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Abstract

Background

In this prospective observational study, we evaluated the effects of fluid bolus (FB) on

venous-to-arterial carbon dioxide tension (PvaCO2) in 42 adult critically ill patients with pre-

infusion PvaCO2 > 6 mmHg.

Results

FB caused a decrease in PvaCO2, from 8.7 [7.6−10.9] mmHg to 6.9 [5.8−8.6] mmHg (p <
0.01). PvaCO2 decreased independently of pre-infusion cardiac index and PvaCO2 changes

during FB were not correlated with changes in central venous oxygen saturation (ScvO2)

whatever pre-infusion CI. Pre-infusion levels of PvaCO2 were inversely correlated with

decreases in PvaCO2 during FB and a pre-infusion PvaCO2 value < 7.7 mmHg could exclude

a decrease in PvaCO2 during FB (AUC: 0.79, 95%CI 0.64–0.93; Sensitivity, 91%; Specificity,

55%; p < 0.01).

Conclusions

Fluid bolus decreased abnormal PvaCO2 levels independently of pre-infusion CI. Low base-

line PvaCO2 values suggest that a positive response to FB is unlikely.

Introduction

The venous-to-arterial carbon dioxide tension difference is an easily-derived metabolic index

that can be used to assess the adequacy of tissue perfusion to support the body’s metabolism

[1–3]. Applying Fick’s formula for CO2 shows that the difference between the mixed venous

and arterial CO2 content equals the ratio between CO2 production (VCO2) and cardiac output.
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As CO2 content is difficult to assess, it can be replaced with the partial pressure of CO2 in the

blood, since there is a linear relationship between these two parameters, at least in a large phys-

iological range [4]. Ideally, venous-to-arterial carbon dioxide tension difference should be

derived using pulmonary artery obtained PCO2. Nevertheless, Swan–Ganz catheter is not used

often in contemporary intensive care [5]. Central venous venous-to-arterial carbon dioxide

tension (PvaCO2) even though is not interchangeable to mixed venous [6] can be used instead

as a high PvaCO2 (> 6 mmHg) indicates that tissue perfusion is not sufficiently high to remove

the CO2 produced by the tissues [7]. Of note, persistent abnormal PvaCO2 levels can be related

to poor outcome in critically ill patients [8, 9]. Accordingly, PvaCO2 might be an interesting

target for resuscitation [10].

Unfortunately, the interventions potentially improving PvaCO2 have not yet been ade-

quately evaluated. Observational studies have shown that resuscitation maneuvers improving

central venous saturation and arterial pressure might not be related to a decrease in PvaCO2 [6,

11, 12]. Dobutamine can cause a decrease in PvaCO2 due to an increase in CI, although a para-

doxical increase might be observed at higher doses [13, 14]. Fluid bolus (FB) might be another

therapeutic option in patients with abnormal PvaCO2. Mecher et al. reported that FB decreased

high PvaCO2 in patients with septic shock, but the authors enrolled only septic patients with

low CI [15]. As elevated PvaCO2 might also represent microcirculatory alterations in the con-

text of preserved CI [16], one may wonder whether FB decreases PvaCO2 independently of the

baseline CI.

The aim of this study was to investigate whether FB decreases PvaCO2 and to determine

their relationships with CI and oxygenation changes.

Methods

Design and setting

In this prospective observational study, we collected data from patients treated in Brugmann

University Hospital’s 33-bed intensive care unit in Brussels between January and June 2015.

Approval was obtained from the Ethics Committee (CE2014/122) of CHU-Brugmann.

Inclusion and exclusion criteria

Patients with PvaCO2 > 6 mmHg in whom the attending physician decided for a FB of either

colloids or crystalloids within 30–40 min at any time of their stay in the ICU were considered

eligible for this study. We included patients using a deferred informed consent as FB was part

of standard treatment and we used not invasive methods for monitoring. Informed consent

was obtained from all patients or, when that was not feasible, a consent form was gathered

from the next-of-kin as soon as possible after FB but before ICU discharge.

Each patient was assessed once. The exclusion criteria were: 1) patients younger than 18

years old; 2) not equipped with jugular or subclavian venous catheter and arterial catheter; 3)

measurement of cardiac output with cardiac ultrasound was not possible due to lack of acous-

tic window; 4) patients receiving extracorporeal membrane oxygenation (ECMO) support; 5)

PCO2 higher than 75 mmHg in venous or arterial blood gas analysis; 6) atrial fibrillation; 7)

other simultaneous interventions (i.e., introduction or increase in inotrope dosage, mode

changes, or the introduction of mechanical ventilation) within 30 min prior to fluid

administration.
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Data and sample collections

Demographics, the type of fluids used for FB, clinical data concerning treatment (mechanical

ventilation, inotropic agents), and laboratory data were collected for each patient. The Acute

Physiology and Chronic Health Evaluation (APACHE) II score were used to assess the severity

of disease at the time of inclusion in the study.

Using Doppler transthoracic echocardiography (GE Healthcare Vivid S5), we measured the

left ventricular outflow tract (LVOT) blood velocity time integral (VTI) just prior to the

administration of FB. To calculate stroke volume (SV) and CI, LVOT diameter was measured

below the aortic valve at the aortic cusp insertion points in the parasternal long-axis view.

Immediately after FB, we repeated the measurements. Both measurements were stored and

analyzed off-line. Three consecutive velocity curves were measured, and the average VTI was

calculated. We used the same value of LVOT diameter to calculate SV and CI before and after

FB. Each patient was assessed once. No interventions were allowed during fluid

administration.

Arterial and central venous blood gas analysis were simultaneously obtained just before and

after FB. We measured the haemoglobin, arterial, and venous oxygen tensions (PaO2 and

PvO2, respectively) and oxygen saturation (SaO2 and ScvO2). Applying the usual formulas, we

calculated the arterial (CaO2) and venous (CvO2) oxygen content and oxygen delivery (DO2),

and oxygen consumption (VO2). The PvaCO2 and PvaCO2/CavO2 ratios were calculated before

and after FB.

Diagnostic definitions

All the diagnostic definitions were set beforehand. The smallest detectable difference (SDD) of

PvaCO2 was expected to be ±2.06 mm Hg as it was evaluated in a previous study in critically ill

patients [17]. Accordingly, patients were considered as ‘PvaCO2 responders’ if they had a

decrease in PvaCO2 > 2 mmHg. ‘Fluid responders’ were defined as patients who had an

increase in CI > 15% [18]. Sepsis was defined according to standard criteria [19]. As changes

in PvaCO2 may be affected by baseline value and as PvaCO2 is inversely related to cardiac

index, we separated patients into ‘low’ and ‘high’ cardiac index using a cut-off value of 2.2 L/

min/m2, similarly to a previous study [15]. Of note, the term ‘low CI’ should not be misinter-

preted as in some case the low CI may still be adequate [20].

Primary outcome

The primary endpoint was to evaluate whether FB can decrease PvaCO2 by at least 2 mmHg on

average.

Secondary outcomes

The secondary endpoint was to investigate changes of PvaCO2 during FB in patients with base-

line CI less or more 2.2 L/min/m2 and its relationship with changes of CI and ScvO2. The value

of baseline PvaCO2 for the prediction of a decrease in PvaCO2 during FB will be evaluated.

Statistical analysis

We performed statistical analysis using R through the R-studio interface (www.r-project.org,

R version 3.3.1). We used a Kolmogorov-Smirnov test to verify the normality of the distribu-

tion of the continuous variables. Normally distributed and non-normally distributed data were

compared using a Student’s t-test or Wilcoxon signed-rank test, as appropriate. Categorical

variables were compared using Fisher’s exact test. Pearson correlation and scatter diagrams
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were used to assess correlations between values. Univariate regression analysis was performed

to evaluate the association between decrease PvaCO2 > 2mmHg and baseline CI, fluid type

and mechanical ventilation. Receiver operating characteristics (ROC) analysis was used to

derive the prognostic discriminatory performance of baseline PvaCO2 in determining a

decrease of PvaCO2 during FB. The sample size was calculated to aim for an AUC of greater

than 0.8, which is usually considered as having a good predictive ability. Assuming a fluid

responsiveness rate of 30% in mixed population of critically ill patients [21] 40 patients were

required to obtain 90% power (alpha 0.05). The Youden index was used to derive the optimal

cut-off. Statistical significance was defined as p< 0.05.

Results

We evaluated 80 patients who received FB during the study period. Two patients refused to

give informed consent and were excluded from any further analysis. Forty-two patients (73

years (64−83) and APACHE II score on admission 21(15−29)) met our entry criteria (S1 Fig).

Twenty-four of the patients (57%) received colloids (Geloplasma1, Fresenius-Kabi AG, Bad

Homburg, Germany) and 18 (43%) crystalloids (Plasma-Lyte A, Baxter Healthcare, Deerfield,

IL) (S1 Table). The median given volume was 6.3 ml/kg [6.3−7.1] for FB with colloids and 14.9

ml/kg [12.1−19.6] for FB with crystalloids within a median time of 33 min [27− 44]. Central

venous pressure increased after FB from 8.5 mmHg [4.0−11.2] to 11.1 mmHg [9.2− 13.0]

(p<0.01). No differences were observed in the increases in central venous pressure after FB

between the patients who received colloids or crystalloids (33% [30–73] vs 22% [9−44],

p = 0.07). Fourteen patients (33%) had an increase in CI>15% after FB. No differences were

observed in the changes in CI after FB between the patients who received colloids or crystal-

loids (13% [0−21]vs 12% [2−25], p = 0.22). Nineteen (45%) of the patients were supported

with mechanical ventilation during FB, and 11 (26%) were under sedation. No changes in

respiratory rate were observed during FB (21 ± 5 resp/min to 21 ± 6 resp/min, p = 0.92). Six-

teen patients had a CI� of 2.2 L/min/m2 before FB, and 26 had a CI of> 2.2 L/min/m2.

Primary outcome

The median PvaCO2 before FB was 8.7 [7.6−10.9] and did not differ between intubated and

not intubated patients (9.2 [7.7−13.5] mmHg versus 8.4 [7.4−10.2] mmHg; p = 0.23). FB

decreased PvaCO2 to 6.9 [5.8−8.6] mmHg (p< 0.01) (Fig 1). Twenty-two patients (52%) had a

decrease in PvaCO2 > 2 mmHg (‘PvaCO2 responders’). The hemodynamic and metabolic char-

acteristics of the patients, as well as their changes, are presented in Table 1 and S2 Table.

‘PvaCO2 responders’ had a higher relative and absolute increase in CI compared to ‘PvaCO2

non-responders’.

There was no association between the decrease of PvaCO2 > 2 mmHg after FB and the pre-

infusion levels of CI (i.e. ‘low’ or ‘high CI’). Additionally, the type of fluid used for FB and

mechanical ventilation were not found to be associated with the likelihood of decreasing

PvaCO2 > 2 mmHg after FB (S3 Table).

Secondary outcomes

A correlation between changes in CI and PvaCO2 was observed only in patients who had a low

CI before FB (r = -0.71, p< 0.01). None of the patients who had an increase in CI > 15%

(Fig 2) experienced an increase in PvaCO2. Because estimation of the area of LVOT represents

the major source of error in calculating cardiac output with transthoracic echocardiography

[22] we repeated the analysis using only VTI: similar results were found when PvaCO2 changes

were assessed with changes in VTI (S2 Fig).
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We found no statistically significant correlation between PvaCO2 and ScvO2 changes, inde-

pendently of the baseline CI. ScvO2 could either increase, decrease, or remained unchanged in

‘PvaCO2 responders’ (S3 Fig).

A value < 7.7 mmHg could exclude a decrease of PvaCO2 during the FB, independently of

baseline CI (AUC: 0.79, 95%CI 0.64 – 0.93; Sensitivity, 91%; Specificity, 55%; p< 0.01)

(S4 Fig). Baseline PvaCO2 was correlated with the changes in PvaCO2 during FB in patients

with low as well as in patients with high CI before FB (low CI before FB: r = -0.55, p = 0.02,

high CI before FB: r = -0.72, p< 0.01) (Fig 3).

Discussion

The results of this study can be summarized as follows: 1) FB can decrease an abnormal high

PvaCO2 in critically ill patients independently of the before FB CI values, 2) the response of

PvaCO2 to FB is highly variable, yet low baseline PvaCO2 (6 to 8 mmHg) can exclude a positive

response.

The clinical implication of the study is that PvaCO2 derived from central venous and arterial

blood gas analysis can be used in clinical practice for the evaluation of FB response (S5 Fig).

‘PvaCO2 responders’ had a significantly higher increase in CI, which confirms that the CI aug-

mentation is implicated in the decrease in PvaCO2 during FB. Of note, in theory, FB can cause

an increase in PvaCO2 due to acute decrease in hemoglobin concentration [23]. The results of

our study showed that an increase in PvaCO2 is rare after FB. Notwithstanding, given that

none of the ‘CI responders’ presented an increase in PvaCO2 can be considered as an adverse

effect of FB and it can be used as a safety limit for FB in case no CI monitoring is available.

Interestingly, the group of ‘PvaCO2 responders’ was not exactly the same as ‘CI responders’:

several ‘CI responders’ did not have a decrease in PvaCO2, whereas PvaCO2 decreases were not

Fig 1. Evolution of central venous-to-arterial carbon dioxide tension difference (PvaCO2) during fluid bolus.

https://doi.org/10.1371/journal.pone.0257314.g001
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Table 1. Patients’ baseline hemodynamic and metabolic variables and changes during fluid bolus according to a decrease (or not) in central venous-to-arterial car-

bon dioxide tension difference (PvaCO2)> 2 mmHg (PvaCO2 non-responders and responders). Changes are presented as relative (d, %) and absolute values (Δ). Values

are presented either as means with standard deviations (±) or as median values and percentiles 25 and 75.

PvaCO2 non-responders PvaCO2 responders p values
No of patients 20 22

Baseline hemodynamic variables

Mean arterial pressure (mmHg) 71 ± 15 82 ± 14 <0.01

Pulse Pressure (mmHg) 52 ± 16 58 ± 16 0.23

Central Venous Pressure (mmHg) 8 ± 5 8 ± 4 0.28

Velocity Time Integral (cm) 14.7 ± 5 13.6 ± 5 0.91

Stroke Volume (ml) 55 ± 22 51 ± 21 0.54

Heart Rate (beats /min) 87 ± 20 97 ± 19 0.13

Cardiac Index (L/min/m2) 2.7 (1.7−3.3) 2.6 (1.9−3.2) 0.77

Baseline metabolic variables

Oxygen delivery (mL/min/m2) 326 (287−442) 416 (290−472) 0.28

ScvO2 (%) 61 ± 11 65 ± 8 0.17

Oxygen consumption (mL/min/m2) 116 (95−140) 122 (97−159) 0.65

Oxygen extraction (%) 33 (26−46) 33 (29−37) 0.44

PvaCO2(mmHg) 8.2 (6.7−9.7) 10.1 (8.7−12) <0.01

PvaCO2/ CavO2 1.7 (1.4−2.1) 2.1 (1.7−2.6) <0.01

Lactate (mmol/L) 1.9 (1.6−3.1) 2.1 (1.6−3.7) 0.47

Hemodynamic variable changes during FB

Δ Mean arterial pressure (mmHg) 2 (-2−9) 4 (-4−10) 0.99

d Mean arterial pressure (%) 3 (-3−13) 5 (-4−12) 0.93

Δ Pulse Pressure (mmHg) 1 (-3−15) 5 (-3−17) 0.97

d Pulse Pressure (%) 2 (-6−33) 10 (-4−24) 0.86

Δ Central Venous Pressure (mmHg) 2 (1−4) 3 (1−4) 0.99

d Central Venous Pressure (%) 16 (12–32) 27 (10–50) 0.78

Δ Velocity Time Integral (cm) 0 (-1−4) 3 (2−4) 0.03

d Velocity Time Integral (%) 5 (-2−19) 21 (14−40) <0.01

Δ Stroke Volume (ml) 2 (-1−13) 11 (7−17) 0.02

d Stroke Volume (%) 5 (-2−19) 21 (14−40) <0.01

Δ Heart Rate (beats/min) -2 (-11−1) -3 (-6−1) 0.88

d Heart Rate (%) -2 (-12−2) -2 (-6−1) 0.81

Δ Cardiac Index (L/min/m2) 0.1 (-0.1−0.4) 0.5 (0.4−0.7) <0.01

d Cardiac Index (%) 6 (1−13) 19 (11−40) <0.01

Metabolic variable changes during FB

Δ Oxygen delivery (mL/min/m2) -25 (-28−13) 46 (-19−97) 0.02

d Oxygen delivery (%) -7 (-9−5) 10 (-6−32) 0.02

Δ ScvO2 (%) -1 (-3−3) 1 (-1−4) 0.41

Δ Oxygen extraction (%) 1 (-3−4) -1 (-3−0) 0.16

Δ Oxygen consumption (mL/min/m2) 1 (-6−15) 4 (-18−32) 0.29

d Oxygen consumption (%) 0 (-9−12) 5 (-7−32) 0.19

Δ PvaCO2(mmHg) 0 (-1−1) -4 (-5−-3) <0.01

d PvaCO2 (%) -4 (-9−10) -40 (-48−-30) <0.01

Δ PvaCO2/ CavO2 0.02 (-0.04−0.5) -0.6 (-0.9−-0.4) <0.01

d PvaCO2/ CavO2 (%) 2 (-2−33) -33(-37−-25) <0.01

ScvO2: central venous oxygen saturation, PvaCO2: venous-to-arterial carbon dioxide tension, CavO2: arterial-venous oxygen content difference.

https://doi.org/10.1371/journal.pone.0257314.t001
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always associated with increases in CI>15%. Similar observations were reported by other

teams using various measurements related to tissue perfusion [24–26]. Different factors can

explain this phenomenon. Increases in CI after FB might not always lead to an improvement

in tissue perfusion [27], particularly when CI is not a major contributing factor for microcircu-

latory abnormalities. Additionally, in patients with high CI changes in PvaCO2 are expected to

be limited as the relationship between these two variables is curvilinear [28]. Of note, we

detected a statistically significant correlation of CI changes with PvaCO2 only in the group of

patients with low baseline CI. Furthermore, ‘CI responders’ are defined based on relative

changes in CI. Accordingly, several patients with increases in CI between 0.4–0.5 L/min/m2

were allocated as ‘CI non-responders’. Moreover, evaluation of changes in CI with the method

of cardiac echocardiography might not be precise in detecting mild changes [29].

The results of this study add to our knowledge of the optimization of fluid administration

in critically ill patients using PvaCO2 values. Recognition of the severity of inadequate tissue

perfusion based on the levels of PvaCO2 can guide the physician to decide fluid administration:

a low PvaCO2 can be considered as an indication to avoid FB whereas a high level may not

always be an indication for FB evaluation of its effects is required. This finding is in line with

the results of previous studies, which showed mild microcirculation abnormalities are less

likely to be improved after FB [24]. Nevertheless, some patients with high PvaCO2 failed to

respond to FB, and therefore, the decision for FB administration should not be based only on

Fig 2. Relationship between absolute changes in PvaCO2 (Δ PvaCO2) during fluid bolus and absolute changes in

cardiac index (Δ CI). Panel A: Patients with CI� 2.2 L/min/m2; Panel B: Patients with CI> 2.2 L/min/m2. d CI:

relative to baseline values changes in CI. The horizontal dotted line corresponds to Δ PvaCO2−2 mmHg. Triangle

points represent “Fluid responders” (d CI> 15%) and circle points “Fluid non-responders” (d CI� 15%).

https://doi.org/10.1371/journal.pone.0257314.g002

Fig 3. Relationship between baseline PvaCO2 and changes in PvaCO2 (Δ PvaCO2) during fluid bolus. Panel A:

Patients with CI� 2.2 L/min/m2; Panel B: Patients with CI> 2.2 L/min/m2. The vertical dotted line corresponds to the

baseline PvaCO2 8mmHg. The horizontal dotted line corresponds to Δ PvaCO2−2 mmHg.

https://doi.org/10.1371/journal.pone.0257314.g003
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the PvaCO2 levels. Furthermore, whether FB is the more appropriate treatment for the treat-

ment of high PvaCO2 levels compared to other interventions aiming to improve tissue perfu-

sion (e.g dobutamine, nitrate) should be further evaluated in future studies.

PvaCO2 changes were not found to be correlated to ScvO2. The meaning of this finding is

dual. First, PvaCO2 changes after FB potentially can provide additional information to ScvO2.

As in other studies, PvaCO2 may remain altered when ScvO2 is close to normal, so that PvaCO2

can be used in addition to ScvO2 for evaluating the adequacy of resuscitation in critically ill

patients [30–32]. PvaCO2 is related to tissue perfusion independently of the presence of tissue

hypoxia [3], whereas ScvO2 reflects the balance between oxygen delivery and oxygen consump-

tion [33]. In the majority of patients, improvement in tissue perfusion (‘PvaCO2 responders’)

was associated with an increase in ScvO2. However, increases in ScvO2 occurred in some

‘PvaCO2 non-responders’. As multiple patterns were observed, our study underscores the mul-

tiple factors implicated in changes in PvaCO2 and ScvO2 after FB. Second, the absence of corre-

lation between PvaCO2 changes and ScvO2 suggests that the Haldane effect has only a minor

impact on the changes of PvaCO2 during fluid bolus. Given that arterial saturation and PCO2

did not change in our cohort increases in ScvO2 secondary to a positive fluid response could

cause an increase in venous partial pressure of CO2 and consequently an increase in PvaCO2

[34].

The strength of this study is that we assessed the effect of FB on PvaCO2 in a non-selected

critically ill population with abnormal high PvaCO2. The high range of the pre-infusion CI per-

mitted the study of PvaCO2 changes after FB in a diversity of hemodynamic conditions,

whereas no respiratory variations or other interventions can explain these changes. Neverthe-

less, this study has several limitations. First, we assessed only acute changes in PvaCO2 so that

we cannot ensure that these beneficial effects were maintained. However, evaluation of PvaCO2

over several hours might be challenging as metabolic changes can also occur, especially in

non-sedated patients, in addition to other cardiovascular events. Second, metabolic changes

independent of FB may have occurred. However, major spontaneous metabolic changes are

not expected to occur during the short observational period of the study. Third, only central

venous and not mixed venous-to-arterial carbon dioxide tension differences were evaluated.

Fourth, we did not investigate thoroughly the effects of other therapeutic interventions (e.g.

mechanical ventilation, inotropes) on PvaCO2 as well as its changes during FB.

Conclusions

Abnormal high PvaCO2 can be decreased with FB independently of the levels of the pre-infu-

sion CI. A decrease in PvaCO2 after FB is unlikely in patients with pre-infusion PvaCO2 below

7.7 mmHg. Increases in PvaCO2 can be considered as an indication of negative response to FB.

Decreases in PvaCO2can be considered a positive response to FB, even though they might not

always be associated with relative increases in CI >15%. Changes in CI can only partially

explain decreases in PvaCO2. PvaCO2 and ScvO2 provide complementary information for the

effects of FB on tissue perfusion.

Supporting information

S1 Fig. Flowchart of patients selection.

(PDF)

S2 Fig. Relationship between changes in PvaCO2 (Δ PvaCO2) during fluid bolus and abso-

lute changes in velocity time integral (Δ VTI). Panel A: Patients with CI� 2.2 L/min/m2;
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