaluated accurately by Gaussian quadrature. Second, in the M-step, the high-
dimensional parameters λk (k = 1, . . . , m) are calculated explicitly, while the low-dimensional
parameter vector β is updated by the Newton–Raphson method. In this way, the algorithm avoids
the inversion of any high-dimensional matrices. Finally, the observed-data likelihood is guaran-
teed to increase after each iteration. To avoid local maxima, we suggest using a range of initial
values for β while setting λk to 1/m. We denote the final results by (β̂, �̂).
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2·3. Variance estimation

We use profile likelihood (Murphy & van der Vaart, 2000) to estimate the covariance matrix
of β̂. Specifically, we define the profile loglikelihood

pln(β) = max
�∈C

log Ln(β, �),

where C is the set of step functions with nonnegative jumps at tk . Then the covariance matrix of
β̂ is estimated by the negative inverse of the matrix whose ( j, k)th element is

pln(β̂) − pln(β̂ + hnek) − pln(β̂ + hne j ) + pln(β̂ + hnek + hne j )

h2
n

,

where e j is the j th canonical vector in R
d and hn is a constant of order n−1/2. To calculate pln(β)

for each β, we reuse the proposed EM algorithm with β held fixed. Thus, the only step in the EM
algorithm is to explicitly evaluate Ê(Wik) and Ê(ξi ) so as to update λk using (6). The iteration
converges quickly with λ̂k as the initial value.

3. ASYMPTOTIC THEORY

We establish the asymptotic properties of (β̂, �̂) under the following regularity conditions.

Condition 1. The true value of β, denoted by β0, lies in the interior of a known compact set B
in R

d , and the true value of �(·), denoted by �0(·), is continuously differentiable with positive
derivatives in [ζ, τ ], where [ζ, τ ] is the union of the supports of (U1, . . . , UK ).

Condition 2. The vector Z(t) is uniformly bounded with uniformly bounded total variation
over [ζ, τ ], and its left limit exists for any t . In addition, for any continuously dif-
ferentiable function g(·), the expectations E[g{Z( j)(t)}] ( j = 1, 2) are continuously dif-
ferentiable in [ζ, τ ], where Z(1) and Z(2) are increasing functions in the decomposition
Z(t) = Z(1)(t) − Z(2)(t).

Condition 3. If h(t) + βT Z(t) = 0 for all t ∈ [ζ, τ ] with probability 1, then h(t) = 0 for
t ∈ [ζ, τ ] and β = 0.

Condition 4. The number of monitoring times, K , is positive, and E(K ) < ∞. The con-
ditional probability pr(UK = τ | K , Z) is greater than some positive constant c. In addition,
pr(U j+1 − U j � η | K , Z) = 1 ( j = 1, . . . , K ) for some positive constant η. Finally, the condi-
tional densities of (U j , U j+1) given Z and K , denoted by g j (u, v | Z , K ) ( j = 1, . . . , K ), have
continuous second-order partial derivatives with respect to u and v when v − u > η and are con-
tinuously differentiable with respect to Z .

Condition 5. The transformation function G is twice continuously differentiable on [0, ∞)

with G(0) = 0, G ′(x) > 0 and G(∞) = ∞.

Remark 2. Condition 1 is standard in survival analysis. Condition 2 allows Z(t) to have
discontinuous trajectories, but the expectation of any smooth functional of Z(t) must be dif-
ferentiable. One example would be that Z(t) is a stochastic process with a finite number of
piecewise-smooth trajectories, where the discontinuity points have a continuous joint distribu-
tion. This condition excludes taking Brownian motion as a process for Z(t). Condition 3 holds
if the matrix E([1, Z T(t)]T[1, Z T(t)]) is nonsingular for some t . Condition 4 pertains to the joint
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distribution of monitoring times. First, it requires that the monitoring occur anywhere in [ζ, τ ]
and that the largest monitoring time be equal to τ with positive probability. The latter assumption
may be removed, at the expense of more complicated proofs. Condition 4 also requires that two
adjacent monitoring times be separated by at least η; otherwise, the data may contain exact obser-
vations, which would entail a different theoretical treatment. The smoothness condition for the
joint density of monitoring times is used to prove the Donsker property of some function classes
and the smoothness of the least favourable direction. Finally, Condition 5 pertains to the trans-
formation function and holds for both the logarithmic family Gr (x) = r−1 log(1 + r x) (r � 0)

and the Box–Cox family Gρ(x) = ρ−1{(1 + x)ρ − 1} (ρ � 0).

The following theorem establishes the strong consistency of (β̂, �̂).

THEOREM 1. Under Conditions 1–5, |β̂ − β0| + supt∈[ζ,τ ] |�̂(t) − �̂0(t)| → 0 almost surely
as n → ∞, where |·| is the Euclidean norm.

It is implicitly assumed in Theorem 1 that β̂ is restricted to B, although in practice β̂ is allowed
to be very large. The proof of Theorem 1 is based on the Kullback–Leibler information and makes
use of the strong consistency of empirical processes. Careful arguments are needed to establish a
preliminary bound for �̂ and to handle time-dependent covariates. Our next theorem establishes
the asymptotic normality and semiparametric efficiency of β̂.

THEOREM 2. Under Conditions 1–5, n1/2(β̂ − β0) converges in distribution as n → ∞ to a
zero-mean normal random vector whose covariance matrix attains the semiparametric efficiency
bound.

The proof of Theorem 2 relies on the derivation of the least favourable submodel for β0 and
utilizes modern empirical process theory. A key step is to show that �̂ converges to �0 at the
n1/3 rate. Although the general procedure is similar to that of Huang & Wellner (1997), a major
innovation is the derivation of the least favourable submodel for general interval censoring and
time-dependent covariates by carefully handling the trajectories of Z(·) and the joint distribution
of (U1, . . . , UK ). The existence of the least favourable submodel is also used at the end of the
Appendix to show consistency of the profile-likelihood covariance estimator given in § 2·3.

4. SIMULATION STUDIES

We conducted simulation studies to assess the operating characteristics of the proposed numer-
ical and inferential procedures. In the first study, we considered two time-independent covariates,
Z1 ∼ Ber(0·5) and Z2 ∼ Un(0, 1). In the second study, we allowed Z1 to vary over time by imi-
tating two-stage randomization: Z1(t) = B1 I (t � V ) + B2 I (t > V ), where B1 and B2 are inde-
pendent Ber(0·5) and V ∼ Un(0, τ ) with τ = 3. In both studies, we generated the failure times
from the transformation model

�(t; Z1, Z2) = G

[∫ t

0
exp{β1 Z1(s) + β2 Z2} d�(s)

]
,

where G(x) = r−1 log(1 + r x) (r � 0). We set β1 = 0·5, β2 = −0·5 and �(t) = log(1 + t/2). To
create interval censoring, we randomly generated two monitoring times, U1 ∼ Un(0, 3τ/4) and
U2 ∼ min{0·1 + U1 + Exponential(1)τ/2, τ }, so that the time axis (0, ∞) was partitioned into
three intervals, (0, U1], (U1, U2] and (U2, ∞). On average, there were 25–35% left-censored
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Table 1. Summary statistics for the simulation study with time-independent covariates
n = 200 n = 400 n = 800

r Est SE SEE CP Est SE SEE CP Est SE SEE CP

0 β1 = 0·5 0·515 0·209 0·216 96 0·506 0·148 0·149 95 0·503 0·103 0·104 95
β2 = −0·5 −0·515 0·366 0·354 94 −0·505 0·254 0·248 95 −0·504 0·176 0·174 95

0·5 β1 = 0·5 0·514 0·255 0·259 96 0·507 0·180 0·176 94 0·503 0·125 0·125 95
β2 = −0·5 −0·516 0·451 0·434 94 −0·505 0·311 0·303 94 −0·503 0·215 0·212 94

1 β1 = 0·5 0·516 0·294 0·297 95 0·506 0·209 0·207 95 0·504 0·145 0·144 95
β2 = −0·5 −0·517 0·522 0·503 94 −0·505 0·358 0·350 95 −0·502 0·249 0·244 94

Est, empirical average of the parameter estimator; SE, standard error of the parameter estimator; SEE, empirical
average of the standard error estimator; CP, empirical coverage percentage of the 95% confidence interval.

Table 2. Summary statistics for the simulation study with time-dependent covariates
n = 200 n = 400 n = 800

r Est SE SEE CP Est SE SEE CP Est SE SEE CP

0 β1 = 0·5 0·529 0·241 0·239 95 0·518 0·166 0·164 95 0·509 0·114 0·114 95
β2 = −0·5 −0·515 0·363 0·353 95 −0·511 0·253 0·247 94 −0·503 0·175 0·173 95

0·5 β1 = 0·5 0·533 0·292 0·280 94 0·522 0·198 0·193 94 0·511 0·138 0·134 94
β2 = −0·5 −0·514 0·441 0·433 95 −0·512 0·307 0·302 95 −0·503 0·214 0·211 95

1 β1 = 0·5 0·537 0·336 0·317 94 0·525 0·228 0·219 94 0·514 0·157 0·152 94
β2 = −0·5 −0·518 0·512 0·502 95 −0·513 0·358 0·349 95 −0·505 0·250 0·243 94

0·0 1·0 2·0 3·00·0

0·0

0·2

0·4

0·6

0·8

(a) (b)

0·0

0·2

0·4

0·6

0·8

1·0 2·0
t t

C
um

ul
at

iv
e 

ba
se

lin
e 

ha
za

rd
 f

un
ct

io
n

C
um

ul
at

iv
e 

ba
se

lin
e 

ha
za

rd
 f

un
ct

io
n

3·0

Fig. 1. Estimation of �(·) with n = 400, for (a) r = 0 and (b) r = 1. The solid and dashed
curves represent the true values and mean estimates, respectively.

observations and 50–60% right-censored ones. We set n = 200, 400 or 800 and used 10 000
replicates for each sample size.

For each dataset, we applied the proposed EM algorithm by setting the initial value of β to 0
and the initial value of λk to 1/m, and we set the convergence threshold to 10−3. We also tried
other initial values for β, but they all led to the same estimates. For the variance estimation, we
set hn = 5n−1/2, but the results differed only in the third decimal place if we used hn = n−1/2 or
10n−1/2. There was no nonconvergence in any of the EM iterations.

Tables 1 and 2 summarize the results of the two simulation studies under r = 0, 0·5 or 1.
The parameter estimators have small bias, and the bias decreases rapidly as n increases. The
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Fig. 2. Analysis of the Bangkok Metropolitan Administration HIV-1 study: (a) the loglike-
lihood at the nonparametric maximum likelihood estimates plotted as a function of r in
the logarithmic transformations; (b) estimation of infection-free probabilities, where the
upper lines correspond to a low-risk subject under the proportional hazards (solid) and
proportional odds (dashed) models, and the lower lines correspond to a high-risk subject

under the proportional hazards (solid) and proportional odds (dashed) models.

variance estimators accurately reflect the true variabilities, and the confidence intervals have
proper coverage probabilities. As shown in Fig. 1, the estimated cumulative hazard functions
have negligible bias.

We conducted an additional simulation study with five covariates. We set Z to zero-mean nor-
mal with unit variances and pairwise correlations of 0·5 and took β = (0·5, −0·5, 0, 0·3, 0·7)T;
the other simulation settings were left unchanged. The results are summarized in the Supplemen-
tary Material. The proposed methods performed well in this simulation too. Again, there were
no cases of nonconvergence.

To evaluate the performance of the EM algorithm in even larger datasets, we set n = 2000
and Z to ten standard normal random variables with pairwise correlations of 0·25 and regression
coefficients of 0·5. The algorithm converged to values close to 0·5 in all 10 000 replicates.

5. APPLICATION

The Bangkok Metropolitan Administration conducted a cohort study of 1209 injecting drug
users who were initially sero-negative for the HIV-1 virus. Subjects from 15 drug treatment clinics
were followed from 1995 to 1998. At study enrolment and approximately every four months
thereafter, subjects were assessed for HIV-1 sero-positivity through blood tests. As of December
1998 there were 133 HIV-1 sero-conversions and roughly 2300 person-years of follow-up.

We aim to identify the factors that influence HIV-1 infection. We fit model (1) with the class
of logarithmic transformations G(x) = r−1 log(1 + r x) (r � 0). The covariates include age at
recruitment, gender, history of needle sharing, and drug injection in jail before recruitment; age
is measured in years, gender takes value 1 for male and 0 for female, and history of needle sharing
and drug injection are binary indicators of yes or no. In addition, we include a time-dependent
covariate indicating imprisonment since the last clinic visit.

To select a transformation function, we vary r from 0 to 1·5 in steps of 0·05. For each r , we
estimate β and � by the EM algorithm and evaluate the loglikelihood at the parameter estimates.
Figure 2(a) shows that the loglikelihood changes only very slowly as r varies and is maximized at
r = 1·05. We choose r = 1, which corresponds to the proportional odds model. Table 3 shows the
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Table 3. Regression analysis of the Bangkok Metropolitan Administration HIV-1 infection data
Proportional hazards Proportional odds

Covariates Estimate Standard error p-value Estimate Standard error p-value

Age −0·028 0·012 0·021 −0·031 0·013 0·016
Gender 0·424 0·270 0·117 0·539 0·310 0·082
Needle sharing 0·237 0·183 0·196 0·251 0·196 0·200
Drug injection 0·313 0·184 0·089 0·360 0·198 0·069
Imprisonment over time 0·502 0·211 0·017 0·494 0·219 0·024

results under this model. For comparison, we also include the results for r = 0, which corresponds
to the proportional hazards model.

Under either model, ageing reduces the risk of HIV-1 infection, whereas being male increases
it. In addition, drug injection increases the risk. Finally, subjects who have recently been impris-
oned have an elevated risk of HIV-1 infection.

Figure 2(b) shows the prediction of HIV-1 infection for a low-risk subject versus a high-risk
subject. The low-risk subject is a 50-year-old female with no history of needle sharing, no drug
injection in jail before recruitment, and no imprisonment during follow-up; the high-risk subject
is a 20-year-old male with a history of needle sharing, drug injection in jail before recruitment,
and imprisonment over time. The estimated probabilities of infection for the low-risk subject are
similar under the proportional odds and proportional hazards models. For the high-risk subject,
however, the proportional odds model yields slightly higher risks of infection than the propor-
tional hazards model during the first part of the follow-up period, with the opposite being true
during the later part of the follow-up period.

6. REMARKS

The presence of time-dependent covariates poses major computational and theoretical chal-
lenges. With time-dependent covariates, the parameters β and λk (k = 1, . . . , m) in the likeli-
hood function are entangled. As a result, the diagonal approximation to the Hessian matrix in the
iterative convex minorant algorithm (Huang & Wellner, 1997) is inaccurate, and the algorithm
becomes unstable. By contrast, each iteration of our EM algorithm only solves a low-dimensional
equation for β while calculating the jump sizes of � explicitly as weighted sums of Poisson rates.
Thus, our algorithm is fast and stable. In extensive numerical studies we have never encountered
nonconvergence. Our software is available at http://dlin.web.unc.edu/software.

Our theoretical development requires that the population average of the covariate pro-
cess be smooth but allows individual covariate trajectories to be discontinuous. We treat∫ t

0 exp{βT Z(s)} d�(s) as a bundled process of β and � when proving the identifiability of

(β0, �0) in Theorem 1, the convergence rate of �̂ in Lemma A1, and the invertibility of the
information operator in Theorem 2. The Donsker property for this class of processes indexed by
(β, �) is used repeatedly in the proofs. Besides time-dependent covariates, one major theoretical
challenge is dealing with general interval censoring, which allows each subject to have a different
number of monitoring times. In particular, the derivation of the least favourable direction for β

requires careful consideration of the joint distribution for an arbitrary sequence of monitoring
times, and the Lax–Milgram theorem is used to prove the existence of a least favourable direc-
tion. That theorem greatly simplifies the proof, in contrast to the approach of Huang & Wellner
(1997), even for case-2 data.

To apply the transformation model to real data, one must choose a transformation function. In
the analysis of the Bangkok Metropolitan Administration HIV-1 data, we used the AIC to select the
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transformation function, although the likelihood surface is fairly flat. It would be worthwhile to
develop formal diagnostic procedures to check the appropriateness of the transformation function
and other model assumptions. One possible strategy is to examine the behaviour of the posterior
mean of the martingale residuals (Chen et al., 2012) given the observed intervals.

In many applications, the event of interest may occur repeatedly over time. Recurrent events
under interval censoring are called panel count data, which have been studied by Sun & Wei
(2000), Zhang (2002) and Wellner & Zhang (2007), among others. There are also studies in
which each subject can experience different types of events or where subjects are sampled in
clusters such that the failure times with the same cluster are correlated. We are currently devel-
oping regression methods to handle such multivariate failure time data.

We are also extending our work to competing risks data. Indeed, the Bangkok Metropolitan
Administration HIV-1 study contains information on HIV-1 infection by viral subtypes B and E,
which are two competing risks. We propose to formulate the effects of potentially time-dependent
covariates on the cumulative incidence functions of competing risks in the form of model (1).
We will modify the EM algorithm to deal with multiple subdistribution functions and establish
the asymptotic theory under suitable conditions.
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APPENDIX

Technical details

We use Pn to denote the empirical measure from n independent observations and P to denote the
true probability measure. The corresponding empirical process is Gn = n1/2(Pn − P). Let l(β,�) be the
observed-data loglikelihood for a single subject, that is,

l(β,�) =
K∑

k=0

�k log

{
exp

(
−G

[∫ Uk

0
exp{βT Z(s)} d�(s)

])

− exp

(
−G

[∫ Uk+1

0
exp{βT Z(s)} d�(s)

])}
.

Proof of Theorem 1. We first show that lim supn �̂(τ ) < ∞ with probability 1. By Condition 4, the
measure generated by the function E{∑K

k=0 �k I (Uk � t)} is dominated by the sum of the Lebesgue mea-
sure in [ζ, τ ] and the counting measure at τ , and its Radon–Nikodym derivative, denoted by f1(t), is
bounded away from zero. We define

�̃(t) =
∫ t

0

�′
0(s)

f1(s)
d

{
n−1

n∑
i=1

Ki∑
k=0

�ik I (Uik � s)

}
.
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Clearly, �̃ is a step function with jumps only at t1 < · · · < tm . Since

n−1
n∑

i=1

Ki∑
k=0

�ik I (Uik � s) → E

{
K∑

k=0

�k I (Uk � s)

}

uniformly in s with probability 1 as n → ∞, we conclude that �̃(t) converges uniformly to �0(t) with
probability 1 for t ∈ [ζ, τ ].

By the definition of (β̂, �̂), we have Pnl(β̂, �̂) � Pnl(β0, �̃). Because of its bounded total variation,
Z(t) belongs to a Donsker class indexed by t . Hence, the class of functions

Fω =
{∫ Uk

0
exp{βT Z(s)} d�(s) : β ∈B, � ∈ BVω[0, τ ]

}
,

where BVω[0, τ ] denotes functions which have total variation in [0, τ ] bounded by a given constant ω, is
a convex hull of functions {I (Uk � s) exp{βT Z(s)}}, so it is a Donsker class. Furthermore,

exp

(
−G

[∫ Uk

0
exp{βT

0 Z(s)} d�̃(s)

])
− exp

(
−G

[∫ Uk+1

0
exp{βT

0 Z(s)} d�̃(s)

])

is bounded away from zero. Therefore, l(β0, �̃) belongs to some Donsker class due to the preservation
property of the Donsker class under Lipschitz-continuous transformations. We conclude that |Pnl(β0, �̃) −
Pl(β0, �̃)| → 0 almost surely. In addition, by the construction of �̃, Pl(β0, �̃) converges almost surely to
Pl(β0,�0), which is finite. Therefore, with probability 1,

lim inf
n

Pnl(β̂, �̂) � O(1). (A1)

Let c > 0 be such that exp{βT Z(t)} � c for β ∈B. Then the left-hand side of (A1) is less than or equal to

− lim sup
n

Pn

(
�K G

[∫ UK

0
exp{β̂T Z(t)} d�̂(t)

])
� − lim sup

n
Pn

[
�K G{c�̂(UK )}]

� − lim sup
n

Pn

[
�K I (UK = τ)G{c�̂(τ )}].

Hence lim supn Pn[�K I (UK = τ)G{c�̂(τ )}] � O(1). Since as n → ∞, Pn{�K I (UK = τ)} →
E{�K I (UK = τ)}, which is positive, Condition 5 implies that lim supn �̂(τ ) < ∞ with probability 1.

We can now restrict �̂ to a class of functions with uniformly bounded total variation, equipped with
the weak topology on [ζ, τ ]. By Helly’s selection lemma, for any subsequence of (β̂, �̂) we can choose
a further subsequence such that �̂ converges weakly to some �∗ on [ζ, τ ], �̂(τ ) converges to �∗(τ ),
and β̂ converges to β∗. Clearly, Pnl(β̂, �̂) � Pnl(β0, �̃) implies that Pn log[{p(β̂, �̂) + p(β0, �̃)}/2] �
Pn log p(β0, �̃), where p(β,�) = exp{l(β,�)}, so that

(Pn − P) log[{p(β̂, �̂) + p(β0, �̃)}/2] + P log[{p(β̂, �̂) + p(β0, �̃)}/2]

� (Pn − P)l(β0, �̃) + Pl(β0, �̃).

By the above arguments for proving the Donsker property of Fω, together with the fact that the total
variation of �̂ is bounded by a constant, we can show that log{p(β̂, �̂) + p(β0, �̃)} belongs to a Donsker
class with a bounded envelope function, so that (Pn − P) log[{p(β̂, �̂) + p(β0, �̃)}/2] → 0. It follows
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that Pl(β0,�0) − P log[{p(β̂, �̂) + p(β0, �̃)}/2] � o(1). Furthermore,∣∣∣P log[{p(β̂, �̂) + p(β0, �̃)}/2] − P log[{p(β∗,�∗) + p(β0, �̃)}/2]
∣∣∣

� O(1)

(
|β̂ − β∗| + E

[
K∑

k=0

∣∣∣∣
∫ Uk

0
exp{β∗T Z(s)} d�̂(s) −

∫ Uk

0
exp{β∗T Z(s)} d�∗(s)

∣∣∣∣
])

� O(1)

(
|β̂ − β∗| + E

[
K∑

k=0

{∣∣�̂(Uk) − �∗(Uk)
∣∣+ ∫ ∣∣�̂(s) − �∗(s)

∣∣ I (Uk � s) |dZ(s)|
}])

� O(1)

{∣∣β̂ − β∗∣∣+ ∫ |�̂(s) − �∗(s)| dν(s)

}
,

where dν is the measure corresponding to [dE{∑K
k=0 I (Uk � s)} + E{∑K

k=0 I (Uk � s)|dZ(s)|}].
According to Conditions 2 and 4, dν(s) is dominated by the Lebesgue measure with bounded derivative
in [ζ, τ ) and has a point mass at τ . Hence |P log[{p(β̂, �̂)+ p(β0, �̃)}/2] − P log[{p(β∗,�∗) +
p(β0, �̃)}/2]| → 0 almost surely. We therefore conclude that Pl(β0,�0) − P log[{p(β∗,�∗) +
p(β0, �̃)}/2] � 0.

By the properties of the Kullback–Leibler information, p(β0,�0) = p(β∗,�∗) with probability 1. In
particular, for any k � K , we choose �k = 1 to obtain∫ Uk

0
exp{βT

0 Z(t)} d�0(t) =
∫ Uk

0
exp{β∗T Z(t)} d�∗(t).

Thus, for any s ∈ [ζ, τ ], ∫ s

0
exp{βT

0 Z(t)} d�0(t) =
∫ s

0
exp{β∗T Z(t)} d�∗(t). (A2)

Differentiating both sides with respect to s, we have

βT
0 Z(t) + log �′

0(t) = β∗T Z(t) + log �∗′(t).

By Condition 3, β∗ = β0 and �′
0(t) = �∗′(t) for t ∈ [ζ, τ ]. We let Z(t) = 0 by redefining Z(t) to centre at

a deterministic function in the support of Z(t), and we set s = ζ in (A2) to obtain �0(ζ ) = �∗(ζ ). Hence,
�0(t) = �∗(t) for t ∈ [ζ, τ ]. It follows that β̂ → β0 and �̂(t) converges weakly to �0(t) almost surely.
The latter convergence can be strengthened to uniform convergence since �0 is continuous. Thus, we have
proved Theorem 1. �

Since we have established consistency, we may restrict the space of � to

A= {� : 1/M � �(ζ) � �(τ) � M}
for some M > 0. Thus, when n is large enough, �̂ belongs to A with probability 1. Before proving
Theorem 2, we need to establish the convergence rate for �̂. Specifically, the following lemma holds.

LEMMA A1. Under Conditions 1–5,

E

(
K∑

k=1

[∫ Uk

0
exp{β̂T Z(s)} d�̂(s) −

∫ Uk

0
exp{βT

0 Z(s)} d�0(s)

]2
)1/2

= Op(n
−1/3).

Proof. The proof relies on the convergence-rate result in Theorem 3.4.1 of van der Vaart & Wellner
(1996). To use that theorem, we define mβ,� = log {l(β,�)/ l(β0,�0)} and let

M= {mβ,� : β ∈B, � ∈A}
be a class of functions indexed by β and �.
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We first calculate the ε-bracketing number of M. Because A consists of increasing and uniformly
bounded functions on [ζ, τ ], Lemma 2.2 of van de Geer (2000) implies that for any ε > 0, the bracketing
number satisfies

N[ ](ε,A, ‖·‖L2) � ε−1,

where ‖·‖L2 denotes the L2-norm with respect to the Lebesgue measure on [0, τ ], and A � B means that
A � cB for a positive constant c. For ε > 0, we can find exp{O(1/ε)} number of brackets {[�L

j ,�
U

j ]} with
‖�U

j − �L

j‖L2 � ε and |�U

j (τ ) − �L

j (τ )| � ε to cover A. In addition, there are O(ε−d) number of brackets
covering B, such that any two β within the same bracket differ by at most ε. Hence, there are a total of
exp{O(1/ε)} × O(ε−d) brackets covering B × A. For any pair of (β1,�1) and (β2,�2), there exist some
constants c1 and c2 such that

|mβ1,�1 − mβ2,�2 |
� |mβ1,�1 − mβ2,�1 | + |mβ2,�1 − mβ2,�2 |

� c1|β1 − β2| + c1

K∑
k=0

�k

∣∣∣∣
∫ Uk

0
exp{βT

2 Z(s)} d�1(s) −
∫ Uk

0
exp{βT

2 Z(s)} d�2(s)

∣∣∣∣
� c2|β1 − β2| + c2

K∑
k=0

�k

{
|�1(Uk) − �2(Uk)| +

∫
|�1(s) − �2(s)| I (Uk � s) |dZ(s)|

}
.

Because the measures dE{∑K
k=0 I (Uk � s)} and E{∑K

k=0 I (Uk � s) |dZ(s)|} have bounded derivatives
with respect to the Lebesgue measure in [ζ, τ ) and the former has a finite point mass at τ ,

‖mβ1,�1 − mβ2,�2‖L2(P) � O
{|β1 − β2| + ‖�1 − �2‖L2 + |�1(τ ) − �2(τ )|}= O(ε).

Thus, the bracketing number for M satisfies

N[ ]{ε,M, L2(P)} � exp{O(1/ε)}O(ε−d),

and so it has a finite entropy integral. Define

ϕ(δ) =
∫ δ

0

[
1 + log N[ ]{ε,M, L2(P)}]1/2

dε.

It is easy to show that ϕ(δ) � O(δ1/2). In addition, by Lemma 1.3 of van de Geer (2000),

P(mβ,� − mβ0,�0) � −H 2{(β,�), (β0,�0)},

where H{(β,�), (β0,�0)} is the Hellinger distance, defined as

H{(β,�), (β0,�0)} =
(∫ [

exp{l(β,�)/2} − exp{l(β0,�0)/2}]2 dμ

)1/2

with respect to the dominating measure μ.
The above results, together with the fact that (β̂, �̂) maximizes Pnmβ,� and the consistency result in

Theorem 1, imply that all the conditions in Theorem 3.4.1 of van der Vaart & Wellner (1996) hold. Thus,
we conclude that H{(β̂, �̂), (β0,�0)} = Op(rn), where rn satisfies rnϕ(r−1

n ) � n1/2. In particular, we can
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choose rn in the order of n−1/3 such that H{(β̂, �̂), (β0,�0)} = Op(n−1/3). By the mean value theorem,

E

( K∑
k=0

�k

[{
exp

(
−G

[∫ Uk

0
exp{β̂T Z(s)} d�̂(s)

])
− exp

(
−G

[∫ Uk+1

0
exp{β̂T Z(s)} d�̂(s)

])}

−
{

exp

(
−G

[∫ Uk

0
exp{βT

0 Z(s)} d�0(s)

])
− exp

(
−G

[∫ Uk+1

0
exp{βT

0 Z(s)} d�0(s)

])}]2)

= Op(n
−2/3).

On the left-hand side of the above equation, we consider the event �0 = 1 to find that

E

{
exp

(
−G

[∫ U1

0
exp{β̂T Z(s)} d�̂(s)

])
− exp

(
−G

[∫ U1

0
exp{βT

0 Z(s)} d�0(s)

])}2

= Op(n
−2/3).

Next, we consider �1 = 1 to obtain the same equation as the one above but with U1 replaced by U2. By
repeating this process, we conclude that, conditional on K and for any k � K ,

E

{
exp

(
−G

[∫ Uk

0
exp{β̂T Z(s)} d�̂(s)

])
− exp

(
−G

[∫ Uk

0
exp{βT

0 Z(s)} d�0(s)

])}2

= Op(n
−2/3).

It then follows from the mean value theorem that

E

(
K∑

k=1

[∫ Uk

0
exp{β̂T Z(s)} d�̂(s) −

∫ Uk

0
exp{βT

0 Z(s)} d�0(s)

]2
)

= Op(n
−2/3),

and so the lemma is proved. �

Now we are ready to prove Theorem 2.

Proof of Theorem 2. It is helpful to introduce the following notation: πk(Z) = pr(K = k | Z),

Q(u, v; Z , β,�) = exp

(
−G

[∫ u

0
exp{βT Z(s)} d�(s)

])
− exp

(
−G

[∫ v

0
exp{βT Z(s)} d�(s)

])

and

B(t, u, v; Z , β,�)

= − exp
(−G

[∫ u
0 exp{βT Z(s)} d�(s)

])
G ′[∫ u

0 exp{βT Z(s)} d�(s)
]
I (u � t)

Q(u, v; Z , β,�)
exp{βT Z(t)}

+ exp
(−G

[∫ v

0 exp{βT Z(s)} d�(s)
])

G ′[∫ v

0 exp{βT Z(s)} d�(s)
]
I (v � t)

Q(u, v; Z , β,�)
exp{βT Z(t)}.

The score function for β is

lβ(β,�) =
∫ τ

0

K∑
k=0

�k B(t, Uk, Uk+1; Z , β,�)Z(t) d�(t).

To obtain the score operator for �, we consider any parametric submodel of � defined by d�ε,h =
(1 + εh) d�, where h ∈ L2([ζ, τ ]). The score function along this submodel is

l�(β,�)(h) = ∂

∂ε
log l(β,�ε,h)

∣∣∣
ε=0

=
∫ τ

ζ

K∑
k=0

�k B(t, Uk, Uk+1; Z , β,�)h(t) d�(t).
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Clearly, Pn{lβ(β̂, �̂)} = 0 and Pn{l�(β̂, �̂)(h)} = 0. Hence

Gn{lβ(β̂, �̂)} = −n1/2
[
P{lβ(β̂, �̂)} − P{lβ(β0,�0)}

]
,

Gn{l�(β̂, �̂)(h)} = −n1/2
[
P{l�(β̂, �̂)(h)} − P{l�(β0,�0)(h)}].

We apply Taylor series expansions about (β0,�0) to the right-hand sides of the above two equations.
By Lemma A1, the second-order terms are bounded by

n1/2 O

{∣∣β̂ − β0

∣∣2 + E

(
K∑

k=1

[∫ Uk

0
exp{β̂T Z(s)} d�̂(s) −

∫ Uk

0
exp{βT

0 Z(s)} d�0(s)

]2
)}

= O
(
n1/2|β̂ − β0|2 + n−1/6

)
.

Hence

Gn{lβ(β̂, �̂)} = −n1/2
Plββ(β̂ − β0) − n1/2

Plβ�(d�̂ − d�0) + O(n1/2|β̂ − β0|2 + n−1/6), (A3)

Gn{l�(β̂, �̂)(h)} = −n1/2
Pl�β(h)(β̂ − β0) − n1/2

Pl��(h, d�̂ − d�0)

+ O(n1/2|β̂ − β0|2 + n−1/6), (A4)

where lββ is the second derivative of l(β,�) with respect to β, lβ�(h) is the derivative of lβ along the
submodel d�ε,h , l�β(h) is the derivative of l�(h) with respect to β, and l��(h, d�̂ − d�0) is the derivative
of l�(h) along the submodel d�0 + ε(d�̂ − d�0). All the derivatives on the right-hand sides of (A3)
and (A4) are evaluated at (β0,�0).

We choose h to be the least favourable direction h∗, a d-vector with components in L2([ζ, τ ]) that solves
the normal equation

l∗�l�(h∗) = l∗�lβ, (A5)

where l∗� is the adjoint operator of l�. Then

E
{

l��(h∗, d�̂ − d�0)
}= −E

{
l�(h∗)l�(d�̂ − d�0)

}
= −

∫
l∗�l�(h∗)(d�̂ − d�0) = −

∫
l∗�lβ(d�̂ − d�0)

= −E
{

lβl�(d�̂ − d�0)
}= E

{
lβ�(d�̂ − d�0)

}
,

so that the difference between (A3) and (A4) yields

Gn

{
lβ(β̂, �̂) − l�(β̂, �̂)(h∗)

}
= n1/2 E

[{lβ − l�(h∗)}{lβ − l�(h∗)}T
]
(β̂ − β0) + O

(
n1/2|β̂ − β0|2 + n−1/6

)
. (A6)

Consequently, Theorem 2 will be established if we can show that:

(i) equation (A5) has a solution h∗;
(ii) lβ(β̂, �̂) − l�(β̂, �̂)(h∗) belongs to a Donsker class and converges in the L2(P)-norm to

lβ − l�(h∗);
(iii) the matrix E[{lβ − l�(h∗)}{lβ − l�(h∗)}T] is invertible.

The reason is that when (i)–(iii) hold, (A6) entails n1/2(β̂ − β0) = Op(1) and further yields

n1/2(β̂ − β0) = (E
[{lβ − l�(h∗)}{lβ − l�(h∗)}T

])−1
Gn{lβ − l�(h∗)} + op(1).

This implies that the influence function for β̂ is exactly the efficient influence function, so that n1/2(β̂ −
β0) converges to a zero-mean normal random vector whose covariance matrix attains the semiparametric
efficiency bound (Bickel et al., 1993, p. 65).
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We first verify (i). For any (h1, h2) ∈ L2[ζ, τ ],

P{l�(h1)l�(h2)} =
∫ τ

ζ

∫ τ

ζ

E{g(Z; t, s)}h1(t)h2(s) d�0(t) d�0(s),

where

g(Z; t, s) =
∞∑

k=1

πk(Z)

k∑
j=0

E
{

Q(U j , U j+1; Z , β0,�0)B(t, U j , U j+1; Z , β0,�0)

× B(s, U j , U j+1; Z , β0,�0) | K = k, Z
}
.

Likewise,

P{l�(h1)lβ} =
∫ τ

ζ

∫ τ

ζ

E{g(Z; t, s)Z(s)}h1(t) d�0(t) d�0(s).

Therefore, by the definition of the dual operator l∗�, solving the normal equation (A2) is equivalent to
solving the integral equation∫ τ

ζ

E{g(Z; t, s)}h∗(s) d�0(s) =
∫ τ

ζ

E{g(Z; t, s)Z(s)} d�0(s). (A7)

We define the left-hand side of (A7) as a linear operator � which maps h ∈ L2[ζ, τ ] to itself. In addition,
we equip L2[ζ, τ ] with an inner product 〈h1, h2〉 = ∫ τ

ζ
h1(t)h2(t) d�0(t) so that it becomes a Hilbert space.

On the same space, we define ‖h‖ = 〈�(h), h〉1/2. It is easy to show that ‖·‖ is a seminorm for L2[ζ, τ ].
Furthermore, if ‖h‖ = 0, then 0 = 〈�(h), h〉 = P{l�(h)2}. Thus, with probability 1, l�(h) is zero, i.e., for
any �k = 0,

− exp

(
−G

[∫ Uk

0
exp{βT

0 Z(s)} d�0(s)

])
G ′
[∫ Uk

0
exp{βT

0 Z(s)} d�0(s)

]

×
∫ Uk

0
exp{βT

0 Z(t)}h(t) d�0(t)

+ exp

(
−G

[∫ Uk+1

0
exp{βT

0 Z(s)} d�0(s)

])
G ′
[∫ Uk+1

0
exp{βT

0 Z(s)} d�0(s)

]

×
∫ Uk+1

0
exp{βT

0 Z(t)}h(t) d�0(t) = 0.

Setting k = 0, 1 . . . , we obtain∫ U1

0
h(t) d�0(t) = 0,

∫ U2

0
h(t) d�0(t) = 0, . . . .

Thus, h(t) = 0 for t ∈ [ζ, τ ], implying that ‖·‖ is a norm in L2[ζ, τ ]. Clearly, ‖h‖ � c〈h, h〉1/2 for some
constant c. According to the bounded inverse theorem in Banach spaces, we have 〈h, h〉1/2 � c̃‖h‖ for
another constant c̃; that is, we have 〈�(h), h〉 � c̃2〈h, h〉. By the Lax–Milgram theorem (Zeidler, 1995),
the solution to (A7), namely h∗, exists. So we have verified (i).

To verify (ii), we examine g(Z; t, s) by considering t < s and t � s. Along the lines of Huang & Wellner
(1997), we differentiate the integral equation (A7) with respect to t to obtain

b1(t)h
∗(t) +

∫ τ

t
b2(t, s)h∗(s) ds +

∫ t

ζ

b3(t, s)h∗(s) ds = b4(t),

where b1(t) > 0 and b j ( j = 1, 2, 3, 4) are continuously differentiable with respect to their arguments.

Hence h∗(t) is continuously differentiable in [ζ, τ ]. This fact implies that
∫ Uk

0 h∗(s) exp{β̂T Z(s)} d�̂(s)
belongs to some Donsker class. It then follows from the Donsker property of the class Fω that (ii) is true.
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Finally, we verify (iii). If the matrix is singular, then there exists a nonzero vector v such that

vT E
[{lβ − l�(h∗)}{lβ − l�(h∗)}T

]
v = 0.

It follows that, with probability 1, the score function along the submodel {β0 + εv, d�0(1 + εvTh∗)} is
zero; that is, for any �k = 1,

− exp

(
−G

[∫ Uk

0
exp{βT

0 Z(s)} d�0(s)

])
G ′
[∫ Uk

0
exp{βT

0 Z(s)} d�0(s)

]

×
∫ Uk

0
exp{βT

0 Z(s)}h̃(t) d�0(t)

+ exp

(
−G

[∫ Uk+1

0
exp{βT

0 Z(s)} d�0(s)

])
G ′
[∫ Uk+1

0
exp{βT

0 Z(s)} d�0(s)

]

×
∫ Uk+1

0
exp{βT

0 Z(t)}h̃(t) d�0(t) = 0,

where h̃(t) = vT Z(t) + vTh∗(t). We consider �k = 1 for k = 0, 1, . . . to obtain∫ Uk

0
h̃(t) d�0(t) = 0.

Therefore, with probability 1,
∫ s

0 h̃(t) d�0(t) = 0 for any s ∈ [ζ, τ ]. This implies that vT Z(t) + vTh∗(t) =
0, so v = 0 by Condition 3. Thus, we have verified (iii). �

Remark A1. For a given β, we define �̂β as the step function that maximizes Ln(β,�). The arguments
in the proof of Theorem 1 can be used to show that �̂β is bounded asymptotically when β is in a small
neighbourhood of β0, so �̂β converges to �0 as β converges to β0. In addition, the arguments in the proof
of Lemma A1 yield �̂β = �0 + Op(|β − β0|) + Op(n−1/3) in the L2(P) space. Finally, in light of the
existence of h∗ in the proof of Theorem 2, we can define d�θ,β(t) = {1 + (θ − β)h∗(t)} d�(t) to obtain
the least favourable submodel as (θ,�θ,β), where θ is in a neighbourhood of β0. Thus, we can easily
verify conditions (8), (9) and (10) of Murphy & van der Vaart (2000) for the likelihood function along this
submodel. Along with the Donsker property of the functional classes for the first and second derivatives
of l(θ,�θ,β) with respect to θ and β, we conclude that Theorem 1 of Murphy & van der Vaart (2000) is
applicable, and hence the covariance matrix estimator given in § 2·3 with hn = O(n−1/2) is consistent for
the limiting covariance matrix of n1/2(β̂ − β0).
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