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ABSTRACT: In this paper, direct numerical simulation (DNS) is performed to study coupled heat and mass-transfer problems
in fluid−particle systems. On the particles, an exothermic surface reaction takes place. The heat and mass transport is coupled
through the particle temperature, which offers a dynamic boundary condition for the thermal energy equation of the fluid phase.
Following the case of the unsteady mass and heat diffusion in a large pool of static fluid, we consider a stationary spherical
particle under forced convection. In both cases, the particle temperatures obtained from DNS show excellent agreement with
established solutions. After that, we investigate the three-bead reactor, and finally a dense particle array composed of hundreds
of particles distributed in a random fashion is studied. The concentration and temperature profiles are compared with a one-
dimensional heterogeneous reactor model, and the heterogeneity inside the array is discussed.

1. INTRODUCTION
Fluid−particle systems are commonly encountered in a wide
range of industrial applications, such as synthesis of chemicals by
heterogeneous catalysis, combustion of pulverized coal, and
coating on particle surfaces. Simultaneously with the mass
transfer, these processes are often accompanied with significant
heat effects, which introduces additional complexity to the
system. Accurate predictions of the gas−solid interactions are of
great help to improve process performance and facilitate
equipment design. Therefore, it is important to understand
the heat- and mass-transport processes in a coupled manner in
such complex heterogeneous systems.
In the part decades, extensive experimental investigations

have been conducted for fluid−particle systems, from which
various correlations have been proposed for heat and mass
transfer.1−6 These correlations are very helpful to provide a
quick estimation of the average heat and mass-transfer rates for
engineering purposes; however, detailed information such as
local variation and temporal development cannot be easily
quantified. Three-dimensional transient simulation of complex
multiphase flows has attracted considerable interest because of
the fast development of computational capabilities, through
which detailed quantitative information can be produced instead
of an average value in heat- and mass-transfer processes. As the

most detailed level of the multiscale modeling approach,7 DNS
is a powerful tool to resolve all the details at the smallest relevant
length scales to gain fundamental insight in fluid−particle
interactions and quantitatively derive closures for applications in
more coarse-grained models. In recent years, the immersed
boundary method (IBM), as a means to enforce the proper
boundary conditions on immersed objects, has attracted a lot of
attention. Taking the advantages of simple grid generation and
efficient memory utilization, IBM has been successfully applied
in different studies including moving particles, complex
geometries, and deformable immersed objects.8−13 After solving
the momentum field, additional equations for species and
thermal energy transport can be computed using the same
methodology as the fluid flow equations.
Fluid−solid coupling schemes can be roughly categorized into

two types for IBM: (1) continuous forcing method (CFM); (2)
discrete forcing method (DFM). In CFM a Cartesian grid is
used for fluid field simulation, whereas the immersed object is
represented by Lagrangian marker points.14−18 The interaction
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between the solid boundary and the fluid is accounted for by
explicitly introducing a forcing term in the governing equations,
which is the result of the distributed singular force over the
Eulerian cells surrounding each Lagrangian point by a
regularized Dirac delta function. In DFM the immersed
boundary is treated as a sharp interface.19−23 Rather than a
forcing term determined by the feedback mechanism, the
predefined boundary condition on the immersed object surface
is enforced by extrapolating the surrounding fluid variables to
the ghost cells (cells inside the immersed object but possessing
at least one fluid cell neighbor). The virtual ghost value is then
directly incorporated into the discretized governing equations of
the fluid phase. DFM is also known as the ghost cell approach,
and it is the one utilized in the current paper.
In contrast to numerous researches of interfacial momentum

exchange in fluid−particle systems, much less IBM computa-
tional results are reported in the field of mass and heat
transfer.24−29 Only a few studies on reactive systems involving
coupled mass and heat transfer processes have been reported.
Due to the focus of the current paper on coupled heat and mass
transport, only related literature are reviewed; however, for
literature review of heat andmass-transport studies without such
a coupling, we refer interested readers to our earlier papers.30,31

Dierich et al.32 applied 2Dmodeling to study the behavior of ice
particles melting in the water, where the interfacial heat transfer
as well as the phase-change phenomena play a significant role.
The Dirichlet boundary condition is applied on the ice surface.
Kedia et al.33 introduced a second-order method for simulations
of low-Mach number chemically reacting flow around heat-
conducting immersed solid objects in combustors. A buffer zone
is used to account for the fluid−solid interactions, where the
conjugate heat transfer and the zero species penetration are
applied. Deen and Kuipers34 applied the directional quadratic
interpolation scheme to study the coupled heat and mass
transfer in a dense particle array, where they assume an infinitely
fast chemical reaction proceeding at the particle surface. Also in
the combustion field, Abdelsamie et al.35 studied low-Mach
number turbulent reacting two-phase flows in arbitrary geo-
metries. In their work, CFM and DFM are implemented for
moving particles and static boundaries respectively, and the
source terms for species and thermal energy are directly
incorporated in the governing equations. Dierich et al.36 applied
a variant of CFM, namely, a fixed-grid method, to study the
simultaneous change of the solid interface and the solid porosity
of a moving char particle during heterogeneous chemical
reactions. The Boudouard reaction takes place at the outer
surface as well as the inside of the porous particle, and the whole
setup is two-dimensional and axi-symmetric. Luo et al.37

developed a DFM-based IBM to study the combustion process
of a single char particle. Different reconstruction schemes are
applied to enforce the boundary conditions of different variables,
and the effect of surface reactions on the boundary conditions is
accounted for by balancing the mass and energy at the gas−solid
interface. It should be mentioned that, although not using IBM,
Dixon and co-workers have developed a particle-resolved CFD
methodology to study methane stream reforming and ethylene
partial oxidation processes using realistic microkinetics.38−41 In
their work, flow, heat, and species transport in fixed-bed reactors
are modeled, as well as the intraparticle variations accounted for
by the solid-particle method.42

Building on our previous study,30,31,43 a DNS methodology
which is based on an efficient ghost-cell based IBM is extended
to the simulation of reactive fluid−particle systems. The

coupling of heat and mass transfer arises as a consequence of
an exothermic chemical reaction proceeding at the exterior
surface of the particles that the particle temperature is increased
by the liberated reaction heat and subsequently transfers the
thermal energy to the fluid phase. As the Robin boundary
condition is realized at the exact fluid−solid interface through a
second-order quadratic interpolation scheme in our IBM, a
surface reaction rate is incorporated to describe the interplay
between chemical transformations and external mass-transport
processes. For heat-transfer processes, the Robin boundary
condition simply switches into the Dirichlet boundary condition
with the solid temperature determined by the particle thermal
energy equation, which serves as a dynamic boundary condition
for the fluid thermal energy equation.
This paper is organized as follows. First, the DNS method-

ology is described, including governing equations, numerical
solutions and fluid−solid coupling. Second, four reactive fluid−
particle systems with increasing complexity are studied:
unsteady diffusion around a single sphere, forced convection
to a single sphere, the three-bead reactor and a dense particle
array. Finally, the conclusions are provided.

2. DNS METHODOLOGY
In this part, we present the governing equations which need to
be solved in DNS, the numerical details of the solution methods
and the fluid−solid coupling. For the methodology described in
the current paper, we assume the following main assumptions:

1. Both fluid and solid phase have constant physical
properties.

2. The fluid phase is incompressible and Newtonian.
3. Diffusion is Fickian.
4. The solid phase is composed of spheres, on which external

surface a chemical reaction proceeds.
5. The temperature gradients inside particles are negligible,

and no heat effect on the reaction rate is considered.

2.1. Governing Equations. The following conservation
equations for mass, momentum, species, and thermal energy are
solved to describe the transport phenomena in the fluid phase:
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In above equations, ρf is the fluid density, μf is the fluid viscosity,
Df is the species mass diffusivity in the fluid, and Cp, f and λf are
the heat capacity and thermal conductivity of the fluid phase,
respectively.
The particle temperature is governed by the following

equation assuming of a uniform particle temperature:

V C
T
t

H
d
d

( )s p,s
s

th,f s sp,f s r= Φ + Φ −Δ→ → (5)

In this equation, Vs is the particle volume and Cp, s is the
volumetric heat capacity of the solid phase. The first term on the
right-hand side is the fluid−solid heat-transfer rate while the
second term represents the rate of reaction heat liberated from a

Industrial & Engineering Chemistry Research Article

DOI: 10.1021/acs.iecr.8b03158
Ind. Eng. Chem. Res. 2018, 57, 15565−15578

15566

http://dx.doi.org/10.1021/acs.iecr.8b03158


chemical reaction. The heat- and mass-transfer rates, with the
normal unit vector pointing outward of the particle, are
computed by the following two equations, respectively:

nT S( )d
S

th,f s f f
s

∬ λΦ = − − ∇ ·→
(6)

nD c S( )d
S

sp,f s f f
s

∬Φ = − − ∇ ·→
(7)

It should be noted that in the present work, we consider a single
heterogeneous reaction, and hence, eq 5 is valid. In the case of
multiple reactions, the second term on the right-hand side
should be the summary of the heat effect from all reactions.
Considering an exothermic chemical reaction proceeding at the
exterior surface of the particles, the heat liberation is assumed to
be rapidly transported to the interior of the particle with a
negligible intraparticle temperature gradient. The coupling
between the fluid thermal energy equation and the fluid species
equation is fulfilled through the solid-phase thermal energy
equation. In other words, the particle temperature of individual
particle offers a dynamic boundary condition for the thermal
energy equation of the fluid phase.
2.2. Numerical Solution Method. A finite difference

scheme is used to solve the aforementioned governing equations
on a 3D staggered Cartesian grid with a uniform grid spacing in
all directions. Following our previous work,30,43 the numerical
solution of these equations is acquired by embedding second-
order discretization schemes as well as compact computational
stencils. The momentum, species, and thermal energy
conservation equations are discretized temporally by applying
the Adams−Bashforth scheme for the convective transport and
the Euler backward scheme for the diffusive transport:
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In these equations, n is the time step index. The convection
terms for momentum Cm, species Csp, and thermal energy Cth
are, respectively, given by:

C uu( )m fρ= ∇· (11)

uC c( )sp f= ∇· (12)

uC C T( )th f p,f fρ= ∇· (13)

and the diffusive momentum fluxes Dm, molar flux Dsp, and heat
flux Dth are computed as:

D um f
2μ= ∇ (14)

D D csp f
2

f= ∇ (15)

D Tth f
2

fλ= ∇ (16)

Spatially, a second-order total variation diminishing scheme
and a standard second-order central differencing scheme are
applied for the discretization of the convection and diffusion
terms, respectively. The solution of eq 8 is obtained by applying
a two-step projection method where an intermediate velocity
field u̅** is first computed by using the pressure gradient at the
old time step.12,24 Subsequently, the velocity field is updated
using the new pressure gradient computed from the Poisson
equation at the new time step n + 1.
The governing equation of the solid phase is solved after the

governing equations of the fluid phase, and the trapezoidal rule is
applied for the time integration:
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2.3. Fluid−Solid Coupling. After discretization, the
differential equations are transformed into algebraic equations
providing the relationship between the any fluid variable inside
the simulation domain and its six neighbors. It should be noted
that the six neighbors are the implicitly computed cells (i.e.,
diffusion term), while the convection term, which involves more
neighbors, is explicitly accounted for. At the fluid−solid
interface (i.e., the central point is the fluid phase but any
neighbor point is the solid phase), IBM is invoked to incorporate
the predefined boundary condition. The fluid−solid coupling is
the most important element in our DNS methodology, which
enforces the Robin boundary condition exactly at the immersed
object surface and implicitly at the level of the discretized
equations. The IBM method, which possesses a second-order
accuracy, is published in our earlier paper,30 and we refer the
interested reader to that paper for a full description.
As indicated in the Introduction, the Robin boundary

condition switches to the Dirichlet boundary condition
straightforwardly for the calculation of the temperature field in
the fluid phase, whereas the rate constant of the chemical
reaction proceeding at the particle surface is incorporated into
the Robin boundary condition for the mass-transfer calculation.
The Damköhler number is used to quantify the ratio of the
reaction rate to the diffusion rate:

kr
D

Da s

f
=

(18)

where rs is the particle radius. The original mass balance
equation as well as the subsequent nondimensionalization
procedure were also reported in the aforementioned literature.

3. RESULTS AND DISCUSSION
In this part, four cases with increasing complexity are presented
for coupled heat and mass transfer in fluid−particle systems,
with an exothermic first-order irreversible chemical reaction
proceeding at the particle surface. Following the comparison
between DNS results and analytical (empirical) solutions for
two single-particle systems, simulations are performed for
systems with multiple particles.

3.1. Unsteady Heat and Mass Transport. Here the
unsteady mass diffusion to a sphere, followed by the unsteady
conduction of thermal energy to the surrounding fluid, is
considered. We assume the spherical particle is located in an
infinitely large pool of static fluid. The governing equations for
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unsteady mass and heat diffusion in the fluid phase are described
by eq 3 and 4, respectively, with convection terms set to zero.
The boundary conditions are:

c cf,wall f,0= (19)

T Tf,wall f,0= (20)

at the boundaries of the simulation domain, and

D
c

r
kcf

f,s
f,s

∂
∂

=
(21)

T Tf,s s= (22)

at the sphere surface. cf,0 and Tf,0 are the initial conditions for
species and thermal energy equation, respectively, and eq 19)
and 20 are valid providing the simulation time is short enough to
keep the diffusion fronts away from the confining walls. The
particle temperature Ts in eq 22 serves as a dynamic boundary
condition for the fluid phase thermal energy equation, and
governed by the particle thermal energy equation (Equation 5).
In DNS, the sphere is positioned in the center of a cubic box

with a length of 0.04 m. Five reaction rates varying from the case
of reaction limiting to the case of mass-transfer limiting are
imposed at the sphere surface, corresponding to the Damköhler
number of 0.01, 0.1, 1, 10, and 100. The data used for the
numerical simulation are given in Table 1.
An “exact” solution for the particle temperature is obtained by

solving the spherically symmetric model using a standard finite
differencing technique with second-order accuracy. In this case,
the governing equations for unsteady mass and heat diffusion in

Table 1. Parameter Settings for the Simulation of Unsteady
Heat and Mass Transport

parameter value

time step [s] 5 × 10−5

grid size [m] 2.5 × 10−4

sphere diameter [m] 0.005
fluid density [kg/m3] 1.0

fluid thermal conductivity [W/m/K] 0.025
fluid heat capacity [J/kg/K] 1000
species diffusivity [m2/s] 2 × 10−5

solid volumetric heat capacity [J/m3/K] 1000
reaction enthalpy [J/mol] −10−5

fluid initial concentration [mol/m3] 1.0
fluid initial temperature [K] 293

particle initial temperature [K] 293

Table 2. Comparison between “Exact” Solutions and DNS
Results for the Temperature Difference (in K) between the
Particle and the Bulk Fluid Far from the Particle at 3 s

Da 0.01 0.1 1 10 100

“exact” 0.66 6.19 36.89 72.55 80.21
DNS 0.67 6.25 37.75 73.78 81.16

Figure 1. Comparison of particle temperature evolution profiles
between the “exact” solutions and the DNS results, which are indicated
by the solid lines and the dashed lines respectively.

Table 3. Comparison of the Particle Temperature at Steady
State between DNS Results and Empirical Values (Indicated
as EMP)

Da = 0.1 Da = 1 Da = 10

DNS EMP DNS EMP DNS EMP

Res = 20 296.7 296.4 319.7 318.0 363.6 360.6
Res = 40 296.0 295.8 315.7 314.5 360.6 358.1
Res = 60 295.6 295.5 313.4 312.5 358.3 356.2
Res = 100 295.1 295.1 310.5 309.9 354.7 353.4
Res = 200 294.6 294.6 306.9 306.6 348.8 348.7
Res = 300 294.4 294.4 305.0 304.8 344.9 345.6

Figure 2. Evolution profiles of the particle temperature for the three-
bead reactor. Particle Reynolds number of 60, 100, and 200 are
presented by the solid lines, dashed lines, and dotted lines, respectively.

Figure 3. Fluid phase cup-average concentration and temperature
profiles along the flow direction. Three simulation cases with the
particle Reynolds number 60, 100, and 200 are presented by the solid
lines, dashed lines, and dotted lines, respectively, whereas the blue and
red color indicate the concentration and temperature, respectively.

Industrial & Engineering Chemistry Research Article

DOI: 10.1021/acs.iecr.8b03158
Ind. Eng. Chem. Res. 2018, 57, 15565−15578

15568

http://dx.doi.org/10.1021/acs.iecr.8b03158


the fluid phase are only r dependence and, respectively,
described as:
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It should be noted that a relatively high mesh resolution, defined
as the number of grid points distributed in the radial direction,
was used to obtain this “exact” solution.
The comparison of the temperature difference between the

particle and the bulk fluid for the “exact” solutions and the DNS

results at 3 s are listed in Table 2. From the table, a good
agreement is observed for all reaction rates. In Figure 1, the
particle temperature evolution profiles are plotted against time,
to compare the DNS results and the “exact” solutions. As clearly
demonstrated in Figure 1, these two solutions are in good
agreement. For all reaction rates, the species flux is
comparatively high initially, so that the heat liberated from the
exothermic reaction rapidly heats the particle up from the initial
temperature. After that, a temperature difference between the
particle and the surrounding fluid is established, so that the
particle transfers the thermal energy to the fluid phase through
unsteady heat conduction. At the final stage, the heat removal
rate is approaching the heat liberation rate, and therefore, a low
reaction rate results in a low particle temperature. The final stage
is achieved faster with higher reaction rates because of the
dominating role of the Damköhler number. In other words, the
solid temperature evolution is fully controlled by the unsteady
diffusion, namely, the Sherwood number, for the Da = 0.01 case.

3.2. Single Sphere under Forced Convection. Building
on the last case, we now consider a single stationary sphere
under forced convection. In lateral direction, the sphere is
positioned at the center of the domain, whereas in the flow
direction, it is located at a distance of two times of the sphere
diameter from the inlet. Fluid flows into the system with
constant inflow concentration of 1 mol/m3 and constant inflow
temperature of 293 K. For this system, we consider 3 reaction
rates corresponding to the Damköhler number of 0.1, 1, and 10.
Besides the same data used in the last case, fluid viscosity is also
required for the current numerical simulation which is specified
to be 2 × 10−5 kg/m/s. The simulations are computed in a cubic
box with 160 grids in each direction. At the inlet, uniform fluid
velocity is imposed, which is varied to give the particle Reynolds
number of 20, 40, 60, 100, 200, and 300. Free slip boundary
conditions are applied at the transversal domain boundaries for
velocity calculation, whereas the standard atmospheric pressure

Figure 4. Particle configuration for the dense array simulation (left) and the computed velocity field (right) for the central plane and three lateral cross
sections with the particle Reynolds number of 60, 100, and 200 (from left to right).

Figure 5. Cup-average concentration and temperature profiles
obtained from the dense particle array simulations. The case with the
particle Reynolds number 60, 100, and 200 are, respectively, indicated
by the solid, dashed, and dotted lines, whereas the concentration and
temperature profiles are indicated by the blue and red color,
respectively.
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is set at the outlet. HomogeneousNeumann boundary condition
is used for both concentration and thermal energy equations at
all domain boundaries except the inlet.
According to Equation 5, the particle temperature at steady

state is described by:

H( ) ssp,f s r th,fΦ −Δ = −Φ→ → (25)

The particle temperature can be calculated from the mass-
transfer coefficient km and heat-transfer coefficient αh.

S k c c H S T T( )( ) ( )s m f,0 f,s r s h f,0 sα− −Δ = − − (26)

where Ss is the particle surface area. Equation 26 can be
rearranged to obtain the following expression:

T T
Da c H

C
2

(2Da Sh )
Sh
Nu

( )

Les
s f,0

s

s

f,0 r

f p,fρ
= +

+
−Δ

(27)

with the external mass- and heat-transport coefficient predicted
by the well-known empirical Frössling and Ranz−Marshall
correlations:
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where Res is the particle Reynolds number, Sc is the Schmidt
number, and Pr is the Prandtl number, respectively, defined as:
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In eq 27, Le is the Lewis number defined as the ratio of the
thermal diffusivity to the mass diffusivity:

D
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C

f

f

f p,f= =

λ
ρ

(33)

In the current work, Sc = 1 (and Pr = 0.8) is used, which means
that the momentum and mass (temperature) boundary layers
have a similar thickness.
In Table 3, the comparisons between the simulation results

obtained from DNS and the empirical values calculated from eq
27 are shown. As observed from the table, the particle
temperature increases with higher reaction rates and decreases
with larger Reynolds numbers. The former behavior is
understood as the result of more heat liberated from the
chemical reaction, whereas the latter behavior is well explained
by the stronger convective heat transfer from the particle to the
fluid. All results are in good agreement. At the final steady state,

Figure 6.Concentration and temperature distribution for the longitudinal plane in the array center, with the particle Reynolds number of 60, 100, and
200 (from left to right). Note that the particle temperature is also indicated in the figure.
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the calculated ratio of the heat and mass-transfer rates is also
verified to equal the reaction enthalpy (−100 kJ/mol).
3.3. Three-Bead Reactor. In this section, we consider three

spheres positioned in a line, the so-called three-bead reactor.
The spheres are positioned in a cuboidal domain with the length
of 0.10m in the flow direction and 0.01m in the lateral direction.
At the domain boundaries, velocity obeys the free slip condition
and the system is isolated and adiabatic for species and thermal
energy calculation. At the outlet, the standard atmospheric
pressure is set, and zero slope boundary condition is set for both
concentration and temperature. The first sphere is located at a
distance of 2 times that of the sphere size from the inlet in the
flow direction, and the other two spheres are located in such a
way that the mutual distance between all sphere centers is 1.5
times that of the sphere size. In this simulation, the reaction rate
at the sphere surface is maintained at Da = 1, indicating the

equivalent time scale for reaction and diffusion, whereas 3
particle based Reynolds numbers Res = 60, 100, and 200 are
applied to the system. All other simulation parameters are the
same as those in the previous case.
The particle temperature evolution profiles are presented in

Figure 2. There are two contributors to the rise of the particle
temperature: liberated reaction heat and convective heat
transfer. From the figure, one can observe that a thermal energy
wave is propagating through the in-line array of three spheres.
For all Reynolds numbers, the particle temperature increases
from the first sphere to the third sphere. All spheres rapidly heat
up due to the exothermic chemical reaction proceeding at the
surface. Because of a temperature difference between the particle
and the surrounding fluid, the thermal energy is transferred from
the solid phase to the fluid phase and further transported
downstream by the fluid flow. For the first sphere, the particle

Figure 7. Comparisons of the fluid cup average concentration (upper) and temperature (lower) profiles among the DNS results, the 1D model using
the Sherwood number computed from the Gunn correlation and the 1D model without the axial dispersion effect using the same Sherwood number.
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temperature soon reaches a constant value as the removed heat
equals the generated reaction heat. For the second and third
spheres, the unconverted reactant is partly converted on their
surface and the thermal energy in the fluid phase gives additional
heating to these spheres. Because of this reason, the last sphere
takes the longest time to reach the steady state. From the figure,
it is also clear that with higher Reynolds numbers, the final solid
temperature is lower and achieved faster for all particles.
The evolution profiles of the fluid phase cup-average

concentration and temperature in the streamwise direction are
shown in Figure 3, which demonstrates the relative contribution
of the individual spheres to the overall reactant conversion and
temperature rise. The cup-average value ϕ (namely concen-
tration or temperature in the current case) is defined by:

u y z

u y z

d d

d d
S

S
f

f
f

f

∬

∬
ϕ

ϕ
⟨ ⟩ =

(34)

In this equation, the integration is performed over the area
occupied by the fluid in a cross section Sf perpendicular to the
flow direction, and u is the axial component of the fluid velocity.
From the figure, as expected, it is observed that three spheres
have the same contribution to the overall species conversion and
temperature rise. This is due to the low reaction rate specified at
the sphere surface, and hence, all three spheres possess almost
equivalent reaction consumption. Higher Reynolds number will
decrease the species conversion at the sphere surface, and
consequently lead to lower fluid temperature in the system. This
corresponds well with the lower particle temperature in Figure 2.
From the simulation, the overall conversion of the reactant in

the three-bead reactor is obtained, which is 0.055, 0.035, and
0.019 for Res = 60, Res = 100, and Res = 200, respectively. The
theoretical fluid outlet temperature can be computed from the
adiabatic temperature rise:

T T
H c c

C

( )( )
f,out f,in

r f,in f,out

f p,fρ
= +

−Δ ⟨ ⟩ − ⟨ ⟩

(35)

The fluid outlet temperatures given by the simulations are
298.69, 296.59, and 294.95 K for increasing Reynolds numbers,
which are in good agreement with the theoretically calculated
values: 298.51, 296.48, and 294.91 K.

3.4. Dense Particle Array. For the last case, DNS is
performed to study a dense array composed of a relatively large
number of stationary particles with the same size. The particle
array is created by the hard-sphere Monte-Carlo method, with
periodic boundary conditions in all three directions. In other
words, the spheres that cross the boundaries are duplicated at
the other side. In total, 573 spheres are distributed in a random
configuration over a 3D domain with the packing height of 0.15
m in the flow direction and a length of 0.025 m in the lateral
direction, with a predefined void fraction of 0.6. For the
simulation three prescribed uniform fluid velocities are imposed
at the inlet, leading to the particle Reynolds number of 60, 100,
and 200, respectively. A reaction rate equaling the diffusion rate,
namely, Da = 1, is specified at the particle surface. Other
parameters used in the simulation are the same as those in the
second case. The two parameters Schmidt number and Prandtl
number, describing the relative thickness of the momentum
boundary layer to the mass and thermal boundary layer, are 1.0
and 0.8, respectively. The periodic boundary condition is
applied at the lateral domain boundaries for all velocity,
concentration, and temperature calculations. The pressure at
the outlet is set as the standard atmospheric pressure, and a zero
slope boundary condition is set there for species and thermal
energy equations.
In Figure 4, the computational domain as well as the particle

configuration are demonstrated. It should be noted that two
empty regions are reserved for the inlet and outlet, with a length
of 0.015 and 0.05 m, respectively. These two regions are
incorporated in order to avoid problems for the development of
the inflow and the recirculation of the outflow. For our
simulations, the mesh resolution N, defined as the ratio of the
particle diameter to the grid size, is 20. This value is selected by
performing a mesh convergence test in a small subarray,
following the methodology published in our previous paper.30

The deviation of the total heat-transfer rate in the current work
usingN = 20 is 4.14%, which is slightly higher than the one in our
earlier work and can be explained by the increased solid phase
packing density. The computed velocity field for all three
Reynolds numbers are plotted in the longitudinal and transversal
cross sections. The longitudinal cross section is the central plane
of the particle array, whereas the three transversal cross sections
are located at the packing height of 0.005, 0.075, and 0.145 m,
respectively. In velocity maps, the periodic flow field in the
lateral directions and the preferred flow pathways in the array are
clearly observed. Note that in our simulations, the velocity field
is solved not only for the fluid phase but also inside the particles;
however, it is zero there due to the accurate enforcement of the
no-slip boundary condition at the particle surface. The
complexity of the flow structure is depicted by the transversal
planes along the packing that the local increase of the fluid
velocity significantly varies with the local porosity (caused by the
variation of the local particle structure). With increased
Reynolds numbers, besides a more heterogeneous flow field
inside the array, a more unsteady wake is observed for the flow
leaving the array which develops from straight streamlines into

Figure 8. Streamwise profile of the slice-based Sherwood number for all
three Reynolds numbers.

Table 4. Comparison of the Average Sherwood Number
between the Gunn Correlation and the DNS Results

Res Gunn Tavassoli27 Sun29 slice-based particle-based

60 12.90 10.99 10.30 11.65 14.47
100 15.81 14.30 13.03 14.13 15.73
200 21.59 - - 17.69 18.60
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vortex. The periodically distributed particles, which are “cut” by
the domain boundaries, are clearly visualized in Figure 4.
The evolution of the cup-average concentration and temper-

ature along the particle array is of high interest for industrial
applications, as it may indicate an approximate reactor length for
the design purpose or an appropriate feedstock amount for the
production process. The calculations of the cup-average
concentration and temperature are given in the preceding
section (eq 34). In Figure 5, the cup-average concentration and
temperature profiles of the fluid phase are shown as a function of
the domain coordinate in the flow direction. The empty inlet
and outlet regions are clearly visible as here the profiles are
constant. Within the packing range, the species concentration
decreases due to the chemical reaction proceeding at the
external surface of the particles and the fluid temperature
increases due to the particles that are heated up by the heat
liberated from the exothermic reaction. As expected, higher
Reynolds number will decrease the decay rate of the

concentration and consequently lead to lower species
conversion, which will accordingly reduce the temperature rise
of the system. Similarly to the three-bead reactor, the computed
fluid temperature at the outlet, 381.4, 370.2, and 352.8 K for the
particle Reynolds number of 60, 100, and 200 respectively, can
be compared with the value predicted by eq 35. For increasing
Reynolds numbers, the overall conversion obtained from the
simulations are 0.908, 0.796, and 0.620, and the sequential
calculation gives the values of 383.8, 372.6, and 355.0 K
respectively. The concentration and temperature distribution
are shown in Figure 6 for the central plane of the particle array. It
should be noted that not only the information of the fluid phase
but also the information of the solid phase is visualized in this
figure. The concentration inside the particles is zero due to the
assumption of the reactive external surface, whereas the
temperature inside individual particles is its real solid temper-
ature computed using eq 5. This is a very important point, as it
may help us to find out where local high temperatures are

Figure 9. Comparisons of the fluid cup-average concentration (upper) and temperature (lower) profiles among the DNS results, the 1D model using
the Sherwood number based on the slice-based average and the 1D model using the Sherwood number computed from the Gunn correlation.
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located. Although the cup-averaged values in Figure 5 show that
the fluid temperature increases along the flow direction, from
Figure 6 it can be clearly observed that both fluid and particle
temperature vary in the transversal cross section. High solid
temperature occurs at regions with local dense particle
configuration, especially for particles suffering from a blockage
effect. The increased solid temperature consequently heats up
the surrounding fluid and results in the nonuniform temperature
distribution in the fluid phase. This heterogeneity is intensified
at higher Reynolds numbers. In Figure 6, it is clearly observed
that the system’s thermal energy continuously accumulates
along the flow direction. In other words, the heat produced by
the exothermic chemical reaction is stored in the particles and
propagates to downstream particles by the convective heat
transfer of the fluid.
In more empirical approaches, the transport behavior of

packed beds is commonly described by the classic one-
dimensional heterogeneous model.44 By incorporating the
chemical reaction rate, the following equations are obtained
for the fluid phase at steady state:
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where ε is the void fraction of the particle array and as is the
specific fluid−particle contact surface area given by:

a
d
6

(1 )s
s

ε= −
(38)

Dax and λax are the axial dispersion coefficient and the axial
conductivity respectively. The Damköhler number is already
specified well in our simulations, whereas the Sherwood number
can be computed from the empirical Gunn correlation:6
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Figure 10. Distribution of the Sherwood number of individual particles in the flow (upper) and lateral (lower) directions.
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In this equation, Res is the particle Reynolds number calculated
with the inlet fluid superficial velocity uin. For more details of this
one-dimensional heterogeneous model, we refer interested
readers to the Supporting Information. In Figure 7, the
comparisons of the cup-average concentration and temperature
profiles between the DNS results and the phenomenological
model are shown. As presented by the figure, good agreements
are reached for the overall features of the profiles. The important
discrepancy is that the DNS results give a faster and higher
species consumption and consequently a similar trend for
thermal energy than the ones predicted by the 1D model. This
discrepancy further increases at higher Reynolds numbers, and
the reason is thought to be the inhomogeneous flow pattern
inside the particle array. In the figure, we also plot the 1D profiles
without the axial dispersion effect (for both species and thermal
energy transport). As expected, the axial dispersion plays a more
pronounced role at low Reynolds numbers, and it is negligible
for the range of the Reynolds number considered in the current
work due to the dominating role of the convective transport.
The average Sherwood number obtained from the slice-based

computation is as well used in the 1D model. It is calculated by

the following expression in planes perpendicular to the flow
direction:

nc
c c

dShslice
f

f f,s
s=

∇ ·
⟨ ⟩ − (40)

where the numerator and denominator account for the average
concentration gradient and the average driving force respec-
tively, for all parts of the particle surface within the current plane.
As shown in Figure 8, the slice-based Sherwood number depicts
the local variation of the mass-transfer performance in the
streamwise direction, which oscillates in the full packing region
due to the varying fluid−particle interface area in each
transversal plane. From the figure, it can be concluded that the
Sherwood number is statistically homogeneous because it is
independent of the streamwise coordinate except for a very small
slab at the end of the array. The Sherwood numbers within this
slab significantly deviate from the homogeneous value and hence
is excluded in the average value calculation. In Table 4, the
average Sherwood number is compared with the value obtained
from the Gunn correlation. As predicted by the correlation, the

Figure 11.Distribution of the mass (upper) and thermal energy (lower) gradient and the driving force of individual particles along the flow direction,
at Res = 200.
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Sherwood number increases with higher Reynolds numbers,
however, accompanied by larger deviations. A similar behavior
has been reported by other studies,27,29,45, and the values
obtained from their refitted correlations are also listed in the
table. The utilization of the average value does not help to
improve the prediction of the 1Dmodel, as depicted by Figure 9.
Because of the lower values applied in the 1D models, the
concentration profiles are somewhat higher than the ones
computed using the Gunn correlation and the temperatures
lower.
The previous results indicate that the variable flow field inside

the array, which results from the absence of a homogeneous
packing structure, has considerable influence on the local
transport performance of individual particles. Monitoring the
variation from particle to particle may help us to gain deeper
understanding of the heterogeneity. For this purpose, the
Sherwood number of individual particle is computed, which is
defined as:

nc
c c

dSh
( )

particle,i
f i

f,i f,s,i
s,i=

∇ ·
⟨ ⟩ − (41)

The numerator is the average concentration gradient, whereas
the denominator is the local driving force for individual particle
which is calculated as the difference between the cup-average
concentration at the center position of the particle and the
average surface concentration of the particle. There are two
advantages by applying this definition. On one hand, it is closely
related to the slice-based calculation, as the average over
particles around a certain position should be close to the Shslice
there. On the other hand, rather than the overall value obtained
from the slice-based calculation, this particle-based quantity is
commonly used in the coarser scale models to characterize the
interfacial transfer. In Figure 10, the values of the computed
Sherwood number of individual particles are plotted as a
function of the streamwise (x) and spanwise (z is shown here)
directions. As wall effects are eliminated by applying the periodic
boundary condition at the spanwise boundaries, no entrance
region is observed for Shparticle, i in the flow direction (left panel),
and no predominant high values are observed at the lateral
boundaries (right panel). The average value over all particles are
listed in Table 4 as well, and the standard deviation decreases
with increasing Reynolds number which is 12.14, 9.21, and 8.13,
respectively. From the figure, it seems that the Sherwood
number of individual particles has a quite uniform and
homogeneous distribution in all directions. However, some
details are worth being discussed. First, there is a decrease of the
Sherwood number at high Reynolds number. Although most
particles behave in the same way as the overall Sherwood
number, namely, that the value increases with larger Reynolds
numbers, some particles have a completely opposite behavior,
namely, that the maximal value occurs at Res = 60. This indicates
the preferred flow path inside the array that the fluid channels
somewhere and leads to stagnation in other places, especially at
high Reynolds number. Second, variation of the Sherwood
number in the same transversal cross section. The local
heterogeneity can be more pronouncedly revealed by looking
at the particles at the same position along the flow direction,
which can even differ up to 100%. Since Shparticle, i is defined as
the ratio of the concentration gradient to the mass-transfer
driving force, it can be concluded that at least one of them is not
constant at the same cross section perpendicular to the flow.
This is in contrast to the assumptions employed in the 1Dmodel

that both gradient and driving force mainly change in the flow
direction, and this may explain the deviation in our previous
results. In Figure 11, the concentration gradient and the
concentration driving force are plotted at the particle Reynolds
number of 200 in the streamwise direction. As expected, both
gradient and driving force decrease along the particle array. In
the figure, one can clearly find that the particles in the same
transversal plane experience some differences for the concen-
tration gradient; however, differences for the concentration
driving force are more significant. To confirm our finding, the
gradient and the driving force for thermal energy transfer is also
plotted in Figure 11, which show the same behavior. This well
explains the variations in the previous results and may indicate
the improper usage of the cup-average concentration for the
driving force calculation. In other words, particles in the same
spanwise plane may not feel the same driving force; instead, they
are more likely affected by a local driving force which is based on
the local microstructure around each particle. However, this may
trigger further questions on how to derive an overall value from
individual values, which can be then applied in phenomeno-
logical models. This raises a challenge for future researches to
analyze really local and detailed information, which is realizable
by using DNS.

4. CONCLUSIONS AND OUTLOOK
Direct numerical simulations based on a ghost-cell based
immersed boundary method are performed for reactive fluid−
particle systems in this paper, namely, coupled heat and mass-
transfer processes. An exothermic first-order irreversible
chemical reaction proceeds at the exterior surface of the particle,
whose reaction rate is incorporated into the Robin boundary
condition which is further incorporated into the fluid species
equation at the discrete level implicitly. The liberated reaction
heat heats up the particle, whose temperature offers a dynamic
boundary condition for the fluid thermal energy equation.
Four fluid−solid systems are studied. The particle temper-

ature obtained from DNS agrees with the value obtained from
the well-established solutions for a single sphere under both
unsteady and convective situation. In the three-bead reactor, the
particle temperature increases from the first sphere to the third
sphere and the species conversion decreases at higher Reynolds
numbers. The adiabatic temperature rise obtained from DNS is
in a good agreement with the theoretical value. For the dense
particle array, the fluid concentration and temperature profiles
are obtained and compared with the 1D heterogeneous model.
The qualitative agreement is good; however, the quantitative
discrepancy is thought to be caused by the heterogeneity inside
the array which is further amplified at higher Reynolds numbers.
This point is visualized in both velocity and temperature
distributions. Further analysis of the Sherwood number of
individual particles reveals that the particles in the same
transversal plane experience large variations, which mainly
come from the widely scattered driving force.
In this paper, we revealed the strong power of DNS in

modeling of reactive fluid−particle systems for engineering
applications. Future work can be expanded in two aspects. First,
the current methodology needs to be extended toward more
realistic systems, which considers the temperature dependent
reaction rate and incorporates the realistic reaction kinetics.
Second, the local transport behavior of individual particles needs
to be studied, from which a better estimate of the transfer
performance is expected by quantitatively understanding the
effect of local parameters.

Industrial & Engineering Chemistry Research Article

DOI: 10.1021/acs.iecr.8b03158
Ind. Eng. Chem. Res. 2018, 57, 15565−15578

15576

http://dx.doi.org/10.1021/acs.iecr.8b03158


■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.iecr.8b03158.

One-dimensional heterogeneous model with associated
parameters for the dense particle array (PDF)

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: E.A.J.F.Peters@tue.nl
ORCID
Jiangtao Lu: 0000-0003-3340-942X
Elias A. J. F. Peters: 0000-0001-6099-3583
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was supported by The Netherlands Center for
Multiscale Catalytic Energy Conversion (MCEC), an NWO
Gravitation programme funded by the Ministry of Education,
Culture and Science of the government of TheNetherlands. Part
of this work was carried out on the Dutch national e-
infrastructure with the support of SURF Cooperative.

■ NOMENCLATURE
as Specific fluid−particle contact surface area, [1/m].
cf Species molar concentration, [mol/m3].
cf,0 Initial species molar concentration, [mol/m3].
cf,in Inlet species molar concentration, [mol/m3].
cf,s Molar concentration on particle surface, [mol/m3].
⟨cf⟩ Cup-average species molar concentration, [mol/m3].
Cp,f Fluid heat capacity, [J/kg/K].
Cp,s Solid volumetric heat capacity, [J/m3/K].
Cth Convective heat transport per unit of volume, [J/m3/s].
Csp Convective species transport per unit of volume, [mol/

m3/s].
ds Sphere diameter, [m].
Dax Axial dispersion coefficient, [m2/s].
Df Mass diffusivity, [m2/s].
Dth Diffusive heat transport per unit of volume, [J/m3/s].
Dsp Diffusive species transport per unit of volume, [mol/m3/

s].
k Surface reaction rate coefficient, [m/s].
km External mass-transfer coefficient, [m/s].
n Time step index.
p Pressure, [Pa].
r Spherical coordinate, [m].
rs Sphere radius, [m].
Ss Particle surface area, [m2].
t Time, [s].
Tf Fluid temperature, [K].
Tf,0 Initial fluid temperature, [K].
Tf,in Inlet fluid temperature, [K].
Tf,out Outlet fluid temperature, [K].
⟨Tf⟩ Cup-average fluid temperature, [K].
Ts Solid temperature, [K].
uin Fluid superficial velocity at inlet, [m/s].
Vs Particle volume, [m3].

■ GREEK LETTERS
αh Heat-transfer coefficient, [W/m2/K].

ε Void fraction, [1].
λf Fluid thermal conductivity, [W/m/K].
λax Axial conductivity, [W/m/K].
μf Fluid dynamic viscosity, [kg/m/s].
ρf Fluid density, [kg/m3].
ϕ General fluid variable.
ΔHr Reaction enthalpy, [J/mol].
Δt Time step, [s].
ΔTa Adiabatic temperature rise, [K].
Φth,f → s Heat-transfer rate from fluid to solid, [J/s].
Φsp,f → s Molar-transfer rate from fluid to solid, [mol/s].

■ VECTORS

Cm Convective momentum flux, [N/m3].
Dm Diffusive momentum flux, [N/m3].
g Gravitational acceleration, [m/s2].
n Unit normal vector, [1].
u Velocity, [m/s].

■ SUBSCRIPTS AND SUPERSCRIPTS

f Fluid phase.
s Solid phase.

■ OPERATORS

t
∂
∂

Partial time derivative, [1/s].

∇ Gradient operator, [1/m].
∇· Divergence operator, [1/m].
∇2 Laplace operator, [1/m2].
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