
BioMed CentralBMC Bioinformatics

ss
Open AcceResearch article
In silico panning for a non-competitive peptide inhibitor
Yukiko Yagi1, Kotaro Terada2, Takahisa Noma1, Kazunori Ikebukuro*1 and 
Koji Sode1

Address: 1Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-13 Naka-machi, Koganei, Tokyo, Japan and 
2Product Development Dept, Medical & Biological Laboratories Co., 3-5-10 Marunouchi, Nakaku, Nagoya, Japan

Email: Yukiko Yagi - yagimay@hotmail.com; Kotaro Terada - kterada88@hotmail.com; Takahisa Noma - nomat@cc.tuat.ac.jp; 
Kazunori Ikebukuro* - ikebu@cc.tuat.ac.jp; Koji Sode - sode@cc.tuat.ac.jp

* Corresponding author    

Abstract
Background: Peptide ligands have tremendous therapeutic potential as efficacious drugs.
Currently, more than 40 peptides are available in the market for a drug. However, since costly and
time-consuming synthesis procedures represent a problem for high-throughput screening, novel
procedures to reduce the time and labor involved in screening peptide ligands are required. We
propose the novel approach of 'in silico panning' which consists of a two-stage screening, involving
affinity selection by docking simulation and evolution of the peptide ligand using genetic algorithms
(GAs). In silico panning was successfully applied to the selection of peptide inhibitor for water-
soluble quinoprotein glucose dehydrogenase (PQQGDH).

Results: The evolution of peptide ligands for a target enzyme was achieved by combining a docking
simulation with evolution of the peptide ligand using genetic algorithms (GAs), which mimic
Darwinian evolution. Designation of the target area as next to the substrate-binding site of the
enzyme in the docking simulation enabled the selection of a non-competitive inhibitor. In all, four
rounds of selection were carried out on the computer; the distribution of the docking energy
decreased gradually for each generation and improvements in the docking energy were observed
over the four rounds of selection. One of the top three selected peptides with the lowest docking
energy, 'SERG' showed an inhibitory effect with Ki value of 20 µM. PQQGDH activity, in terms of
the Vmax value, was 3-fold lower than that of the wild-type enzyme in the presence of this peptide.
The mechanism of the SERG blockage of the enzyme was identified as non-competitive inhibition.
We confirmed the specific binding of the peptide, and its equilibrium dissociation constant (KD)
value was calculated as 60 µM by surface plasmon resonance (SPR) analysis.

Conclusion: We demonstrate an effective methodology of in silico panning for the selection of a
non-competitive peptide inhibitor from small virtual peptide library. This study is the first to
demonstrate the usefulness of in silico evolution using experimental data. Our study highlights the
usefulness of this strategy for structure-based screening of enzyme inhibitors.
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Background
According to market research, the potential of peptide
therapeutics has recently intensified [1-3]. Worldwide,
there are more than 40 marketed peptides, with about 270
peptides in clinical phase testing, and about 400 peptides
in advanced preclinical phases [1]. Natural peptides, such
as insulin, vancomycin, oxytocin, and cyclosporine, and
synthetically produced peptides, such as Fuzeon (enfuvir-
tide) and Integrilin (eptifibatide), are among the
approved peptide-based drugs. Compared to low-molecu-
lar-mass chemical drugs, peptide drugs offer several
advantages, such as high specificity, minimization of
drug-drug interactions, lower accumulation in tissues,
lower toxicity, and biological diversity. However, peptides
also have some disadvantages, which include low oral
bioavailability, lower stability, higher risk of immuno-
genic effects, difficulties associated with delivery due to
rapid clearance from the body, and costly synthesis.
Recently, several novel and interesting approaches to
deliver protein-based drugs through the skin have been
reported [4]. Since peptides require costly synthesis, high-
throughput screening (HTS) of numerous peptides from
combinatorial libraries is inefficient. Therefore, novel pro-
cedures that require less effort for the screening of peptide
ligands are required. From this point of view, structure-
based computational drug design is an effective method-
ology. Recent advances in protein structure determina-
tion, achieved either through X-ray crystallography or
NMR, are providing informative data related to the design
of useful drugs based on these proteins. The identification
of the binding sites on these newly determined protein
structures have led to the development of a variety of
docking strategies. There are numerous reports of drug
discovery from small molecule ligand libraries [5,6],
although it is difficult to calculate the docking energies of
all the peptide sequence patterns, as they show enormous
diversity. Therefore, we focused on the use the genetic
algorithms (GAs) to reduce the redundancy of the selec-
tion procedure.

GAs represent a class of algorithms that mimic some of
the major characteristics of Darwinian evolution [7,8].
GAs are based on the process of genetic evolution
observed in biological systems, in which three successive
operations, selection, crossover, and mutation, are per-
formed on a set of strings. GAs provide an effective means
of exploring the conformational space of flexible mole-
cules. GAs also provide an effective approach to protein
folding [9], identification of the biomolecular conforma-
tion space [10], docking methodology [11,12], optimiza-
tion of lead compounds [8,13], chemical evolution of
combinatorial chemistry [14], and identification of recep-
tor-ligand binding sites [15].

We have previously reported the application of GAs to
select a peptide inhibitor [16], an α-helix-forming peptide
[17], and a DNA aptamer with higher-order structure [18-
20]. From the result of those studies, it is clear that GAs are
useful for the efficient selection of molecules that have a
desired property or function, since we can reduce the
number of rounds of evaluation. In the present study, we
have focused on the application of GAs for effective pep-
tide ligand selection from a docking simulation. Belda et
al. [21] have also reported a combination of computa-
tional docking and combinatorial experimental screening
but have not provided experimental data. We propose an
effective approach to derive peptide ligands, which we call
'in silico panning'. By combining the docking study and
GAs, we are able to identify promising peptide ligands
from a small virtual peptide library with less effort (Figure
1).

To demonstrate in silico panning, we chose the water-sol-
uble quinoprotein glucose dehydrogenase (PQQGDH)
from Acinetobacter calcoaceticus as the target protein.
Mainly due to its high catalytic activity and non-depend-
ence on oxygen as an electron acceptor, PQQGDH has
replace glucose oxidase (GOD) as the major enzyme used
in glucose sensor systems [22]. The only aspects in which
PQQGDH is inferior to GOD are substrate specificity and
operational stability. PQQGDH shows high activity not
only for glucose, but also for disaccharides, such as lactose
and maltose, as substrates. Improvements in substrate
specificity are expected to lead to the development of
more-sensitive glucose sensors. Therefore, PQQGDH
engineering has been carried out in our research group
[22,23]. We have already reported mutants of PQQGDH
(Glu277Lys, Asn452Thr, Asp167Glu, and Asp167Glu/
Asn452Thr) that show improved substrate specificities
[24,25].

We have also been proposing quaternary structure engi-
neering of proteins, which is the control of protein func-
tion using an artificial subunit. In nature, several enzymes
are composed of subunits that form an active quaternary
structure, which endows a higher order of function. The
strategy of quaternary structure engineering is to mimic
the native enzyme using a peptide ligand as an artificial
subunit with a novel function. From a phage display pep-
tide library, we previously identified a peptide with seven
amino acids (Thr-Thr-Ala-Thr-Glu-Tyr-Ser) that narrowed
the substrate specificity of PQQGDH without significant
loss of enzyme activity [26]. In the present study, in silico
peptide evolution was performed to investigate a new
methodology for protein modification. Our ultimate
objective is the selection of a non-competitive peptide lig-
and that does not interrupt glucose binding but inhibits
the interaction between disaccharides, such as maltose
and lactose. The disaccharides appear to access a large
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pocket structure next to the catalytic site of PQQGDH,
which comprises Arg148, Arg406, Arg408, Arg45, and
Lys28 (Figure 2). We defined this large pocket as the dock-
ing field. From size of this pocket, tetra peptide was
designed to be the most suitable size as initial tetra pep-
tide library. Then, the peptide ligand was selected through
a combination of the docking simulation and GAs on the
basis of binding indicators.

We chose the Molecular Operating Environment of dock-
ing (MOE-Dock) system with simulated annealing
method as a starter system [27,28]. Simulated annealing is
a global optimization technique that is based of the
Monte Carlo method. It explores various states of a con-
figuration space by generating small random changes in
the current state and then accepting or rejecting each new
state according to the Metropolis criterion [29].

Results
Docking energy transition in combination with in silico 
evolution
One of the key steps in docking is how to define the user-
specified three-dimensional docking box (3D docking
box). To select the non-competitive peptide ligand, we
designated the large pocket next to the glucose-binding
site (Figure 2). Then the peptide ligand was selected by in
silico panning; a combination of the docking simulation
and GAs on the basis of binding indicators. In all, four
rounds of selection were carried out from the beginning of
ten virtual peptide library on the computer. The docking
energy (fitness) results for each selection round are listed
in Table 1. In MOE-Dock, electrostatic energies and Van
der Waals energies between the target and ligand are cal-
culated by simulated annealing. The docking energy val-
ues were calculated as the sum of the electrostatic, Van der

A schematic diagram of the in silico peptide evolution systemFigure 1
A schematic diagram of the in silico peptide evolution system. The docking calculation program and genetic algorithms 
(GAs) were combined to evolve the peptide ligand on the computer. For the docking program, we used the MOE-Dock soft-
ware, which is based on the simulated annealing method. GAs were used to evolve the peptide to produce the next genera-
tion. Four rounds of peptide evolution were performed in this study.
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Waals energies and the flexibility of the ligand itself. Low
docking energy indicates high binding ability. The distri-
butions of the docking energies in each generation are
illustrated in Figure 3; each docking energy decreased
gradually as peptide evolution progressed. After 4th round
of peptide evolution, the docking energies of most of the
peptides were lower than those in the 1st–3rd round. Pep-
tide evolution and the direction of the selection pro-
ceeded successfully using the GA.

Homologies of highly ranked peptide ligands from the 
docking simulation
In comparisons of the homologies of high-scoring pep-
tides, the sequences appeared to converge (Table 2). The
peptide homologies converged almost completely after
the 4th round of peptide evolution. A negatively charged
residue was revealed at the third position with a probabil-

ity of 80%. Furthermore, 60% of the peptides contained
positively charged residues at the fourth position. On the
other hand, lysine residues did not appear at the fourth
position during the four rounds of selection due to deflec-
tion of evolution. For this reason, we designed additional
peptides, and re-calculated their docking energies. Finally,
the top three peptides and negative controls were synthe-
sized for further analysis. Figure 4 displays an image of
PQQGDH interacting with peptide GEKD, which was
derived by MOE-Dock.

Effects of synthetic peptide ligands on PQQGDH activity
As shown in Figure 5A, 20 µM of peptide SERG showed
the strongest inhibitory effect on the target enzyme. The
same concentration of GEKD or GERD also showed
higher inhibition than the control peptide DDDD. The
velocity at maximal concentrations of substrate(Vmax)

Defining a docking box next to the glucose-binding siteFigure 2
Defining a docking box next to the glucose-binding site. The 3D structure of water-soluble quinoprotein glucose dehy-
drogenase from Acinetobacter calcoaceticus (PQQGDH: PDB entry code 1CQ1) is shown in gray. PQQ and glucose are repre-
sented in yellow and green, respectively. The large pocket next to the glucose-binding site of PQQGDH comprises Arg148, 
Arg406, Arg408, Arg45 (red) and Lys28 (orange). The docking box was set as the target area for this pocket. The docking box 
is shown as a yellow rectangular solid. The size of the docking box was fixed as a 37 Å
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The distribution of docking energies in each generationFigure 3
The distribution of docking energies in each generation. The ranks of the peptide ligands in each generation are shown 
on the X- and Y-axes. The Z-axis shows the docking energies, which were calculated as follows: docking total energy = elec-
trostatic energies + Van der Waals energies + the energy of the (flexible) ligand. Low docking energy means high binding ability 
of the ligand.

Table 1: The docking energy of peptides in each generation

1round Docking energy 
(kcal/mol)

2round Docking energy 
(kcal/mol)

3round Docking energy
 (kcal/mol)

4round Docking energy 
(kcal/mol

No.1 GDGD -99 No.1 SERG -114 No.1 GDRD -110 No.1 GERD -115
No.2 GEPR -90 No.2 GDPR -113 No.2 GDRG -103 No.2 DSRD -114
No.3 PSRG -76 No.3 GEGD -83 No.3 GEGG -85 No.3 SDRG -109
No.4 DGDG -76 No.4 RGDG -68 No.4 RGDD -73 No.4 GEDG -99
No.5 DDGR -71 No.5 DDRG -59 No.5 DEGD -64 No.5 GGGG -98
No.6 SDEE -40 No.6 DDDR -58 No.6 DDDG -59 No.6 GDGG -94
No.7 DDDD 22 No.7 DDGD -57 No.7 DDPR -46 No.7 GSRD -87
No.8 RDKP 52 No.8 PSGR -53 No.8 KEPR -17 No.8 DEGG -79
No.9 ERKS 88 No.9 PSEE -10 No.9 GKRR 785 No.9 GDPG -71
No.10 SREK 529 No.10 EERD 160 No.10 SERR 50397 No.10 GEDP -41

Each peptide sequence and docking energy of 1–4th generation was summarized.
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value of SERG (473 U/mg) was 3-fold lower then that of
the wild-type enzyme (1272 U/mg), while the affinity of
the enzyme for the substrate (Km) values were the same
(wild-type, 33.2 mM; SERG, 31.2 mM). GEKD and GERD
gave only slight inhibition of the target, with Vmax values
of 962 U/mg and 849 U/mg, respectively. Based on the
results of the Lineweaver-Burk plot (Figure 5B), SERG was
deemed to show non-competitive inhibition of the sub-
strate. Non-competitive inhibitors do not affect the com-
bination of the substrate with the enzyme, but it does
affect the velocity. In a pure non-competitive system, the
substrate has an identical affinity for both the Enzyme(E)-
Inhibitor(I) complex and enzyme. Unlike the Enzyme(E)-
Substrate(S) complex, the E-I-S complex cannot convert
the substrate to product. Therefore, the Km value is
unchanged while Vmax is lowered. The data show that
SERG decreases the rate constant for product formation,
while Km shows a constant value. It follows that SERG is
not a glucose competitor. On the other hand, GERD and
GEKD showed 'mixed-type inhibition' (data not shown).
The peptide SERG showed dose-dependent inhibition
(Figure 5C) and its enzyme inhibition constant(Ki) value
was calculated as 20 µM from the Dixon plot (Table 3). All
of the Ki values were calculated using the KaleidaGraph
software (Synergy Software, Boston, MA, USA). Although
the selected peptides showed potent inhibition, they did
not show significantly decreased substrate specificities for
disaccharides (data not shown).

Binding parameters of selected peptides by surface 
plasmon resonance (SPR)
During the SPR experiments, the binding assay for the
biotinylated peptides (GEKD and SERG) and PQQGDH
was processed by the BIAcoreX instrument (BIAcore AB,
Uppsala, Sweden). The equilibrium dissociation constant
(KD) value used to evaluate the enzyme-peptide binding

affinity was determined by Scatchard plot (Table 3). For
each trial, the signal was corrected for the control surface
response. We were able to confirm peptide binding to the
enzyme, and the KD values of peptides GEKD and SERG
were calculated as 155 µM and 60 µM, respectively.

Discussion
In this paper, we introduce the idea of in silico panning,
which is a novel strategy to select peptide inhibitors by
combining a docking simulation and GA. Setting the
docking field next to the substrate binding site, we were

Peptide GEKD docked in PQQGDHFigure 4
Peptide GEKD docked in PQQGDH. GDH, PQQ, and 
glucose are represented in purple, green, and pink, respec-
tively. The GEKD peptide is displayed in red. The docking 
box is shown as a yellow rectangular solid.

Table 2: Homologies of selected peptide sequences

4thround peptides Additional round peptides Synthesized peptides
Rank Peptide sequence Docking energy 

(kcal/mol)
Rank Peptide sequence Docking energy 

(kcal/mol)
Rank Peptide sequence Docking energy 

(kcal/mol)

1 GERD -115 1 GEKD -149 1 GEKD -149
2 SERG -114 2 SEKD - 88 2 GERD -115
3 DSRD -114 3 GDKD - 87 3 SERG -114
4 GDPR -113 4 DSKD - 75 38 DDDD 22
5 GDRD -110 5 GEKE - 22
6 SDRG -109
7 GDRG -103
8 GDGD -99
9 GEDG -99
10 GGGG -98

The homologies of selected peptides ranked in the top 10 after the 4th round of evolution were listed to the left. Additional peptides that contained 
a lysine (K) residue at the third position were also listed on the middle. The final rank and the synthetic peptide sequences were shown on the right. 
The DDDD peptide was used as a negative control.
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PQQGDH activity for glucose in the presence of individual peptidesFigure 5
PQQGDH activity for glucose in the presence of individual peptides. (A) The PQQGDH activities were measured in 
the presence of the synthetic peptides. The enzymatic activities for glucose are shown in the SV plot. The enzyme assay was 
performed with 0.57 nM PQQGDH and 20 µM of each peptide. The samples contained the following: no peptide, (● ); GEKD, 
(❍ ); GERD, (�); SERG, (■ ); DDDD, (×). (B) Linewaver-Burk plot of PQQGDH activities in the presence of 0 µM SERG (● ), 2 
µM SERG (�), 10 µM SERG (❍ ), and 20 µM SERG (■ ). All of the correlation coefficients (R2) were > 0.98. The X-axis shows 
the reciprocal values of the glucose concentration, and the Y-axis indicates the reciprocal values of the kinase activity. (C) 
PQQGDH activities of the wild-type (● ), with 0.2 µM peptide (×), with 1 µM peptide (�), with 2 µM peptide (�), with 20 µM 
peptide (■ ) were plotted against different glucose concentrations. The SERG peptide was used in the concentration range of 
0.2–20 µM.

Table 3: Inhibition and binding constants of peptides

Peptide sequence Docking energy (kcal/mol) Ki I(nhibition constant) KD (Binding constant)

GEKD -149 50 µM 155 µM
GERD -115 40 µM -
SERG -114 20 µM 60 µM

DDDD 22 > 100 µM -

The Ki values were derived from the Dixon plot. The KD values were determined from the Scatchard plot.
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able to obtain a non-competitive peptide inhibitor from a
small virtual peptide library. In this study, the non-com-
petitive peptide inhibitor was successfully and with less
effort selected from a small virtual peptide library using in
silico panning. This methodology can be used to screen an
allosteric binding peptide inhibitor at an early stage.

Information derived from X-ray crystallography, NMR
spectroscopy, and homology modelling greatly facilitates
the rational design of selective and potent inhibitors. In
addition, rapid identification of lead molecules and opti-
mization of inhibitors are facilitated by large combinato-
rial libraries and high-throughput screening. However,
successful virtual screening of chemical libraries in the
drug discovery process requires a sufficiently large and
chemically diverse library of compounds. In addition, the
selection of promising peptide inhibitors from such large
libraries involves significant cost and effort [1]. Therefore,
we focused on the use of the GAs to reduce redundancy
during the selection procedure.

In in silico panning, all of the selection processes are car-
ried out by the computer. First, we calculate the affinity of
the peptide ligand from docking simulation, and then
evolve the sequence by GA, which mimic Darwinian evo-
lution. In the present study, the initial group involved ten
virtual tetrapeptides designed randomly from seven dif-
ferent amino acid residues (Arg, Lys, Asp, Glu, Ser, Pro,
and Gly). The Arg, Lys, Asp, Glu, and Ser residues were
mainly chosen to form the electrostatic and hydrogen
interaction. In addition, hydrophobic Pro residues were
appeared frequently in a phage display peptide library in
a previous study [26], so we chose this residue. Gly was
chosen to increase the flexibility of the ligand. The large
pocket next to the glucose binding site of PQQGDH is
mainly composed of hydrophilic residues, including
Arg148, Arg406, Arg408, Arg45, and Lys28. In this study,
to simplify the experimental method and concentrate on
the hydrophilic interactions, we chose mainly hydrophilic
residues for designing the initial peptide library. In the
near future, a more complex library, containing several
hydrophobic residues, will be used. Totally, four rounds
of selection were carried out, and 45 types of tetrapeptide
encompassing seven different amino acid residues were
evolved by the computer. Since this covered only 18.7%
of the 2401 possible tetrapeptide combinations, we con-
clude that the peptide ligands were efficiently selected
from this small library by in silico panning. This is the first
study to demonstrate the usefulness of in silico evolution
using experimental data.

We have reported previously the identification from a
phage display peptide library of a 7-mer peptide that
causes PQQGDH substrate specificity towards disaccha-
rides to decrease significantly [26]. We expected that some

of the evolved tetrapeptides would improve the substrate
specificity of PQQGDH. Although we were not able to
obtain a peptide that improved substrate specificity, we
obtained a non-competitive peptide inhibitor of the target
protein. The selected peptide inhibits the enzyme activity
not only for glucose, but also for disaccharides (data not
shown). Thus, the substrate specificity does not change in
the presence of the peptide ligand. To overcome these
problems, we have to select peptide ligands that bind to
the target pocket without inhibiting glucose binding. It is
possible to calculate the binding of glucose or disaccha-
rides to target area after derivation of a candidate peptide
using the docking simulation. Thus, we may be able to
choose a ligand that decreases only the reactivities for dis-
accharides.

In this study, we present a valuable method for the selec-
tion of a non-competitive peptide inhibitor. For target
enzyme that are highly homologous, particularly at the
catalytic site, target-specific inhibition is possible through
the use of an allosteric or non-competitive inhibitor,
which does not bind to the catalytic site but has inhibitory
activity. Thus, a non-competitive inhibitor sometimes
became a specific inhibitor for protein having high
homogeny [30]. Although an RNA aptamer and peptide
inhibitor with non-competitive and specific inhibitory
activities have been selected from a pooled random
sequence library [30,31], a method that allows one to
choose a non-competitive inhibitor de novo is more effi-
cient. In our study, by setting the enzyme pocket, which
appears to be an allosteric binding site, as the docking
area, the non-competitive peptide inhibitor was obtained
as expected. The top three selected peptides that were
evolved by binding index in the docking study showed
much greater inhibition compared to the negative control,
DDDD. The most effective peptide, SERG showed potent
inhibition with a Ki value of 20 µM and KD value of 60 µM.
In MOE-Dock, the docking energies were calculated as the
sum of three energies, electrostatic energies, van der Waals
energies and energy of the (flexible) ligand. Analysis of
the individual components of the calculated binding
energies (Table 4) shows that the top three peptides have
lower electrostatic energies and energies of flexibility than
the negative control peptide DDDD. All of the ten pep-
tides that were expected to have high affinity also showed
low electrostatic energies and energy of flexibility (data
not shown). We initially expected that the peptide DDDD
might show high affinity since the pocket next to the glu-
cose-binding site in PQQGDH contains five positively
charged residues. However, the docking energy of DDDD
was ranked 38th in the docking study (Table 1). The pep-
tide DDDD showed weak electrostatic interaction with
PQQGDH due to the low flexibility that comes from the
intramolecular ionic repulsion (Table 4). In fact, the pep-
tide DDDD did not show remarkable inhibitory effect,
Page 8 of 11
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:11 http://www.biomedcentral.com/1471-2105/8/11
suggesting that flexibility of a peptide inhibitor may play
an important role in the interaction with the target mole-
cule.

In future studies, the use of longer sequences that form
higher-order structures will generate more specific peptide
inhibitors from in silico panning. This method has strong
potential to become a useful tool for structure-based non-
competitive inhibitor screening.

Conclusion
We have demonstrated the potential of in silico panning
for selecting non-competitive peptide inhibitors in a more
efficient manner. By choosing a target region next to cata-
lytic site in the docking study and then evolving the pep-
tide ligand on the basis of binding indicators, we
succeeded in obtaining a non-competitive peptide inhibi-
tor. The most effective peptide showed potent inhibition
with a Ki value of 20 µM and KD value of 60 µM. Our in
silico panning approach should become a useful tool for
screening structure-based enzyme inhibitors. This meth-
odology has excellent potential for the screening of non-
competitive peptide ligands for allosteric binding sites of
an enzyme in the early stages.

Methods
Chemicals and reagents
Glucose, phenazine methosulfate (PMS), 2,6-dichloroph-
enolindophenol (DCIP), EDTA, and calcium chlorite
were obtained from Kanto Kagaku (Tokyo, Japan), 3-(N-
morpholino) propane sulfonate (MOPS) was from Dojin
(Kumamoto, Japan), and pyrroloquinoline quinone was
from Mitsubishi Gas Chemical Company (Tokyo, Japan).
The sensor chip SA was from BIAcore AB (Uppsala, Swe-
den). All other regents were of analytical grade. The
Molecular Operating Environment (MOE) was obtained
from the Chemical Computing Group (Quebec, Canada).

Design of the initial peptide library
Ten tetrapeptides encompassing seven different amino
acid residues were identified in the first generation. The
large pocket next to the catalytic site of PQQGDH, which

is mainly composed of the conserved residues of Arg148,
Arg406, Arg408, Arg45, and Lys28, was designated as the
docking field. Arg, Lys, Asp, Glu, and Ser residues were
chosen to form electrostatic and hydrogen interactions
with the residues in the large pocket. The hydrophobic
amino acid proline appeared frequently in the phage dis-
play peptide library examined in a previous study [26], so
we also chose this residue. Gly was added to increase the
flexibility of the ligand.

Calculation of docking energies of peptide ligands for the 
enzyme catalytic site
The Molecular Operating Environment of docking (MOE-
Dock; [27,28]) was used to calculate the docking energies
between peptide ligands and enzyme catalytic site. MOE-
Dock is used to search for favorable binding configura-
tions between a small ligand and a macromolecular tar-
get. The peptides were drawn by the MOE software and
stored in the database.

The PDB structure of GDH (PDB entry code 1CQ1) and
stored peptide were imported at the start of the docking
program. Since not all X-ray crystallographic files contain
hydrogen atoms, we added them to the protein using the
MOE modelling suite before carrying out the docking
studies. Minimizing contacts for hydrogen, the structures
were subjected to an AMBER94 energy minimization pro-
tocol. The docking energy calculation was carried out
within a user-specified three-dimensional docking box
(3D docking box) using the simulated annealing method
under the MMFF94 force field. The energy grids for dock-
ing were generated as grid-based potential fields by the
MOE-Dock program, to reduce the calculation time.

We selected the large pocket next to the catalytic site of
PQQGDH, which includes Arg148, Arg406, Arg408,
Arg45, and Lys28, as the target area in the 3D docking box.
After importing the peptide to the 3D docking box, we ini-
tiated the calculation of docking energies. Each docking
energy value was calculated as the sum value of the elec-
trostatic, Van der Waals, and flexibility energies. The inter-
action energy was calculated using the electrostatic and

Table 4: The docking energy detail of peptides

Peptide sequence U-ele (kcal/mol) U-vdw (kcal/mol) U-int (kcal/mol) Docking energy (kcal/mol)

GEKD - 76 - 10 - 61 -149
GERD - 56 - 10 - 50 -115
SERG - 62 - 9 - 44 -114

DDDD 34 - 16 3 22

U-ele = Electrostatic energies between target and ligand
U-vdw = Van der Waals energies
U-int = energy of the (flexible) ligand
The docking energy was calculated for the sum of three energy, electrostatic energies, van der Waals energies and energy of the (flexible) ligand. 
Each energy listed in the table was rounded off to the whole number.
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Van der Waals potential fields sampled on a grid overlay-
ing the 3D docking box. The 3D docking box was interpo-
lated at the atom positions by tri-linear interpolation. The
Van der Waals parameters were taken from the currently
active force field. The electrostatic field was calculated in
the Coulombic manner using the current dielectric. MOE-
Dock performed 25 independent docking runs, and wrote
the resulting conformations and their energies to a molec-
ular database file. The lowest docking energy conforma-
tion for each peptide was chosen for GA evolution. All of
the docking simulations were carried out on a personal
computer.

Evolution of peptide ligands using GA
After calculation of the docking energies of the initial ten
peptides (described in the Methods section), the peptides
were evolved by GA, to produce the next generation. First,
each of the ten peptides was ranked according to its calcu-
lated docking energy, and then the top seven peptides
were remained for evolution by GA. The GA program then
duplicated the top three sequences and formed a pair with
the remaining (4th–7th) peptides. Then ten peptides were
recombined into the sequence. Finally, a 10–20% muta-
tion factor was introduced to increase sequence variety in
the next generation. Each process from docking to GA evo-
lution was repeated for four rounds.

Characterization of peptide effects on PQQGDH activity
The three peptides with the lowest docking energies,
GEKD, GERD, and SERG, and the control peptide DDDD
were synthesized by Qiagen (Chatsworth, CA, USA). The
PDB file of PQQGDH is a monomer and does not contain
Ca2+. In general, purified PQQGDH is a mixture of an
apo- and holo-type enzyme. Therefore, we dialyzed the
enzyme against 100 mM EDTA and 10 mM MOPS-NaOH
buffer for 2 days, to remove the Ca2+ ions. Each synthe-
sized peptide was prepared at concentrations of 0.2, 1, 2,
10, and 20 µM. The prepared peptides and 0.57 nM of
apo-PQQGDH were incubated in 10 mM MOPS-NaOH
buffer (pH 7.0) for 10 min at room temperature.
PQQGDH activity was measured using 0.6 mM PMS and
0.06 mM DCIP. Decreased in the absorbance of DCIP at
600 nm at various concentrations of glucose were moni-
tored, and the kinetic parameters of PQQGDH were as
described previously [26]. The kinetic parameters and Ki
values were calculated using the KaleidaGraph software.

Surface plasmon resonance (SPR) data analysis
The GEKD and SERG peptides, which showed inhibitory
effects on GDH, were synthesized with a biotin modifica-
tion (Qiagen).

The binding features of the peptide ligand to PQQGDH
have been studied using SPR technology based on the
BIAcoreX instrument (BIAcore). The biotinylated GEKD

and SERG peptides were immobilized onto the Biacore SA
sensor chip using the streptavidin-biotin interaction, and
120 µg/ml of each peptide in 100 mM NaCl, 10 mM phos-
phate buffer (pH 7.0) was applied a flow rate of 5 µl/min
for 16 min. The resonance signals of peptides GEKD and
SERG reached 273 and 300 resonance units (RUs).
PQQGDH for use as an analyte was prepared at concen-
trations of 446 µg/ml, 223 µg/ml, 89 µg/ml, and 47 µg/ml
in 10 mM MOPS-NaOH buffer (pH 7.0). Analytes were
injected into the immobilized peptides at a flow rate of 20
µl/ml for 4 min at 25°C. All of the SPR experiments were
performed in 10 mM MOPS-NaOH buffer (pH 7.0), and
0.5% SDS was chosen for surface regeneration. The sen-
sor-gram signal of PQQGDH with each peptide was nor-
malized by the nothing-immobilized sensor chip. The
equilibrium dissociation constant (KD) value was calcu-
lated from the Scatchard plot.

Abbreviations
PQQGDH, water-soluble quinoprotein glucose dehydro-
genase from Acinetobacter calcoaceticus; PQQ, pyrroloquin-
oline quinine; GAs, genetic algorithms; NMR, nuclear
magnetic resonance; MOE-Dock, Molecular Operating
Environment of docking; KD, equilibrium dissociation
constant; Ki, enzyme inhibition constant; SPR, surface
plasmon resonance.
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