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Abstract
Cushing’s disease caused by pituitary corticotroph adenoma is a common endocrine dis-

ease in dogs. A characteristic biochemical feature of corticotroph adenomas is their relative

resistance to suppressive negative feedback by glucocorticoids. The abnormal expression

of 11beta-hydroxysteroid dehydrogenase (11HSD), which is a cortisol metabolic enzyme, is

found in human and murine corticotroph adenomas. Our recent studies demonstrated that

canine corticotroph adenomas also have abnormal expression of 11HSD. 11HSD has two

isoforms in dogs, 11HSD type1 (HSD11B1), which converts cortisone into active cortisol,

and 11HSD type2 (HSD11B2), which converts cortisol into inactive cortisone. It has been

suggested that glucocorticoid resistance in corticotroph tumors is related to the overexpres-

sion of HSD11B2. Therefore it was our aim to investigate the effects of carbenoxolone

(CBX), an 11HSD inhibitor, on the healthy dog’s pituitary-adrenal axis. Dogs were adminis-

tered 50 mg/kg of CBX twice each day for 15 days. During CBX administration, no adverse

effects were observed in any dogs. The plasma adrenocorticotropic hormone (ACTH), and

serum cortisol and cortisone concentrations were significantly lower at day 7 and 15 follow-

ing corticotropin releasing hormone stimulation. After completion of CBX administration, the

HSD11B1 mRNA expression was higher, and HSD11B2 mRNA expression was signifi-

cantly lower in the pituitaries. Moreover, proopiomelanocortin mRNA expression was lower,

and the ratio of ACTH-positive cells in the anterior pituitary was also significantly lower after

CBX treatment. In adrenal glands treated with CBX, HSD11B1 and HSD11B2 mRNA

expression were both lower compared to normal canine adrenal glands. The results of this

study suggested that CBX inhibits ACTH secretion from pituitary due to altered 11HSD

expressions, and is potentially useful for the treatment of canine Cushing’s disease.

Introduction
Corticotroph adenoma is the most common cause of canine Cushing’s disease, and the treat-
ment options for dogs with Cushing’s disease are pituitary resection by hypophysectomy,
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radiotherapy, and medical management [1–3]. In humans, the typical treatment of Cushing’s
disease is surgical resection of the pituitary tumor [4,5]. However, in veterinary medicine, the
most common treatment is medical management, whereby trilostane and mitotane are most
often used for the treatment [6,7]. These drugs can decrease circulating cortisol levels by inhib-
iting steroid synthesis (trilostane) or inducting adrenal gland necrosis (mitotane). The utiliza-
tion and efficacy of these drugs has been well documented [8–12]. However, there are no
reports that trilostane nor mitotane has curative effects on corticotroph adenoma. Moreover,
use of these drugs may lead to the development of Nelson’s syndrome, as a consequence of sup-
pressing cortisol negative feedback [13,14]. Our previous study found that pituitary size gradu-
ally enlarged and circulating adrenocorticotropic hormone concentrations increased via
inhibited cortisol secretion after trilostane treatment in healthy dogs [15].

Recently, new drugs such as pasireotide and cabergoline, which are targeted at decreasing
ACTH secretion from corticotroph tumors, have been studied for possible use in the manage-
ment of human Cushing’s disease [16–19]. However, there is little research to support the
direct targeting of canine corticotroph adenoma [20–22]. The candidates for the therapeutic
agent of canine Cushing’s disease such as retinoic acid, pasireotide, and gefitinib, which are
also targeted at decreasing ACTH secretion from corticotroph tumors. Retinoic acid and pasir-
eotide have been reported that decreasing circulating ACTH concentrations and tumors size
using dogs with Cushing’s disease [20,21].

Glucocorticoid resistance, which is a characteristic of corticotroph tumors, is partially
caused by abnormal expression of 11-beta hydroxysteroid dehydrogenase (11HSD) [23,24].
11HSD has two isoforms in humans, 11HSD type 1 (HSD11B1), which catalyzes the conver-
sion of cortisone into active cortisol, and 11HSD type 2 (HSD11B2), which catalyzes the con-
version of cortisol into inactive cortisone. Expression of both HSD11B1 and HSD11B2 have
been documented in healthy dogs [25], and abnormal HSD11B1 and HSD11B2 expression pat-
terns were found in canine corticotroph adenomas [26]. These findings are similar to those
found in human and murine corticotroph adenomas [23,24,27]. A previous study using murine
corticotroph tumor cells found that carbenoxolone (CBX), an 11HSD inhibitor, improved the
negative feedback effect of glucocorticoids and enhanced apoptosis under existing cortisol lev-
els [24]. However, the effect of CBX in dogs has not been studied. We aimed to investigate the
effect of CBX on the pituitary–adrenal axis in healthy dogs.

Materials and Methods

Animals
Thirteen healthy Beagles (ORIENTAL YEAST, Tokyo, Japan) were randomly assigned to a
control group or carbenoxolone administration group (CBX group). All dogs were male aged 1
to 3 years old (mean: 2.0 years old), and 8.9 to 12.4 kg body weight (mean: 10.2 kg). The control
group contained six dogs, with a mean age of 2.3 years and a mean weight of 10.1 kg. The CBX
group had seven dogs, with a mean age of 1.9 years and a mean weight of 10.5 kg. All dogs were
individually housed at the same laboratory animal unit in separate pens (1.1x0.9 m) in temper-
ature-controlled rooms with a 12-h light: 12-h dark cycle, with be provided small blanket and
free access to water and fed a commercial dry food twice a day (PROSTAGE Pork & Rice, Yea-
ster, Hyogo, Japan, 25.9% crude protein, 12.6% fat, 48.1% carbohydrates, 4.0% fiber). All dogs
were restricted to access outdoors, but could be outside of individual pens and interact with
dogs when animal care staffs clean up dogs’ pens twice daily during experimental period. Pro-
tocols for all experiments involving the use of dogs were approved by the Bioethics Committee
at Nippon Veterinary and Life Science University.
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CBX administration
In the CBX group, all dogs were administrated carbenoxolone disodium (LKT Laboratories, Inc.,
Saint Paul, MN, USA) capsuled orally twice a day with food. The dose given was 100mg/kg/day
CBX for 15 days. During the administration period, general conditions were monitored daily.

Blood sample collection and CRH-stimulation test
Blood samples were collected from the jugular vein and transferred to ice-chilled tubes contain-
ing EDTA and plain tubes. Plasma and serum were separated by centrifugation at 3000 rpm
for 15 min at 4°C and stored at −80°C until assayed.

The CRH-stimulation test was performed by collecting blood samples for measurement of
the ACTH concentration 0 and 15 min after intravenous administration of 1.5-μg ovine corti-
cotropin-releasing factor (Peptide Institute, Inc., Osaka, Japan) per kg body weight. Samples
were also collected for measurement of cortisol and cortisone concentration 0 and 30 min after
administration of corticotropin-releasing factor [26].

The CRH-stimulation test was performed before, after 7 days, and following completion of
CBX treatment. All CRH-stimulation tests were performed 4 h after the administration of the
morning dose of CBX.

Hormone determination
Plasma ACTH concentrations were measured by a solid-phase, 2-site chemiluminescent
enzyme immunometric assay (ImmuliteACTH; Diagnostic Products Corporation, Los Angeles,
CA, USA), as described previously [28]. The intra-assay coefficients of variation (CV) were
9.6% and 4.9% at ACTH levels of 5.3 and 221.8 pmol/l, respectively. The inter-assay CV were
8.8% and 5.1% at ACTH levels of 5.8 and 248.9 pmol/l, respectively.

Serum cortisol concentrations were measured by a competitive immunoassay (Immulite-
Cortisol; Diagnostic Products Corporation), as described previously [29]. The intra-assay CV
were 8.8% and 5.8% at cortisol levels of 74 and 524 nmol/l, respectively. The inter-assay CV
were 10.0% and 6.3% at cortisol levels of 74 and 524 nmol/l, respectively.

Serum cortisone concentrations were measured by a chemiluminescent immunoassay
(DetectX Cortisone; Arbor Assays LLC, Ann Arbor, MI, USA) in duplicate, as described previ-
ously [30]. The intra-assay CV were 5.7 and 7.9% at cortisone levels of 1.6 and 21.3 nmol/l,
respectively. The inter-assay CV were 11.1 and 10.0% at cortisone levels of 1.8 and 21.3 nmol/l,
respectively.

Tissue samples
Each dog was euthanized by an intravenous overdose of pentobarbital solution following the
final CRH-stimulation test. The pituitary and bilateral adrenal glands were carefully harvested
and weighed before fixing in 4% paraformaldehyde for histological examination, or storage at
−80°C for RNA extraction. Each pituitary was cut at the median sagittal plane and each adrenal
gland was cut twice transversely, midway between the indentation of the phrenicoabdominal
vein and each pole.

Histological examination
Samples for histological examination were dehydrated, embedded in paraffin, and sections
were cut at 4 μm. One section was stained with hematoxylin and eosin, and adjacent sections
were subjected to immunohistochemical staining by standard enzyme antibody techniques
using a monoclonal mouse antibody to synthetic ACTH1-39 (Dako Japan, Kyoto, Japan) [31].
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Pituitary morphometry
Pituitary morphometry was performed with Adobe Photoshop CS4 (Adobe Systems, San Jose,
CA, USA). For each dog, the area and numbers of ACTH-positive cells in the anterior pituitary
gland were measured. The anterior pituitary gland was divided equally into five regions
between the dorsal and ventral ends of the pituitary gland in the median section, and two fields
each were randomly selected from the five regions. The number of cells and the numbers of
ACTH-positive cells per field of the anterior pituitary gland were measured in ten fields at
400× magnification for each dog. The ratio of ACTH-positive cells was calculated.

RNA extraction and reverse transcription
Total RNA was extracted from pituitaries and adrenal glands in tubes containing 2-ml TRIzol
(Invitrogen Japan, Tokyo, Japan). The tissues were disrupted using a standard homogenizer.
For purification of total RNA, samples were treated with RNeasy Mini Kit (QIAGEN, Tokyo,
Japan). The RNA yield was quantified by measuring the optical density of a sample diluted to
1:20 at 260 and 280 nm. One μg of total RNA of pituitary and adrenal gland were then reverse
transcribed with the GoScript Reverse Transcriptase (Promega KK, Tokyo, Japan). Reverse
transcribed samples were diluted to 20 μl in DEPC treated water.

Real-time PCR
Real-time PCR analysis for HSD11B1, HSD11B2, and proopiomelanocortin (POMC), mRNAs
were performed using the Applied Biosystems 7500 Sequence Detections System (Applied Bio-
systems Japan, Tokyo, Japan). Each primer sequence is shown in Table 1 [22,32]. The PCR
reaction was performed with an end-volume of 20 μl. A master mix containing 0.5-μl reverse
transcribed RNA, 10-μl 2× Go Taq qPCR Master Mix, 0.4 μl (4 pmol/l) of forward and reverse
primers, and 8.7-μl DEPC-treated water per reaction was prepared. The PCR reaction was
divided into two stages: (1) 2 min at 95°C, and (2) 3 s at 95°C, and 30 s at 60°C. Stage 2 was
repeated 40 times. All samples were assayed in duplicate. The specificity and the size of the
PCR products were assessed by adding a melt curve at the end of the amplifications and a single
melting curve peak was observed. The relative quantitative analysis of each mRNA expression
was performed using the delta-delta Ct method using three genes (GAPDH, GUS, and RPS5)
as an internal control.

Statistical analysis
All results are presented as mean ± SD. Differences between control and CBX groups before
CBX administration were determined by two-sided Mann-Whitney’s U test. The changes in
plasma ACTH concentration, serum cortisol and cortisone concentrations, and cortisol-to-cor-
tisone levels were analyzed with two-way ANOVA followed by Tukey-Kramer’s post hoc tests.
The ratio and area of ACTH-positive cells in the anterior pituitary gland and the expression of
mRNA were compared by two-tailed Mann–Whitney U test. Statistical analyses were per-
formed using Excel 2010 (Microsoft, Redmond, WA, USA) with add-in software Statcel 3. Dif-
ferences were considered significant when P< 0.05.

Results

General condition
During CBX administration, adverse effects such as lethargy, anorexia, vomiting, and diarrhea
were not observed in any dogs. Results of complete blood counts and serum biochemical pro-
files were not different during CBX treatment (Appendix 1).
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ACTH, cortisol, cortisone concentrations, and cortisol-to-cortisone ratios
ACTH, cortisol, and cortisone concentrations and cortisol-to-cortisone ratios of both basal
and CRH-stimulated were not significantly different between control and the CBX groups at
day 0 (Table 2).

Basal plasma ACTH concentrations were not significantly altered throughout CBX adminis-
tration (Fig 1A). Following CRH stimulation, plasma ACTH concentrations at day 7 and 15
were significantly lower than those on day 0 (Fig 1A) (P< 0.05). Serum CRH-stimulated cortisol
and cortisone concentrations were significantly lower than those on day 0 (P< 0.01) (Fig 1B).
The cortisol-to-cortisone ratios during CBX administration were significantly higher than those
on day 0 (Fig 1B). One dog had gradually increasing CRH-stimulated ACTH concentrations,
but cortisol and cortisone levels during CBX administration were lower than those on day 0.

Pituitary HSD11B1, HSD11B2, and POMCmRNA expression
After 15 days of treatment with 100-mg/kg/day CBX, the relative HSD11B1 mRNA expression
in the CBX group (1.66 ± 0.35) was greater than that of control (P< 0.05) (Fig 2A). In contrast,

Table 1. Primer sequences using in this study.

Gene Sequence (5’!3’)

HSD11B1 For AAGGTCAATGTGTCGATCACTCTCT

Rev ATCCCAGAAACGGCCTTCAT

HSD11B2 For GGGTCAAGGTCAGCGTCATC

Rev CTCCCAATGTCCCACATTCC

POMC For GGCCTCTGTGGAAGTGAGTG

Rev ACGCCAGCAGGTTACTTTCC

GAPDH For GATGGGCGTGAACCATGAG

Rev TCATGAGGCCCTCCACGAT

GUS For CCTCCTGCCGTATTACCCTTG

Rev TCTGGACGAAGTAACCCTTGG

RPS5 For TCACTGGTGAGAACCCCCT

Rev CCTGATTCACACGGCGTAG

doi:10.1371/journal.pone.0135516.t001

Table 2. Comparison of ACTH, cortisol, and cortisone concentrations, and cortisol-to-cortisone ratio
before CBX treatment.

Control CBX

ACTH (pmol/l)

Basal concentration 4.8±1.8 4.3±1.4

CRH-stimulated concentration 27.9±2.5 28.8±2.3

Cortisol (nmol/l)

Basal concentration 128±35 131±39

CRH-stimulated concentration 275±30 269±36

Cortisone (nmol/l)

Basal concentration 29.1±5.4 28.5±4.9

CRH-stimulated concentration 39.3±3.1 38.8±2.0

Cortisol-to-cortisone ratio

Basal concentration 4.4±0.7 4.6±0.7

CRH-stimulated concentration 7.2±1.1 7.0±1.0

doi:10.1371/journal.pone.0135516.t002
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the HSD11B2 mRNA level in the CBX group (0.47 ± 0.07) was significantly lower than that of
the control group (P< 0.01). The POMCmRNA level in the CBX group (0.47 ± 0.07) was
lower than that of the control group (P< 0.01).

Adrenal HSD11B1 and HSD11B2 mRNA expression
The HSD11B1 mRNA expression in the CBX group (0.28 ± 0.18) was significantly lower than
that of the control group (P< 0.01) (Fig 2B). The HSD11B2 mRNA expression in the CBX
group (0.63 ± 0.10) was also significantly lower that of the control group (P< 0.05) (Fig 2B).

ACTH-positive cells in the anterior pituitary
After CBX administration, the ratio of ACTH-positive cells in the CBX group (13.7 ± 2.4%)
was significantly lower than that of the control group (22.3 ± 3.2%) (P< 0.01) (Fig 3A and 3B).
There was no significant change in ACTH-positive cells area between the CBX and control
groups.

Fig 1. Effects of a 100mg/kg bodyweight dose of CBX on plasma ACTH, serum cortisol and cortisone concentrations, and cortisol-to-cortisone
ratio at basal and after CRH- stimulation. (A) Each line represents one dog treated with carbenoxolone. Basal-plasma-ACTH concentrations are not
significantly changed during carbenoxolone administration. One dog had increased CRH-stimulated-plasma-ACTH concentrations. The CRH-stimulated-
plasma-ACTH concentrations at day 7 and 15 are significantly decreased compared with those of day 0. Error bar is S.D. * P < 0.05 vs day 0. (B) The CRH-
stimulated serum cortisol concentrations are gradually decreased. Basal and CRH-stimulated serum cortisone concentrations are decreased significantly
compared with those of day 0. The cortisol-to cortisone ratios during carbenoxolone administration are increased compared with day 0. The dashed line
indicates the basal concentrations, and the solid line indicates the CRH-stimulated concentrations. Error bars are S.D. †† P < 0.01 vs day 0 of basal
concentration, ‡P < 0.05 vs day 0 of CRH-stimulated concentration, and ‡‡ P < 0.01 vs day 0 of CRH-stimulated concentration.

doi:10.1371/journal.pone.0135516.g001
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Discussion
The effects of CBX on dogs have not previously been reported, aside from one study that exam-
ined its effects on canine gastric mucosal permeability and blood flow [32]. As a consequence,
there is no information on the effects of CBX on canine pituitary–adrenal axis or blood bio-
chemistry. In humans, there are some reports that prolonged CBX treatment for gastritis and
peptic ulcer can lead to pseudohyperaldosteronism [33]. In our study, neither hypokalemia,

Fig 2. The relative HSD11B1, HSD11B2, and POMCmRNA expressions after CBX treatment. (A) HSD11B1mRNA expression in pituitary glands
treated with carbenoxolone is greater than the control group, but HSD11B2 and POMCmRNA expressions are lower significantly. (B) The relative HSD11B1
and HSD11B2mRNA expressions in the adrenal gland. HSD11B1 and HSD11B2mRNA expressions of the CBX group are significantly lower than the
control group. The solid line indicates the average, and each circle represents a dog. * P < 0.05 vs control group. ** P < 0.01 vs control group.

doi:10.1371/journal.pone.0135516.g002
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hypernatremia, nor other apparent changes in blood chemistry were not observed in dogs
treated with CBX. During CBX administration, side effects such as lethargy, anorexia, vomit-
ing, and diarrhea were also not observed.

CBX, a synthetic analogue of glycyrrhetinic acid, is a potent 11HSD inhibitor, and it has
been reported that CBX is a more specific and potent HSD11B2 inhibitor than HSD11B1 in
human and rat [34]. However, some reports found that inhibiting HSD11B1 via CBX causes
glucose homeostasis problems and obesity [35–37]. Other studies have investigated the effects
of CBX on HSD11B2 [24,33]. In human study, it was reported that treatment for 7 days with
300 mg/day of CBX resulted in progressively lower plasma cortisol levels over the course of

Fig 3. Changes of ACTH-positive cells in the anterior pituitary after CBX treatment. (A) Immunohistochemistry for ACTH are performed in anterior
pituitary of control and treated with CBX dogs. Control staining is performed by the samemethod without a monoclonal mouse antibody to synthetic ACTH1-
39 (Dako Japan, Kyoto, Japan). Bars = 100 μm. (B) The comparison of ratio of ACTH-positive cell in anterior pituitary between control and treated with
carbenoxolone. The ratio of ACTH-positive cells is significantly lower in treated with carbenoxolone. The solid line indicates the average, and each circle
represents a dog. ** P < 0.01 vs control group.

doi:10.1371/journal.pone.0135516.g003
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treatment [34]. A study using db/db mice found that CBX dose-dependently decreased
HSD11B1 activity [35]. In humans, orally administered CBX was rapidly absorbed from the
gut and 80% was present in the plasma 2 h later. The half-life of CBX was found to be about 19
h [38]. However, there is no information about the oral administration nor metabolism of CBX
in dogs. Therefore, we decided to administer 100mg/kg/day CBX using as a reference the dos-
age of CBX in a previous murine study [35]. In dogs, secretion of ACTH is episodic and pulsa-
tile in nature, following a diurnal rhythm in healthy dogs and those with Cushing’s disease
[39,40]. In addition, many types of stress can stimulate ACTH secretion. Therefore, we exam-
ined secretory function of ACTH in the pituitary by determining plasma ACTH concentrations
after CRH-stimulation.

After initiation of CBX treatment, basal-plasma-ACTH concentrations were not signifi-
cantly different, but CRH-stimulated-ACTH concentrations were significantly decreased. One
of the seven dogs had gradually increasing CRH-stimulated ACTH levels, but cortisol and cor-
tisone decreased in line with other dogs. It is unclear why one dog had higher ACTH secretion,
but we hypothesize that the sensitivity of 11-HSD to CBX to is different in this dog compared
with others. In the CBX group, the ratio of cortisol-to-cortisone increased during treatment.
However, overall serum cortisol and cortisone concentrations decreased during CBX treat-
ment. These results suggest that CBX more potently inhibited HSD11B2 activity, because corti-
sone decreased more than cortisol.

After completion of treatment with CBX, HSD11B1 mRNA expression was greater than
that of the control group, whereas HSD11B2 mRNA expression was lower than that of the con-
trol group. These results are contrary to our previous results on the pattern of 11HSD mRNA
expression in canine corticotroph adenoma (HSD11B1 mRNA expression was lower and
HSD11B2 mRNA expression was higher than that of normal canine corticotroph cells) [26].
POMCmRNA expression in the CBX group was significantly lower than that of the control
group. This change is similar to the results of murine corticotroph tumor cells treated with
CBX [24]. Therefore, CBX had an inhibitory effect on ACTH secretion and POMC expression
in the presence of cortisol. Moreover, we found that the ratio of ACTH-positive cells in the
anterior pituitary significantly decreased after administration of CBX. In adrenal glands treated
with CBX, both of HSD11B1 and HSD11B2 mRNA expressions were lower than that of normal
adrenal glands. Therefore the pattern of HSD11B1 in adrenal glands treated with CBX was dif-
ferent from that in pituitaries. It cannot be determined from our study why the HSD11B1
mRNA expression in pituitary was increased, but it might be that the decreased feedback of
cortisol was responsible, or the sensitivity of CBX to HSD11B1 might be different among tis-
sues. To clarify these postulations, further studies are needed.

In conclusion, previously observed side effects, including pseudohyperaldosteronism, and
changes in blood chemistry were not observed during CBX administration in healthy dogs. Orally
administration of CBX induced not only decreases in ACTH and cortisol secretion, but also
ACTH-positive cell ratios in the anterior pituitary. These changes are probably caused by, in part,
the inhibition of HSD11B2. Glucocorticoid resistance in corticotroph tumors, which is the char-
acteristic of Cushing’s disease, partially results from intracellular inactivation of cortisol to corti-
sone by overexpression of HSD11B2 [23,24]. Therefore, our findings suggest that CBXmay have
a beneficial effect of decreasing HSD11B2 expression and ACTH secretion in canine pituitary.

Supporting Information
S1 Table. Changes in blood tests and blood chemistry during carbenoxolone treatment. All
parameters are not changed significantly during CBX administration.
(PDF)
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