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Abstract: The spread of the COVID-19 pandemic was spatially heterogeneous around the world; the
transmission of the disease is driven by complex spatial and temporal variations in socioenvironmen-
tal factors. Spatial tools are useful in supporting COVID-19 control programs. A substantive review
of the merits of the methodological approaches used to understand the spatial epidemiology of the
disease is hardly undertaken. In this study, we reviewed the methodological approaches used to
identify the spatial and spatiotemporal variations of COVID-19 and the socioeconomic, demographic
and climatic drivers of such variations. We conducted a systematic literature search of spatial studies
of COVID-19 published in English from Embase, Scopus, Medline, and Web of Science databases
from 1 January 2019 to 7 September 2021. Methodological quality assessments were also performed
using the Joanna Briggs Institute (JBI) risk of bias tool. A total of 154 studies met the inclusion criteria
that used frequentist (85%) and Bayesian (15%) modelling approaches to identify spatial clusters and
the associated risk factors. Bayesian models in the studies incorporated various spatial, temporal
and spatiotemporal effects into the modelling schemes. This review highlighted the need for more
local-level advanced Bayesian spatiotemporal modelling through the multi-level framework for
COVID-19 prevention and control strategies.

Keywords: clustering analysis; spatial association; systematic review; COVID-19; Bayesian methods

1. Introduction

Coronavirus disease 2019 (COVID-19) is a highly transmittable and pathogenic viral
infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [1].
COVID-19 has caused a global pandemic and has contributed to many deaths worldwide,
posing a massive threat to global public health and the economy that may take several years
to recover [2]. As of 13 March 2022, over 452 million confirmed and over 6 million deaths
have been reported worldwide from COVID-19 [3]. COVID-19 incidence and risk can
vary in space and time, and it is important to understand these variations [4,5]. With the
increasing availability of high-quality data and improved computational capabilities, nu-
merous geospatial methods and tools have been developed and used in infectious diseases,
including COVID-19 surveillance [6,7]. These spatial tools have been used to investigate an
outbreak using both points and aggregated datasets [8]. A variety of retrospective studies
reporting spatial dynamics of COVID-19 have been published that highlight the spatial
and spatiotemporal fluctuations of COVID-19.

In spatial epidemiology, spatial clustering analysis plays an important role in identify-
ing spatial aggregation of disease cases by identifying whether geographically grouped
cases can be explained by chance or are statistically significant to find evidence of etiologic
factors [9,10]. Past studies have demonstrated that the distribution of infectious diseases
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is often determined by different social processes related to the space of occurrence [8,11].
The complex interaction of different determinants such as socioeconomic vulnerability,
rapid population growth, and urbanization combined with environmental variables can
result in spatial and spatiotemporal variations in COVID-19 infections [12]. Spatial analysis
and identification of areas with COVID-19 clusters, followed by the characterization of the
drivers of the dynamics in these clusters, has been promoted to carry out an investigation
of outbreaks [13,14]. The resulting maps from these spatial methods can help prevent and
control cases with targeted public health action plans and guided interventions in areas
with higher than expected disease risk while motivating the population with various public
health programs with the advanced knowledge of disease etiological characteristics [14].

In spatial modelling, frequentist and Bayesian methods are the two schools of thought
of statistical inference, employed primarily to identify high-risk clusters or hotspots using
clustering analysis and to identify risk factors using spatial regression modelling tech-
niques [15]. The traditional frequentist approach is based on the likelihood function to
derive the parameter estimates [16]. On the contrary, the Bayesian approach uses probability
to measure the uncertainties in estimates, prediction or inference on posterior distributions
by incorporating spatial and temporal dependencies by specifying a prior [17,18]. These
priors can be used to incorporate prior knowledge from preceding studies [19]. Bayesian
spatiotemporal models have been beneficial and provided more variations to incorporate
spatial and spatiotemporal structures to describe epidemiological data effectively [20,21].

While spatial analysis is limited to spatial variations, spatiotemporal analysis can
investigate the space-time variation by identifying disease patterns persisting over time
over spatial units, characterized by incorporating spatial and spatiotemporal structures. In
addition to the model types, the spatial unit of the data is also an important determinant
of the cluster patterns and the relevant associations [20]. Regardless of the true extent of
spatial correlation, different spatial resolutions can lead to different results for the same
dataset [20,21]. The effects observed at global or regional levels may not hold at the local or
individual levels, causing ecological fallacy [21,22].

To the best of our knowledge, hardly any study has conducted a detailed systematic
review of the spatial and spatiotemporal methods in COVID-19 research. A review by
Franch-Pardo et al., (2020) has summarized the geospatial methods used during the early
stages (January–May 2020) of the pandemic [23]. A review by Fatima et al., in 2021, using
data until September 2020, conducted a scoping review of the methods and associated
findings in relation to COVID-19 and sociodemographic and environmental characteris-
tics [24]. These past reviews lack a comprehensive review of the spatial and spatiotemporal
methodological frameworks, models and covariates used in modelling COVID-19 infection.
In addition, despite the popularity of Bayesian models in spatial epidemiology, the Bayesian
models were not thoroughly discussed in these past reviews.

The objective of this study was to systematically review the spatial and spatiotemporal
methods used to identify spatial variations of COVID-19 incidences and associated socioe-
conomic, demographic and climatic risk factors for such spatial variations. Our study aims
to gain more value from such spatial analytical tools to help improve research designs by
identifying the gaps in research that can be used to make recommendations for improving
practice and identifying opportunities for further development in this area.

The rest of the paper is structured as follows. In the next section, we describe the
methodologies followed to conduct the systematic review in accordance with the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The
following section presents the results from the systematic review. Finally, findings from
this systematic review are assessed in the discussions section. The spatial methodologies
used to answer the research questions of this review and the gaps in the existing studies,
and the direction of future research are discussed in this section.
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2. Materials and Methods
2.1. Data Source and Search Strategy

The methodology of this review was conducted in accordance with the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [25]. Our
search strategy aimed to identify peer-reviewed studies of the distribution and determinants
of COVID-19 that employed spatial clustering and spatial regression methods. In this
review, studies were considered spatial if they incorporated any spatial or spatiotemporal
approaches such as cluster detection methods, spatial risk modelling and spatial regression
analysis with socioeconomic, demographic, or climatic variables. We employed a broad
search strategy of four electronic databases: Embase, Scopus, Medline, and Web of Science.
The search was run from 1 January 2019 to 7 September 2021, using a combination of
keywords based on our concepts of spatial clustering and spatial regression analysis on
COVID-19. We acquired and used search strings for COVID-19 developed and peer-
reviewed by Research Information Specialists at CADTH [26]. The full search strategy is
provided in the Appendix A.

2.2. Eligibility, Inclusion and Exclusion Criteria

We have used Covidence [27], a web-based software platform for systematic review, to
perform our screening and data extraction process. Each included study was reviewed, and
information about the study was extracted. After excluding duplicates, titles and abstracts
of each study were screened independently by at least two independent reviewers (NN
and HS, or WT and MB) to identify potentially eligible studies. We included studies that
incorporated a geospatial method to observe the spatial risk of COVID-19 and studies that
performed a spatial regression analysis to understand the association between COVID-19
and socioeconomic, demographic, or climatic covariates. We only included studies in
English, and no exclusions were made on the basis of location. The articles were limited
to COVID-19 in humans. Studies targeting specific population groups such as the elderly
or children, as well as the studies that considered the entire population, were accepted.
Studies were excluded if they utilized non-spatial or purely mathematical models, reported
only the temporal patterns of COVID-19, the covariate in the regression models were not
related to research questions and contained insufficient information on spatial methods.
Articles were also excluded if not peer-reviewed, the study design was not an analytical
observational or cross-sectional study design, and the article was a correspondence letter,
conference paper, opinion piece or a review. After the title and abstract screening, the
identified papers were independently evaluated by thoroughly reading the full text by two
independent reviewers and selected according to the same inclusion criteria. The conflicts
in the screening process were resolved by a third reviewer (ZAB).

2.3. Data Extraction and Synthesis

All data from each article were extracted and collected manually by at least two
independent reviewers and stored in a Microsoft Excel 365 spreadsheet. Extracted data
included first author name, year of publication, study area, study units, length of study,
COVID-19 data description, covariate data, spatial methodology, type of analysis (Bayesian
or Frequentist) and visualization techniques. Furthermore, methodological details such as
spatial models, model selection criteria, model structure (spatial, temporal and space-time
effects), relative risk estimation, model inference approaches, or sensitivity analysis for the
priors were also collected.

2.4. Quality Assessment

All of the included studies were scored to assess the study bias using the Joanna Briggs
Institute (JBI) risk of bias tool for prevalence studies [28]. The checklist comprises nine
questions with binary scores of 0 or 1 for each question (yes or no). There is no specific
score specified for excluding studies by The JBI tool. We believe it is appropriate to include
all of the studies while accounting for the potential risk of bias in those with lower scores.
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The assessment of the quality of all included studies was conducted independently by two
reviewers to quantify the scoring and overall evaluation of quality. Any disagreement was
resolved through discussion between the first and second reviewers for each article.

3. Results
3.1. Literature Search

Figure 1 depicts the PRISMA flow chart of the literature selection process, and the
detailed contents of the selected articles are provided in Supplementary File S1. We
obtained 816 articles from Medline, 730 articles from Embase, 814 articles from Scopus
and 1779 articles from Web of Science. Out of the 4149 articles initially identified, 1312
duplicate studies were removed, leaving 2837 articles for screening. An additional 2487
articles were removed during the title and abstract screening process. Furthermore, 186 of
the 354 remaining articles were excluded for not meeting the inclusion criteria during the
full-text screening process. Finally, a total of 154 articles were included in this review.
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3.2. General Characteristics of the Selected Studies

All of the studies used secondary observational data on COVID-19 cases collected
from the national registries. Case incidence (n = 141) was more commonly studied than
mortality (n = 16). Three studies included both incidence and mortality from COVID-19.
Nearly all of the studies (n = 150) used COVID-19 data of all ages except four studies that
used COVID-19 data for specific population groups: children (n = 1), 60 years and older
(n = 1), 18 years and older (n = 1), and indigenous population (n = 1) to perform the analysis
(Supplementary File S1).

3.3. Time Intervals and Geographic Regions

Reviewed articles used COVID-19 data ranging from 1 week to 15 months, with a
median of 4 months. A total of 24 (15%) studies used COVID-19 datasets with <1 month, 124
(80%) studies used datasets <6 months, while 6 (4%) studies used datasets of >12 months.
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Moreover, 118 (76%) studies used the regional level spatial scale, 32 (21%) studies used
the local spatial scale, and 4 (2.5%) studies used the global spatial scale in performing the
analysis (Figure 2). The majority of the study area was conducted in Asia (36%), followed
by North America (32%). More than half of the studies originated from China (n = 33) and
the USA (n = 49) (Figure 3).
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3.4. Data Used and Scale of Analysis

The spatial analysis was mostly performed using aggregated data at an administrative
unit. However, the scale of aggregation varied widely. Zip codes were used in 11 studies,
regions in 19 studies, neighborhoods in 7 studies, districts in 29 studies, cities in 33 studies
and counties in 33 studies. Two studies analyzed data at the household level, and one study
performed a grid-based analysis, while eight studies aggregated the data at the county
level (Figure 2). Only one study aggregated the data in space-time to generate a special
data structure where x and y dimensions represent space and t dimension represents time
using ArcGIS software [29].

3.5. Study Design Perspective

Ecological studies are a form of study design where the unit of analysis is not grouped
by an individual but rather grouped by a unit of analysis such as the county, zip code or
city [30]. Ecological studies often incorporate spatial designs and analysis. Most of the
studies (n = 152) in this review were ecological studies where the data were aggregated at a
spatial unit. Only two studies were conducted at the household level.
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3.6. Software

The GIS software used in those studies are ArcGIS Desktop/ArcGIS Pro (n = 43),
GeoDa (n = 27), SaTScan (n = 29), QGIS (n = 4), and R (n = 20). Several other software
packages such as GWR4, BayesX (n = 1), and WinBUGS (n = 1) were also used for specific
spatial analysis.

3.7. Methods Used to Identify Spatial Variations of COVID-19 and Associated Risk Factors

Out of the 154 selected studies, 132 studies reported spatial variations of COVID-19
incidence and 67 studies identified associated risk factors for such variations. Most of
the studies used frequentist methods, while 24 (15%) studies used Bayesian methods. A
total of 49 (32.8%) studies observed spatial heterogeneity in the disease risk using global
Moran I. The most frequently used method was local Moran’s I (n = 46), followed by
Getis-Ord Gi* statistic (n = 36), Kulldorff’s spatial scan statistic (n = 34) and Kernel density
(n = 9). Of the 34 studies using Kulldorff’s scan statistic, 10 studies analyzed the data to
identify spatial clusters, while 24 analyzed the data to identify spatiotemporal clusters.
One study used Kulldorff’s multivariable permutation scan statistic (MPSS) by accounting
for socioeconomic variables [31]. Other frequentist clustering methods such as k-means
cluster (n = 2), Ripley’s K function (n = 1), MST-DBSCAN (n = 1), and spatiotemporal event
sequence-based clustering (n = 1) were also reported.

The most frequently used method used to identify the drivers of spatial variations
of COVID-19 was the geographically weighted regression (GWR) (n = 36), which was
used to model the local association between predictors and COVID-19, followed by the
spatial regression models (n = 20), such as spatial error model (SEM) and spatial lag model
(SLM) to identify the global association by introducing spatial context. Four studies used a
recently developed Geodetector Q statistic method that detected spatial heterogeneity of
COVID-19 cases and identified the potential drivers for these variations (Table 1). Many of
these studies used more than one type of analysis. The summary of the methods used in
each of these studies is presented in Supplementary File S1.

Table 1. Spatial methods used for clustering and risk factor identification in COVID-19 studies.

Method Category Method Name No. of Articles N (%) References
Frequentist Methods

Spatial
Clustering

Global Moran’s I 49 (31.8%) [32–80]

Local Moran’s I (LISA) 46 (29.8%) [5,32,34,36,38,40,41,44,54,55,61,62,64–
70,72–79,81–99]

Average Nearest Neighbor
(ANN) 2 (1.3%) [54,80]

Getis-Ord GI*statistic 36 (23.3%) [5,29,33,35,41,46,48,49,54–56,58–
61,67,69,74,76,77,80,84,88,100–112]

Kernel Density Estimation 9 (5.8%) [29,31,88,92,113–117]

K-means Cluster 2 (1.3%) [57,118]

Ripley’s K function 1 (0.6%) [72]

Kulldorff’s spatial scan
statistic 10 (6.5%) [39,42,67,119–125]

Spatiotemporal
Clustering

Kulldorff’s space-time
scan statistic 24 (15.5%) [4,5,31,40,44,52,59,92,100,126–140]

MST-DBSCAN 1 (0.6%) [124]

Spatiotemporal event
sequence-based clustering 1 (0.6%) [139]
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Table 1. Cont.

Method Category Method Name No. of Articles N (%) References

Spatial Regression

Spatial Regression Models
(SEM/SLM) 20 (13%) [45,51,53,65,76,87,91,94,95,119,132,

141–149]

Geographically Weighted
Regression 36 (23.3%)

[5,38,47,49,56,58,62,71,72,76,79,80,86,
87,90,98,99,105,108,116,118,140,141,

143,144,146,150–159]

Geodetector Q statistic 4 (2.6%) [66,68,160,161]

Spatial Statistical
Modeling

Spatial autoregressive (SAR) 1 (0.6%) [64]

GLM Regression model 1 (0.6%) [118]

Spatiotemporal
Statistical Modeling

Poisson-based Distributed
lagged nonlinear model with

a spatial function
1 (0.6%) [162]

Generalized additive model 2 (1.3%) [43,163]

Spatial Interpolation

Areal Interpolation 1 (0.6%) [151]

Inverse distance weighting
(IDW) 2 (1.3%) [107,164]

Thiessen Polygon method 1 (0.6%) [165]
Bayesian Methods

Spatial Interpolation Local empirical Bayesian
Smoothing 6 (3.9%) [38,62,78,83,94,113]

Spatial Statistical
Modeling GLMM Spatial models 5 (3.2%) [166–170]

Spatiotemporal
Statistical Modeling

GLMM spatiotemporal
models 11 (7.1%) [112,160,171–179]

Geo-additive hurdle Poisson
spatiotemporal model 1 (0.6%) [180]

Bayesian Model Averaging 1 (0.6%) [181]

3.8. Spatial Interpolation Methods

Spatial interpolation is the process of mapping a variable by interpolating point or
area data with known values to estimate values at unknown points or areas, based on
the assumption that objects that are closer in proximity are spatially correlated [182]. The
spatial interpolation methods also allow cross-validation statistics to determine how the
interpolation models fit the data. A total of 5 studies used spatial interpolation, such as
Inverse distance weighting (IDW) (n = 2), Thiessen polygon method (n = 1), areal interpo-
lation (n = 1), and local empirical Bayesian method (n = 6), to create smoothed surfaces
of the spatial risk of COVID-19. Oluyomi et al. [151] implemented the area interpolation
tool in ArcGIS Pro 2.6 using a k-Bessel model to visualize and obtain predicted values of
COVID-19 incidence at the census tract level. While Nasiri et al. [107] used the IDW method
to create interpolated maps of infected COVID-19 patients across Tehran, Iran. Ramírez
and Li [164] used the IDW algorithm to interpolate and create a 3D continuous surface
of hotspots of COVID-19 incidence across counties in the USA at five-time points. Arif
et al. [165] used the Theissen polygon method, the nearest neighbor interpolation method,
to create interpolated polygon maps that showed the spatial distribution of COVID-19
cases in the southern states of India and examined the association between COVID-19
cases and population density. Six studies used the local empirical Bayesian smoothing
technique to get spatially smoothed rates of COVID-19 incidence in each spatial unit of
analysis [38,62,78,83,94,113]. The smoothing technique helped reduce the extreme varia-
tions in incidence rates between neighboring areas. In contrast to the standard Bayesian
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methods, where prior distribution is fixed before analysis, the empirical Bayesian method
estimates the prior distribution from the data [183].

3.9. Spatial Statistical Models (Frequentist)

Sun et al. [64] examined associations of COVID-19 mortality rate with socioeconomic
and environmental factors across England using a spatial autoregressive (SAR) model
and chose the matrix exponential spatial specification (MESS) and fast random effects
eigenvector, spatial filtering models. The MESS specification uses an exponential de-
cay pattern in the influence of the high-ordering neighboring relationship for the spatial
autoregressive process.

Kindi et al. [118] observed the association between different demographic and so-
cioeconomic factors of COVID-19 in Oman using a Generalized Linear Model (GLM) to
understand and predict early incidence and infection rates, using an individual regression
equation to describe the process. Oluyomi et al. [151] adopted a Poisson-based regression
model using a Poisson-gamma mixture distribution that allows for extra variations to
understand the association between social determinants of health and community-level
COVID-19 case counts. The model also used population as an offset term referred to as
the exposure variable. The relative risk of COVID-19 was estimated by exponentiating the
regression coefficient and mapped to show the variations in the risk. Chien et al. [162] used
a Poisson-based distributed lagged nonlinear model with a spatial function to evaluate the
impact of weather variability using meteorological factors such as temperature, relative
humidity and precipitation on COVID-19. The model used a maximum lag of 14 days
to consider the COVID-19 incubation period and the spatial correlation was controlled
by adding a two-dimensional spatial function that accounts for the spatial coordinate in
latitude and longitude. The relative risks were estimated and mapped by transforming the
coefficients from the outputs.

Feng et al. [163] used a spatial-temporal generalized additive model (GAM) to model
the COVID-19 mortality risk in Toronto, Canada. Non-linear and spatial-temporal interac-
tion effects of population density and average income were modelled as a two-dimensional
spline smoother to reflect how the spatial pattern of mortality risk evolved over time.
Gaudart et al. [43] used a GAM model negative binomial regression and gaussian kriging
smoothing technique to identify the factors associated with the spatial heterogeneity of
COVID-19 in France during the first wave. The gaussian kriging accounts for the spatial
autocorrelation using aspatial smoother based on geographic coordinates for the adminis-
trative units. The log of the population was used as an offset variable.

3.10. Bayesian Spatial and Spatiotemporal Statistical Models

A total of eighteen studies used the Bayesian generalized linear mixed models (GLMM)
over space and time. The variations of risk in space and time were modelled in 16 studies
using the Poisson-based models, and the random effects were used to account for the extra
Poisson variability. Table 2 shows a summary structure of the spatial and spatiotemporal
structure of the Bayesian models.

Table 2. Structure of the Bayesian statistical models.

Reference Model Space Time Space-Time Model
Validation

Bayesian
Inference

Bermudi et al.,
2021 [171]

Poisson latent
Gaussian Bayesian

model
BYM RW (1) Space-time

interaction term DIC INLA

Blangiardo
et al., 2020 [172]

Poisson Bayesian
hierarchical model BYM RW (1), RW (2) __ __ INLA
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Table 2. Cont.

Reference Model Space Time Space-Time Model
Validation

Bayesian
Inference

Briz-Redón
et al., 2022 [173]

Poisson based
Bayesian

hierarchical model
BYM RW (2) Space-time

interaction term DIC and WAIC INLA

Lima et al., 2021
[166]

Poisson Bayesian
SAM BYM __ __ DIC and WAIC INLA

DiMaggio et al.,
2020 [167]

Poisson Bayesian
hierarchical model BYM __ __ DIC INLA

Gayawan et al.,
2020 [180]

Geo-additive
hurdle Poisson

model
BYM P-spline Space-time

interaction term DIC MCMC

Jalilian et al.,
2021 [174]

Poisson Bayesian
hierarchical model BYM RW (2) __ DIC, WAIC

and BCV INLA

Jaya et al., 2021
[175]

Poisson Bayesian
hierarchical model Leroux CAR RW (1), RW (2) Space-time

interaction term DIC and WAIC INLA

Johnson et al.,
2021 [176]

Poisson Bayesian
hierarchical model BYM RW (1) Space-time

interaction term DIC INLA

Ngwira et al.,
2021 [177]

Poisson
Space-time

inseperable model
BYM RW (1), RW (2) Space-time

interaction term DIC INLA

Olmo et al.,
2021 [181]

Bayesian Model
Averaging

Autoregressive
lagged spatial

terms

Autoregressive
lagged terms __ HPM and BPM MCMC

Paul et al.,
2021 [178]

Bayesian
semi-parametric
spatiotemporal

Negative Binomial
model

ICAR RW (1)
With zero-mean

Gaussian
distribution

WAIC INLA

Paul et al.,
2020 [112]

Bayesian
Spatiotemporal

Model
__ __ Latent Gaussian __ MCMC

Rawat et al.,
2021 [179]

Bayesian
separable
Gaussian

spatiotemporal
model

Exponentially
decaying
pattern

Exponentially
decaying
pattern

Gaussian
process with

zero mean

MAPE, RMSE,
CRPS INLA

Wang et al.,
2021 [160]

Poisson Bayesian
hierarchical model Spatial term Gaussian noise

Space-time
interaction

effect
__ MCMC

Whittle et al.,
2020 [168]

Poisson Bayesian
hierarchical model BYM2 __ __ DIC INLA

Millett et al.,
2020 [169]

Zero-inflated
negative binomial

model
BYM __ __ __ INLA

Yang et al.,
2021 [170]

Bayesian negative
binomial

hierarchical model
BYM __ __ DIC INLA

BYM: Besag–York–Mollié model; INLA: Integrated Nested Laplace Approximation; MCMC: Markov Chain Monte
Carlo; DIC: Deviance Information Criterion; RW: Random Walk; WAIC: Watanabe–Akaike Information Criterion;
SAM: Spatial autoregressive model; IWLS: Iterative Weighted Least Square; BCV: Bayesian cross-validation
criterion; HPM: Highest probability model; BPM: Bayesian Purity Model; MAPE: mean absolute percentage error;
RMSE: Root Mean Squared Error; CRPS: Continuous Ranked Probability Score.
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GLMM with spatial random effects: A GLMM model with only spatial random effects
has been used in five studies [166–170]. The general model is expressed as:

Yi ∼ Poisson(Eiθi) (1)

log(θi) = α + βx + ui + vi (2)

where Yi is the observed case or death counts in an area i, Ei presents the expected case
count, θi the relative risk, α is the intercept, β represents the coefficient of the covariates,
vi is the spatially unstructured random effect term that captured normally distributed or
Gaussian random variation around the mean or intercept, and ui is the spatially structured
conditional autoregressive term.

The Besag-York-Mollié (BYM) model [184] is a lognormal Poisson model originally
developed for disease mapping and was most commonly adopted (11 out of 18 Bayesian
studies) for the overall spatial component in our studies [166,167,169–174,176,177,180]. A
BYM model is a lognormal Poisson model developed for disease mapping that includes
both an ordinary random-effects component to account for non-spatial heterogeneity and
an ICAR component for spatial smoothing [185]. The BYM model [185] is modelled in
Equation (3) as:

ni = µ + xβ +∅+ θ (3)

where ni is the log relative risk for zone i, µ is the fixed intercept, x is the matrix of
explanatory spatial covariates, β is vector of regression coefficients which are constant
across all regions, ∅ is an ICAR spatial component and θ is an ordinary random effects
component for non-spatial heterogeneity.

Whittle et al. [168] additionally used the BYM2 model proposed by Riebler et al. [186]
that reparametrizes the BYM model and uses a scaled spatial structured and unstructured
component, making parameters interpretable. While four of these GLMM models used
Poisson-based modelling, Millett et al. [169] used a zero-inflated negative binomial model
with a logarithmic link function. A number of covariates have been incorporated in
modelling these GLMM models with spatial effects. DiMaggio et al. [167] included zip
code level explanatory variables for the proportion of persons identifying as black/African
American, with COPD, heart disease, older than 65 years, a measure of housing density in
the model. Whittle et al. [168], Millett et al. [169], and Yang et al. [170] have used various
socioeconomic predictors, demographic or housing covariates to model the spatial risk of
COVID-19.

GLMM with spatial and temporal random effects: Among the temporal components
in our models, the Gaussian random walk model of order 1 (RW1) or order 2 (RW2) was
more commonly used in eight studies [112,171–177]. The RW1 [187,188] model on the set
of time-point-specific is expressed in Equation (4). For t = 2, . . . ..., T,

vt = vt−1 + εt (4)

where εt ∼ N
(
0, σ2) represents the noise term, and ε2, . . . , εT are independent.

In the RW2 model, an extended to a higher-order version of the RW1 model gener-
ally yields a smoother temporal pattern by assigning more neighbors to each time point.
Equation (2) specifies the RW2 model on a set of temporal parameters with T ≥ 3 in
Equation (5) [189]. For t = 3, . . . ., T

vt = 2vt−1 − vt−2 + εt (5)

Blangiardo et al., 2020 [172] and Jalilian et al., 2021 [174] have both used Poisson-based
GLMM models with spatial, temporal random effects and temporal covariates. While these
two studies have used the BYM model for the overall spatial random effects, the temporal
random effects have followed the random walk models.
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The basic formula used by Blangiardo et al., 2020 [172] is given in Equation (6) as:

log(ρijtk) = β0k + ui + vi + ωjt + f (xit) (6)

where ρijtk is the mortality relative risk created by summing across the age groups for each
municipality and year and then dividing by the total number of weeks in each year. The
year-specific intercept is defined as β0k = β0 + εk, where β0 is the global intercept, ((ui + vi)
is the BYM specification), ωjt is the weekly random effect through RW1.

The log-linear model by Jalilian et al., 2021 [174] has incorporated population density
in the model with the BYM model for spatial components and RW2 models for the temporal
trends. The formula is expressed as:

θit = exp(µ + βdi + δt + εt + ξt) (7)

where, µ in the intercept, di population density of region I, β is the regression coefficient, δt
represents the temporal trend, εt accounts for temporal correlation., ξt, ζt explains spatial
correlation spatial effects.

GLMM with spatial, temporal random effect and spatiotemporal random effects: A
total of eight studies have used a GLMM model with spatial, temporal and spatiotemporal
random effects in the modelling scheme. These models incorporated a space-time interac-
tion term δit Introduced by Knorr-Held (2000) [189]. The general formula is given below:

log(θit) = α + ui + vi + γt +∅t + δit (8)

where Yi is the observed case or death counts in an area i, Ei presents the expected case count,
θi the relative risk, α denotes the intercept of the model (ui and vi) the BYM components for
the overall spatial structure and γt and ∅t are the structured and unstructured temporal
random effects, respectively, δit is the random spatiotemporal effect.

While the majority of the studies used the BYM modelling for the spatial structures,
Ngwira et al., 2021 [177] used Leroux CAR (LCAR), proposed by Leroux et al., is a variation
of the BYM and CAR model, as the conditional distribution is specified in such a way that
it incorporates characteristics of both structured and unstructured random effects (from
BYM model) into a single parameter [190].

Spatiotemporal studies by Wang et al. [160], Briz-Redón et al. [173] and Jaya et al.,
2021 [175] did not incorporate any covariates to measure the spatiotemporal relative risk
of COVID-19. Bermudi et al. [171], Ngwira et al., 2021 [177] and Paul et al., 2021 [178]
incorporated socioeconomic covariates, while Johnson et al., 2021 [176] included 6 Social
vulnerability and 7 environmental variables as fixed effects.

Paul et al., in 2020 [112] have fitted a Bayesian spatiotemporal model to county-level
demographics, smoking rates, and chronic diseases, incorporating a latent autoregres-
sive Gaussian space-time process with covariance matrix characterized by exponential
covariance function using geodesic distances between county centroids.

While most of these spatiotemporal models followed Poisson-based hierarchical mod-
elling, a study by Paul et al., in 2021 [178] adopted a Bayesian semi-parametric spatiotem-
poral negative binomial modelling.

Geo-additive hurdle Poisson Model
Gayawan et al. [180] used a two-component geo-additive hurdle Poisson model struc-

tured spatial and spatiotemporal effects to simultaneously analyze the zero counts and
the frequency of occurrence of COVID-19 cases. The expected value of Y is given by
E(Y) = pµ/(1− exp(−µ)). For an identically distributed random variable, the hurdle
Poisson distribution is expressed as:

P(Yi = y|p, µ) =

{
p

(1− p)
y = 0

µy(exp(−µ)
y!(1−exp(−µ))

y = 1, 2, . . . , ∞
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Yi is the response variable of interest, p is the none occurrence probability, µ is the
frequency of occurrence.

The geo-additive hurdle Poisson model is given by{
g−1

1 (p) = ηP
i = βP

0 + SP
str + SP

unstr + TP + (ST)P

g−1
2 (µ) = η

µ
i = β

µ
0 + Sµ

str + Sµ
unstr + Tµ + (ST)µ

where g1 and g2 are link functions chosen as logit and log links for the parameters, and
SP

str, SP
unstr are the structured and unstructured random effects, TP is the temporal random

effect, and ST is the space-time interaction effect.
GLM with Bayesian model averaging (BMA): Olmo et al. [181] applied the Bayesian

model averaging (BMA) technique using a Poisson generalized linear model (GLM) that
included a set of demographic and socioeconomic covariates. The BMA technique [191]
estimates all of the candidate models and computes a weighted average of the estimates
while taking the uncertainties of the models into account. The spatial effects were incorpo-
rated using the autoregressive (SAR) model [192]. The temporal effects were captured by
an autoregressive lag of the response variable ad the lagged incidence rate.

GLMM with Separable Gaussian spatiotemporal process: Rawat et al., 2021 [179]
proposed a model structure that includes a separable Gaussian spatial-temporal process
model implemented through a Bayesian framework, in conjunction with an additive mean
structure and a random error process to estimate the relative risk of COVID-19. The
spatial and temporal trends both follow an exponentially decaying pattern. This proposed
approach provided short-term and long-term predictions for the COVID-19 response
variable for any spatial location, even if it was unobserved in the data.

3.11. Relative Risk Estimation

Sixteen studies quantified the relative risk of COVID-19 to identify whether an area
had a higher or lower risk than the average risk across space and time based on the posterior
predictive distributions of the Bayesian models. The determinants of the relative risks were
implicitly captured by the random effects in the models. Geographic areas with relative
risk greater than one were generally identified as hotspots or high-risk areas.

3.12. Bayesian Model Selection

The Deviance Information Criteria (DIC) values introduced by Spiegelhalter et al. [193]
were most commonly used (11 studies) to measure the goodness of fit of various Bayesian
models in to compare the performances of various Bayesian models in a study [166–168,170,
171,173–177,180]. Five studies have also used the Watanabe information criterion (WAIC),
proposed by Watanabe and Opper [194], to select the best model [173–175,178]. The models
with the lowest DIC or WAIC values were chosen as the best-adjusted models. Some of
the other model selection criteria used in the studies were the Bayesian cross-validation
criterion (BCV) [174], mean absolute percentage error (MAPE) [179], Root Mean Squared
Error (RMSE) [179], Continuous Ranked Probability Score (CRPS) [179], highest probability
(HPM) [181], and best prediction (BPM) [181] to select the best model (Table 2). Results
reported were generally based on the best model selected using these criteria.

3.13. Model Implementation

The recently developed R software package INLA (Integrated Nested Laplace Approx-
imation) was the commonly used (14 out of the 18 Bayesian studies) approach to perform
the Bayesian models. INLA is an alternative method to the traditional MCMC. Compared
to the traditionally fitted model through the exact method of the Markov Chain Monte
Carlo (MCMC) sampling method, INLA uses a combination of analytical approximations
and numerical algorithms to approximate the posterior distributions [195]. A total of four
studies adopted the MCMC method to fit the Bayesian hierarchical models.
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3.14. Sensitivity Tests of Priors

Out of the 18 Bayesian statistical studies, only 4 studies used a sensitivity analysis of
the priors. A sensitivity analysis of priors is essential to understand the impact of the prior
on the latent classes, whether diffuse or informed priors are implemented [196]. Gayawan
et al. [180], Johnson et al. [176], Ngwira et al. [177], and Yin et al. [197] examined different
prior and hyperprior specifications and performed sensitivity analyses and found that their
results were not sensitive to their choice of priors.

3.15. Factors Associated with the Risk for COVID-19

In this systematic review, three categories of covariates were identified from the spatial
regression models to have a significant influence on COVID-19, namely climatic, demo-
graphic, and socioeconomic covariates. In the frequentist models, significant covariates
were generally determined if their p-values were less than 0.001, 0.05 and 0.01 in the
frequentist regression models. In the Bayesian regression framework, the variable was
considered influential if the 95% CI of the corresponding relative risk (exponentiated of
beta coefficients) did not include one. The observed spatial patterns of COVID-19 were
consistently positively linked to population density (n = 22) and the aging population
(n = 15). However, six studies have found a negative association between COVID-19 and
the aging population. Ethnicity or minority statuses such as percentage of Black (n = 12),
Hispanic (n = 3), Native American (n = 3), Asian (n = 3), and immigrants (n = 2) were
also found to be positively associated with the risk for COVID-19. Commonly associated
socioeconomic covariates included education (n = 4), income/poverty level (n = 13), and
social vulnerability/deprivation/income inequality index (n = 6). Temperature (n = 5),
relative humidity (n = 3), land surface temperature (n = 2) and wind speed (n = 3) were
some of the common climatic covariates that were found to have an association with
COVID-19. (Table 3) The details of the regression variables for each study are provided in
the Supplementary File S2.

3.16. Assessment of Quality

Based on the JBI risk of bias, the assessment scores of our studies ranged from 7 to 9 out
of 9. A few of the studies in this review lacked details of the study area, descriptions of the
datasets or methods. The median score across 154 studies was high, 9 out of 9. The detailed
quality assessment scores of these 154 studies are included in Supplementary File S3.
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Table 3. Risk factors for spatial variations of COVID-19.

Indicator Risk Factors No. of Studies
(+,− Association) References Risk Factors No. of Studies

(+,− Association) References

Demographic

%Asian 3 (2,1) [45,64,142] Aging population 21 (15,6) [42,43,45,47,90,94,105,108,116,118,143,147,148,
151,155–157,170,176,177,181]

%Black 12 (12,0) [45,51,64,108,112,119,142,
149,151,168,169,178] Middle Age population 2 (2,0) [112,140]

%Black female 1 (1,0) [144] Young population 1 (1,0) [168]

%Disabled
population 1 (1,0) [119] BIPOC 1 (1, 0) [49]

%Hispanic 3 (3,0) [51,142,149] Ethnic minority 2 (2,0) [147,170]

%Native American 3 (3,0) [142,149,158] Immigrants 2 (2,0) [42,118]

%Urban population 1 (1,0) [145] English proficiency 2 (2,0) [119,157]

% White 1 (0,1) [168] Migration 2 (1,1) [141,152]

%Non-White 1 (1,0) [176] Population density 22 (22,0) [5,38,42,47,53,65,80,86,91,95,98,105,118,142,
143,146,148,149,153,156,160,168]

Population size 2 (2,0) [37,118,155,181] Immigrants 1 (1,0) [151]

Ethnic minority 3 (3,0) [141,150,154] Lower Education 1 (1,0) [176]
Deprivation Index 2 (2,0) [53,151] Income 9 (5,4) [38,71,76,140,141,144,154,168,181]

GDP 3 (1,2) [148,159,160] Poor housing 4 (2,2) [51,150,158,176]

GINI Index 2 (2,0) [62,132] Poverty level 4 (1,3) [47,147,153,177]

Health expenditures 1 (1,0) [47] Social Vulnerability Index 2 (2,0) [65,87]

Higher education 3 (0,3) [151,155,178] Spatial interaction index 1 (1,0) [118]

Socioeconomic

Unemployment rate 4 (4,0) [64,71,149,178] Total purchase power index 1 (1,0) [118]

Climatic

Precipitation 3 (2,1) [58,162,176] Water vapor 1 (0,1) [153]

Relative humidity 3 (2,1) [58,64,162] Wind pressure 1 (1,0) [153]

Rainfall 1 (1,0) [153] Wind speed 3 (2,1) [56,58,153]

Temperature 5 (3,2) [56,94,161,162,176] LST 2 (1,1) [153,176]
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4. Discussion

In this study, we reviewed 154 published peer-reviewed articles on COVID-19 that
applied various Bayesian and Frequentist spatial methods to identify spatial variations of
the disease risk and associated socioeconomic, demographic, and climatic factors for such
spatial variations of the risk. While a wide variety of spatial and spatiotemporal methods
have been employed since the beginning of this pandemic, we found that all of the spatial
clustering studies had demonstrated spatial heterogeneity of COVID-19 risk. In almost all
of the studies, retrospective data of all ages were used except for four studies that used
specific vulnerable groups of the population.

Among the frequentist methods, the global Moran’s I and local Moran’s I were the
commonly used approach for identifying spatial clusters, followed by Getis-Ord GI* statis-
tics and Kulldorff’s spatial scan statistic. The local spatial regression method GWR, a
frequentist method, was frequently used to identify the association between the potential
risk factors and COVID-19. A total of five studies used frequentist spatial statistical models
such as spatial autoregressive models and GLM models to observe the spatial risk and
associations. Four studies adopted frequentist spatial interpolation modelling approaches,
whereas six studies have adopted a Bayesian spatial interpolation modelling approach to
create smoothed surface risk map of COVID-19.

Most of the studies used the frequentist approaches (85%), while only 15% of the
studies used a Bayesian approach. Bayesian methods are often preferred over frequentist
methods as the Bayesian approaches allow incorporating a wide range of components using
a hierarchical modelling scheme that can allow a more robust assessment of the prediction
uncertainties [198]. COVID-19 is often asymptomatic and under-reported globally, leading
to instances of missing data at the national registries [199]. Bayesian methods have the
advantage of accounting for these unreported or unobserved data or missing covariates by
incorporating random effects into the model [19,200].

Various spatial and spatiotemporal models were used in 18 studies that used Bayesian
hierarchical modelling to estimate the spatial risk and/or to identify the risk factors. The
modelling framework of those models was dependent on the data type, distribution,
outcome, and applications. Most Bayesian spatial or spatiotemporal models used a GLMM
framework that includes fixed effects such as spatial, temporal, and spatiotemporal random
effects. The Besag, York, and Mollié (BYM) model [184] was the most frequent global spatial
smoothing specification used in this review. BYM provides easy implementation in a range
of software. However, caution may be taken to minimize the potential over-smoothing of
the BYM spatial models [201]. Future models can compare the impact of using other spatial
smoothing priors [202]. First or second-order random walk terms were more commonly
used for the temporal random effects. Gayawan et al., 2020 have used a P-spline model to
allow nonlinear area-specific trends for the varying disease risk. The space-term interaction
term, introduced by Knorr-held [189], was most commonly used for the space-time random
effect. Most of the studies have used a Poisson-based modelling approach where data was
assumed to have Poisson distribution. A novel separable Gaussian spatiotemporal model
proposed by Rawat et al., 2021 [179] included an appropriately specified space-time process
that provided an advantage of predicting the response variable for any spatial location and
at any time point, even if it is unobserved within the data.

In our review, the INLA was the most adopted sampling method to fit the Bayesian
models. INLA has recently become widely popular for its fast computational efficiency,
which can provide accurate results in substantially less computing time [203]. INLA is an
alternative to the traditional MCMC (the exact method for Bayesian inference) approaches
which were only adopted in 4 studies in our review. However, INLA can fall short in
recovering the true estimates for the random effects, their precisions, and model goodness
of fit measures [204]. Future studies are warranted to compare the posterior estimates
from both approaches. DIC and WAIC values were commonly used for model selection
criteria to measure and compare the goodness-of-fit among different models and to select
the best-fitted Bayesian models.
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Sensitivity analysis of the priors is an integral part of the model validation process
in Bayesian statistical modelling. However, only four studies in our review have tested
the sensitivity of the priors. Future studies should incorporate a sensitivity analysis using
alternate priors or hyperpriors in the final model to ensure the results are not sensitive to
the prior specifications.

Another issue to be considered while modelling the spatial dynamics of COVID-19
is the spatial scale of analysis. Only 21% of the studies were conducted on a local spatial
scale. COVID-19 risk may be sensitive to spatial differences at a local, regional, or global
level. Since most of the studies used aggregated data, a local spatial scale analysis may
produce a markedly different result than the regional or global spatial scale and increase
the predictive accuracy and capacity.

Our review shows that many studies found that the aging population and higher
population density were the most influential factors in explaining the increased risk of
COVID-19. Different ethnicity or minority status, income, education, and vulnerability
index were also found to be associated with the risk of COVID-19. Among the climatic
factors: temperature, relative humidity, land surface temperature and wind speed were
commonly found to be associated with the spatial risk for COVID-19. These factors were
recognized as important risk factors and should be incorporated into the risk modelling of
COVID-19 in future.

Our review highlights the flexibility and prominence of different geospatial methods
in modelling the spatial risk of COVID-19 dynamics and understanding disease etiology.
Using these spatial methods and tools can enable a more detailed view of the etiology
of COVID-19 and allow faster and more reliable decision-making for the government or
public health officials. The findings of this review can point to a few recommendations
for researchers for improved practices and provide an opportunity for future application
and development of spatial methods for COVID-19 studies. Given the potential benefits
of Bayesian models to accommodate for the unreported or missing case data and missing
variables, common issues in the COVID-19 risk mapping, we recommend more studies
adopting this approach at the local spatial scale for improved predictive accuracy. Over
80% of the studies in our review used a short-term length of study period (1–6 months).
More studies using a longer temporal dataset to observe the long-term impacts, patterns
and trends of COVID-19 are also needed.

A major strength of our review was that compared to the previous reviews [23,24],
our review has qualitatively assessed the model structures, validation scheme, sampling
methods, and sensitivity testing of the Bayesian models. The findings from this review
show a positive trend in using spatial epidemiological tools by the scientific communities
to understand the spatial transmission mechanism of COVID-19. Our review suggests
that while the spatial and temporal analysis has been greatly applied, the quality of these
studies and the analytical approaches varied by study. Our review provides a blueprint
of existing work conducted in the field and reveals future research scope into advancing
and developing spatial methods for studying COVID-19. Compared to the earlier review
paper, this review also benefits from including a number of methodological limitations of
existing spatial studies that can hinder the ability to provide sound evidence to guide local
control efforts to reduce the burden of COVID-19. Finally, in the era of open data policy and
reproducible research, this review emphasizes the importance of reviewing, validating and
updating existing models to improve current research quality and the need for developing
novel methodological approaches. Finally, we have adopted an exhaustive search strategy
in accordance with the PRISMA guidelines, and therefore, we believe our review provided
a fair representation of COVID-19 risk mapping efforts.

Our review has a few limitations. It is acknowledged that despite the screening and
extraction of data by two independent reviewers separately, it is possible that we may have
excluded other papers relevant to our study objectives that may have provided valuable
contributions. Since our review considered only those studies that were published in
English, relevant articles published in other languages might also have been excluded. The
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included studies in our review adopted a diverse range of methodological approaches,
therefore, performing a meta-analysis is out of the scope of this review.

Finally, eradicating COVID-19 remains an ongoing challenge worldwide, and applying
robust modelling tools will continue to be an important priority in global COVID-19
control and elimination efforts. There is a need to develop effective tools and advancing
current technology in this field that can be useful for studying the spatial transmission of
diseases that can help prevention of similar pandemics in future. It may be mentioned
that there is an increasing number of detailed local data available to the researchers for
COVID-19. For example, self-reported or crowdsourced data have the potential to provide
real-time visualization of spatial clusters. The advancement of research efforts can include
focusing on improving the precision and reliability of COVID-19 Bayesian model fitting
using different types of neighborhood structures, proper and improper priors in spatial
random effects, temporal random effects, and different types of space-time interactions.
Studies on spatiotemporal analysis using point data could also provide strong evidence to
support policy decision-making. Further advancement of reliable and robust modelling of
COVID-19 will essentially depend on the acquisition and availability of good quality data
with finer spatial and temporal resolutions and by taking account of the uncertainties in
disease modelling.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijerph19148267/s1, File S1: Study Details and Methods; File S2:
Regression Data; File S3: Risk of Bias_JBI.

Author Contributions: N.N.: Conceptualization, Data curation, Methodology, Software, Formal
analysis, Writing-Original Draft, Writing-Review & Editing, Visualization. Z.A.B.: Conceptualization,
Supervision, Writing-Review & Editing. M.L.B.: Data Curation. W.-C.T.: Data Curation. H.S.: Data
Curation. J.L.: Conceptualization, Supervision, Writing-Review & Editing. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data generated or analysed during this study are included in this
published article and its Supplementary Information Files.

Acknowledgments: The authors are grateful to the University of Waterloo librarian Jackie Stapleton
for her extensive assistance in sourcing articles.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

BAS Bayesian Adaptive Sampling
BCV Bayesian cross-validation criterion
BPM Bayesian Purity Model
BYM Besag–York–Mollié model
CAR Conditional autoregressive
CRPS Continuous Ranked Probability Score
DIC Deviance Information Criterion
GIS Geographic information system
GLMM Generalized linear mixed models
GWR Geographically weighted regression
HPM Highest probability model
INLA Integrated nested Laplace approximations
IWLS Iterative Weighted Least Square
JBI Joanna Briggs Institute (JBI)
PRISMA Preferred reporting items for systematic review and meta-analysis

https://www.mdpi.com/article/10.3390/ijerph19148267/s1
https://www.mdpi.com/article/10.3390/ijerph19148267/s1


Int. J. Environ. Res. Public Health 2022, 19, 8267 19 of 28

MAPE Mean Absolute Percentage Error
MCMC Markov chain Monte Carlo
RMSE Root Mean Squared Error
RW Random Walk
SAM Spatial autoregressive model
WAIC Watanabe–Akaike Information Criterion

Appendix A

Appendix A.1. Search Strings

Search terms used in Embase, Medline, Scopus, and Web of Science.

Appendix A.2. Embase

1. sars-related coronavirus
2. (coronavirinae/ or betacoronavirus/ or coronavirus infection/) and (epidemic/ or

pandemic/)
3. (nCoV* or 2019nCoV or 19nCoV or COVID19* or COVID or SARS-COV-2 or SARSCOV-

2 or SARS-COV2 or SARSCOV2 or Severe Acute Respiratory Syndrome Coronavirus
2 or Severe Acute Respiratory Syndrome Corona Virus 2)

4. ((new or novel or “19” or “2019” or Wuhan or Hubei or China or Chinese) adj3
(coronavirus* or corona virus* or betacoronavirus* or CoV or HCoV))

5. ((coronavirus* or corona virus* or betacoronavirus*) adj3 (pandemic* or epidemic* or
outbreak* or crisis))

6. ((Wuhan or Hubei) adj5 pneumonia)
7. or/1-6
8. limit 7 to yr = ”2019 -Current”
9. (Space-time clustering

OR spati*regres*.mp
OR spat* temp* pattern*.mp OR
geography* distribut*.mp OR spat* temp*
distribut*.mp OR heterogen* distribut.mp OR
spacetime cluster*mp OR space-time cluster*mp
OR hotspot.mp Or hot spots. mp OR geographically weighted regression OR cluster analy-
sis OR spatial autocorrelation analysis OR GWR OR GIS OR geographic Information Systems)

10. 8 AND 9

Appendix A.3. Medline

1. (coronavirus/ or betacoronavirus/ or coronavirus infections/) and (disease out-
breaks/ or epidemics/ or pandemics/)

2. (nCoV* or 2019nCoV or 19nCoV or COVID19* or COVID or SARS-COV-2 or SARSCOV-
2 or SARSCOV2 or Severe Acute Respiratory Syndrome Coronavirus 2 or Severe Acute
Respiratory Syndrome Corona Virus 2)

3. ((new or novel or “19” or “2019” or Wuhan or Hubei or China or Chinese) adj3
(coronavirus* or corona virus* or betacoronavirus* or CoV or HCoV))

4. ((coronavirus* or corona virus* or betacoronavirus*) adj3 (pandemic* or epidemic* or
outbreak* or crisis))

5. ((Wuhan or Hubei) adj5 pneumonia)
6. or/1-5
7. limit 6 to yr = ”2019 -Current”
8. (Space-time clustering

OR spati*regres*.mp
OR spat* temp* pattern*.mp OR
geography* distribut*.mp OR spat* temp*
distribut*.mp OR heterogen* distribut.mp OR
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spacetime cluster*mp OR space-time cluster*mp
OR hotspot.mp Or hot spots. mp OR geographically weighted regression OR cluster analy-
sis OR spatial autocorrelation analysis OR GWR OR GIS OR geographic Information Systems)

9. 7 AND 8

Appendix A.4. Scopus

Keywords (coronavirus OR betacoronavirus OR “coronavirus infections”) AND (“dis-
ease outbreaks” OR epidemics OR pandemics) OR

Title abs key ncov* OR 2019ncov OR 19ncov OR covid19* OR covid OR sars-cov-2 OR
sars-cov2 OR sarscov-2 OR sarscov2 OR “Severe Acute Respiratory Syndrome Coronavirus
2” OR “Severe Acute Respiratory Syndrome Corona Virus 2” OR (new W/3 coronavirus*)
OR (new W/3 “corona virus*”) OR (new W/3 betacoronavirus*) OR (new W/3 cov) OR
(new W/3 hcov) OR (novel W/3 coronavirus*) OR (novel W/3 “corona virus*”) OR (novel
W/3 betacoronavirus*) OR (novel W/3 cov) OR (novel W/3 hcov) OR (19 W/3 coron-
avirus*) OR (19 W/3 “corona virus*”) OR (19 W/3 betacoronavirus*) OR (19 W/3 cov) OR
(19 W/3 hcov) OR (2019 W/3 coronavirus*) OR (2019 W/3 “corona virus*”) OR (2019 W/3
betacoronavirus*) OR (2019 W/3 cov) OR (2019 W/3 hcov) OR (wuhan W/3 coronavirus*)
OR (wuhan W/3 “corona virus*”) OR (wuhan W/3 betacoronavirus*) OR (wuhan W/3
cov) OR (wuhan W/3 hcov) OR (hubei W/3 coronavirus*) OR (hubei W/3 “corona virus*”)
OR (hubei W/3 betacoronavirus*) OR (hubei W/3 cov) OR (hubei W/3 hcov) OR (china
W/3 coronavirus*) OR (china W/3 “corona virus*”) OR (china W/3 betacoronavirus*) OR
(china W/3 cov) OR (china W/3 hcov) OR (chinese W/3 coronavirus*) OR (chinese W/3
“corona virus*”) OR (chinese W/3 betacoronavirus*) OR (chinese W/3 cov) OR (chinese
W/3 hcov) OR (coronavirus* W/3 outbreak*) OR (coronavirus* W/3 crisis) OR (“corona
virus*” W/3 pandemic*) OR (“corona virus*” W/3 epidemic*) OR (“corona virus*” W/3
outbreak*) OR (“corona virus*” W/3 crisis) OR (betacoronavirus* W/3 pandemic*) OR
(betacoronavirus* W/3 epidemic*) OR (betacoronavirus* W/3 outbreak*) OR (betacoron-
avirus* W/3 crisis) OR (wuhan W/5 pneumonia) OR (hubei W/5 pneumonia) AND (spat*
temp* pattern*) OR (geography* distribut*) OR (spat* temp* distribut*) OR (heterogen*
distribut*) OR (spacetime cluster*) OR (space-time cluster*) OR hotspot Or hot spots OR
(geographically weighted regression) OR (cluster analysis) OR (spatial autocorrelation
analysis) OR GWR OR GIS OR (geographic Information Systems) or (Spatial analysis)
OR (Spatiotemporal analysis) OR (Geographic Information System) OR (geographic Map-
ping) OR (geographic distribution) OR (spatial regression) OR (spatial autocorrelation) OR
(Spatiotemporal analysis) OR (clustering analysis) OR (spatiotemporal analysis).

Appendix A.5. Web of Science

“Wuhan coronavirus” OR “COVID19*” OR “COVID-19*” OR “COVID-2019*” OR
“coronavirus disease 2019” OR “SARS-CoV-2” OR “2019-nCoV” OR “2019 novel coron-
avirus” OR “severe acute respiratory syndrome coronavirus 2” OR “2019 novel coronavirus
infection” OR “coronavirus disease 2019” OR “coronavirus disease-19” OR “SARS-CoV-
2019” OR “SARS-CoV-19”.

Appendix A.6. AND

(Spatial cluster) OR
(Spatial hotspot)
(Spatiotemporal hotspot) OR
(Spatiotemporal cluster)
(Geographic Mapping) OR
(geographic distribution) OR
(spatial regression) OR
(spatial autocorrelation analysis) OR
(Spatiotemporal analysis) OR
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(hotspot) OR (geographically weighted regression) OR (Clustering analysis)
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