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Autism spectrum disorder (ASD) is an early onset developmental disorder which persists

throughout life and is increasing in prevalence over the last few decades. Given its

early onset and variable cognitive and emotional functional impairments, it is generally

challenging to assess ASD individuals using task-based behavioral and functional MRI

paradigms. Consequently, resting state functional MRI (rs-fMRI) has become a key

approach for examining ASD-associated neural alterations and revealed functional

alterations in large-scale brain networks relative to typically developing (TD) individuals,

particularly those involved in social-cognitive and affective processes. Recent progress

suggests that alterations in inter-hemispheric resting state functional connectivity (rsFC)

between regions in the 2 brain hemispheres, particularly homotopic ones, may be of great

importance. Here we have reviewed neuroimaging studies examining inter-hemispheric

rsFC abnormities in ASD and its associations with symptom severity. As an index of

inter-hemispheric functional connectivity, we have additionally reviewed previous studies

on corpus callosum (CC) volumetric and fiber changes in ASD. There are converging

findings on reduced inter-hemispheric (including homotopic) rsFC in large-scale brain

networks particularly in posterior hubs of the default mode network, reduced volumes

in the anterior and posterior CC, and on decreased FA and increased MD or RD across

CC subregions. Associations between the strength of inter-hemispheric rsFC and social

impairments in ASD together with their classification performance in distinguishing ASD

subjects from TD controls across ages suggest that the strength of inter-hemispheric

rsFC may be a more promising biomarker for assisting in ASD diagnosis than

abnormalities in either brain wide rsFC or brain structure.

Keywords: autism spectrum disorder, resting state, inter-hemispheric functional connectivity, homotopic

connectivity, corpus callosum, social deficits, biomarker

INTRODUCTION

Autism spectrum disorder (ASD) is an early onset developmental disorder which persists
throughout life and has an increasing prevalence rate over the last decades, with a general
average of around 1% of the population being affected (1). Although symptoms of ASD
are highly heterogeneous, the disorder is generally characterized by deficits mainly in social
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communication/interaction, restricted interests, and repetitive
behaviors (2). Task-based behavioral and neuroimaging studies
have further shown specific behavioral deficits and corresponding
neural dysfunctions in ASD primarily in social-cognitive and
affective domains, such as facial emotion recognition (3–5), eye
contact avoidance (6–8), and social interest (9, 10).

However, given the early onset of the disorder and general
cognitive deficits in ASD, assessment of ASD individuals,
particularly young children, by means of task-based behavioral
and fMRI paradigms is challenging. Consequently, resting state
fMRI (rs-fMRI) has been proposed as a promising approach for
examining ASD-associated alterations. Rs-fMRI assesses subjects
in the absence of a specific task and thus allows comparisons
across different studies and data acquisition sites. Previous rs-
fMRI studies have reported functional abnormalities in large-
scale brain networks in ASD relative to typically developing (TD)
individuals (11–14), particularly in brain networks involved in
social-cognitive and affective processes (15–17). Importantly, rs-
fMRI measurement across different sites and research groups
allows the collection of large sample sizes and data sharing
initiatives, such as the Autism Brain Imaging Data Exchange
(ABIDE) databases (ABIDE-I and -II), although it should be
acknowledged that these span wide age ranges and are restricted
to individuals with high-functioning ASD. As a result of
increased statistical power using these large databases, previous
studies have demonstrated more consistent and reproducible
patterns of alterations in resting state functional connectivity
(rsFC) in ASD populations (11, 18, 19).

It has been shown that functional connectivity alterations
in psychiatric disorders are mainly contributed by counterpart
regions in the opposite hemisphere (20). This is also the case in
ASD where rsFC alterations are primarily contributed by inter-
hemispheric connectivity between regions in the 2 hemispheres
(11, 21), and homotopic ones (between identical regions in the
2 hemispheres) may be of particular importance (19, 22, 23).
The aims of the present review are to detail findings from
neuroimaging studies directly examining interhemispheric rsFC
abnormalities in ASD (see Table 1), particularly the homotopic
ones together with their associations with symptom severity, and
studies investigating structural changes in the corpus callosum
(CC) in ASD (see Table 2 for volumetric studies and Table 3

for diffusion-weighted imaging (DWI) studies), which is also an
important index of interhemispheric functional connectivity. We
also discussed their functional significance and whether they can
be used as promising biomarkers for future clinical application.

INTER-HEMISPHERIC rsFC
ABNORMALITIES IN ASD

Based on the cortical underconnectivity theory, aberrant rsFC
patterns of ASD can be characterized by local over-connectivity
but long-distance under-connectivity (13, 71, 72). As a typical
long-distance connection, inter-hemispheric rsFC reflects the
correlation of fMRI BOLD signal time series between brain
regions belonging to the 2 brain hemispheres and can be
used as an important index for delineating inter-hemispheric

synchronization abnormalities in spontaneous neural activity in
ASD. Support for the functional importance of inter-hemispheric
connections comes from studies on agenesis or sections of CC.
The CC is the major white-matter tract between the left and
right hemispheres and plays a crucial role in the maintenance
of interhemispheric functional communications (73). Individuals
with congenital callosal agenesis have been reported to exhibit
ASD-like symptoms such as deficits in language comprehension,
theory of mind and social reasoning (74) and strongly elevated
autistic traits as measured by the Autism Spectrum Quotient
(75). Reduced inter-hemispheric rsFC in brain regions of the
default mode network (DMN) and salience network have
also been found in callosal dysgenesis subjects (76), although
interestingly this was not found to influence the qualitative
organization pattern of the rsFC (76). However, another study
has reported an intact pattern of inter-hemispheric rsFC in
callosal dysgenesis individuals using region of interest (ROI) and
independent component analysis-based approaches (77). This
inconsistency could be due to the occurrence of a remarkable
plasticity compensating for the disconnection, as revealed by an
animal callosotomy study reporting that a restoration of inter-
hemispheric rsFC occurred from 7 to 28 days post-callosotomy
but only when the callosotomy was partial and not when it
was total (78). The human callosal dysgenesis studies reporting
normal interhemispheric rsFC would similarly have been
partial. Furthermore, another gene knockdown study in rodents
has further emphasized the importance of inter-hemispheric
connectivity in ASD symptomatology, such that permanent
deficits in callosal projections and associated inter-hemispheric
connections caused by downregulation of Wnt signaling induced
ASD-like impairments, including social interaction deficits and
repetitive motor behavior (79). Overall these studies both
emphasize the importance of inter-hemispheric connections in
the context of normal social functioning and autism and that
under normal circumstances these functional connections can be
restored to a large extent even when the CC does not develop fully
or is partially disconnected.

Based on a voxel-based whole brain analysis, Cheng et al.
(11) revealed that the majority of altered rsFC occur between
regions from the opposite hemispheres using the ABIDE
database, and more specifically that reduced rsFC is found
mainly between brain regions implicated in face expression
processing, theory of mind and self-other distinction. Also
using the ABIDE database, another voxel-based study using a
graph theory analysis approach specifically examined inter- and
intra-hemispheric rsFC in ASD subjects and reported that they
had reduced inter and intra-hemispheric functional connectivity
strength in regions of the DMN and the visual system relative
to TD subjects (21). Note that significant correlations were
only observed between symptom severity, as measured by
the restricted and repetitive behavior subscale of the Autism
Diagnostic Observation Schedule (ADOS), and the density of
inter- but not intra-hemispheric FC in the posterior cingulate
cortex (PCC) and precuneus which both represent core nodes of
the posterior DMN. Using only data from children included in
the ABIDE database, a more recent study using a sliding-window
analysis has shown increased inter- and intra-hemispheric
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TABLE 1 | Overview of the studies examining alterations in interhemispheric (homotopic) functional connectivity in ASD patients.

References Autism Control Method Conclusion

N (F) Age VIQ PIQ FIQ N (F) Age VIQ PIQ FIQ

Anderson et al.

(22)

53 (0) 22.40

(7.20)

101.30

(21.10)

101.30

(16.50)

/ 39 (0) 21.10

(6.50)

116.00

(14.80)

114.20

(13.90)

/ Voxel-Based

whole brain

↓*

Cheng et al.

(11)

418 (51) 17.17

(7.97)

104.50

(15.87)

105.30

(15.17)

105.7

(14.16)

509 (85) 16.40

(7.08)

111.10

(12.84)

107.24

(12.56)

110.62

(11.93)

Voxel-Based

whole brain

↓

Dickinson et al.

(24)

59 (13) 5.79

(2.01)

68.96

(34.35)

74.67

(33.82)

/ 39 (13) 5.96

(2.22)

121.12

(19.42)

112.55

(12.07)

/ EEG coherence

analysis

↓

Dickinson et al.

(25)

35 (9) 12/24

months

/ / / 20 (11) 12/24

months

/ / / EEG coherence

analysis

↓

Di Martino et al.

(19)

360 (0) 16.30

(7.00)

105.00

(16.00)

106.00

(15.00)

105.00

(16.00)

403 (0) 16.30

(7.00)

111.00

(13.00)

108.00

(12.00)

111.00

(11.00)

Voxel-Based

whole brain

↓*

Dinstein et al.

(26)

29 (/) 29

months

(/)

/ / / 30 (/) 28

months

(/)

/ / / ROI analysis ↓*

Guo et al. (27) 105 (0) 10.15

(1.26)

/ / 110.53

(17.42)

102 (0) 10.02

(1.38)

/ / 113.78

(11.98)

Sliding-Window

FC analysis

↓

Hahamy et al.

(28)

68 (6) 26.6

(1.87)

105.79

(7.28)

108.42

(6.35)

107.76

(7.56)

73 (14) 25.82

(2.02)

113.27

(2.95)

111.67

(2.62)

114.14

(2.48)

Voxel-Based

whole brain

↓ and ↑*

Keehn et al. (29) 27 (/) 3/6/9/12

months

/ / / 37 (/) 3/6/9/12

months

/ / / fNIRS ROI

analysis

↓

King et al. (30) 579 (373) 15.1 (6.9) 105.70

(17.93)

105.18

(17.06)

106.05

(16.79)

823 (463) 15.1 (6.8) 113.85

(13.48)

109.43

(13.64)

113.03

(12.53)

ROI analysis ↓*

Lazarev et al.

(31)

14 (0) 9.70

(2.20)

91.00

(27.50)

94.30

(20.40)

91.40

(22.80)

19 (0) 10.10

(3.46)

/ / / EEG coherence

analysis

↓

Lee et al. (21) 458 (54) 16.2 (7.4) / / 106.0

(16.3)

517 (90) 16.50

(7.30)

/ 111.20

(12.40)

Voxel-Based

whole brain

↓

Li et al. (23) 409 (47) 17.42

(8.56)

105.20

(18.10)

106.27

(16.81)

106.72

(16.65)

455 (72) 17.35

(7.76)

111.48

(13.53)

108.17

(13.46)

111.45

(12.55)

Voxel-Based

whole brain

↓*

Yao et al. (32) 146 (25) 8.48

(1.07)

107.80

(19.37)

107.27

(20.15)

106.03

(19.40)

175 (47) 8.62

(0.84)

115.09

(15.89)

109.35

(15.40)

114.43

(13.40)

Voxel-Based

whole brain

↓*

Zhu et al. (33) 10 (0) 9.00

(1.30)

/ / / 10 (0) 8.90

(1.40)

/ / / fNIRS ROI

analysis

↓

For age and IQs, mean and standard deviation are reported. N (F): Number of subjects and female subjects; VIQ, Verbal IQ; PIQ, Performance IQ; FIQ, Full IQ; EEG,

electroencephalographic; ICA, Independent component analysis; ↑ or ↓, Increased or decreased rsFC in autism subjects compared to typically developing subjects; *Homotopic

functional connections.

dynamic FC variability in the medial pre-frontal cortex and
the anterior cingulate cortex but decreased inter- and intra-
hemispheric dynamic FC variability in the fusiform gyrus and
the inferior temporal gyrus (ITG) in ASD relative to TD children
(27). Furthermore, again only aberrant temporal variability of
the inter- but not intra-hemispheric FC was associated with
ADS symptom load, specifically social communication deficits
as measured by the ADOS communication subscale. Overall,
these findings tend to indicate that, although inter- and intra-
hemispheric rsFC both show abnormities in ASD, the inter-
hemispheric ones may be of greater clinical relevance.

Given that atypical developmental trajectories of functional
and structural organization in these brain networks have also
been demonstrated by longitudinal studies (72, 80, 81), attention
should also be paid to the neurodevelopmental trajectories of
inter-hemispheric functional connectivity, but current studies on
this are very limited. Using functional near infrared spectroscopy
(fNIRS), a longitudinal study on infants with a high risk of ASD
in the first year of life has demonstrated that while they show an

increase in both the inter- and intra-hemispheric connectivity in
temporal and inferior frontal cortex at the age of 3 months, they
exhibit a pattern of decreased functional connectivity at the age
of 12 months (29). Another fNIRS study using similar regions of
interest reported that this pattern of decreased inter-hemispheric
functional connectivity was maintained in older children (mean
age = 9.0 ± 1.3) (33), although no longitudinal study to date
has specifically investigated the developmental trajectories of
interhemispheric rsFC for children between the ages of 1 to
9 years of age. A recent study using electroencephalographic
(EEG) measurement on alpha phase coherence has also revealed
reduced inter-hemispheric connectivity in the temporal cortex
in ASD children (mean age = 5.79 ± 2.01) (24). A similar
pattern of reduced inter-hemispheric connection has also been
found between temporal and parietal cortex in tuberous sclerosis
complex infants who later developed ASD, which becomes to
be most robust at 24 months (25), although the comorbidities
of tuberous sclerosis complex and ASD have to be kept in
mind when interpreting these findings. Finally, another EEG
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TABLE 2 | Overview of the studies examining alterations in corpus callosum volume in ASD patients.

References Autism Control Method Conclusion

N (F) Age VIQ PIQ FIQ N (F) Age VIQ PIQ FIQ

Anderson et al.

(22)

53 (0) 22.40

(7.20)

101.30

(21.10)

101.30

(16.50)

/ 39 (0) 21.10

(6.50)

116.00

(14.80)

114.20

(13.90)

/ SBM ↓

Chung et al. (34) 16 (0) 16.10

(4.50)

/ / / 12 (0) 17.10

(2.80)

/ / / VBM ↓

Egaas et al. (35) 51 (6) 15.50

(10.0)

<70:16;

≥70:31

/ / 51 (6) 15.50

(9.90)

/ / / TMA ↓

Elia et al. (36) 22 (0) 10.92

(4.02)

/ / / 11 (0) 10.86

(2.85)

/ / / TMA N.S.

Frizer et al. (37) 253 (27) 14.58

(6.00)

/ / / 250 (53) 14.41

(5.31)

/ / / Meta ↓

Gaffney et al. (38) 13 (3) 11.30

(4.70)

/ / 84.9 (26.7) 35 (14) 12.00

(5.20)

/ / / TMA N.S.

Haar et al. (39) 295 (0) 16.89

(8.10)

/ / 106.16

(17.16)

295 (0) 16.72

(7.55)

/ / 111.21

(12.15)

SBM ↓

Hardan et al. (40) 22 (0) 22.40

(10.10)

103.00

(16.40)

97.50

(12.60)

100.40

(14.70)

22 (0) 22.40

(10.00)

100.50

(14.70)

99.60

(12.50)

100.50

(14.20)

TMA ↓

Lefebvre et al. (41) 328 (38) 16.60

(8–39)

103.00

(18.00)

106.00

(17.00)

105.00

(17.00)

366 (62) 17.00

(8–40)

111.00

(13.00)

107.00

(13.00)

111.00

(12.00)

SBM N.S.

Li et al. (23) 409 (47) 17.42

(8.56)

105.20

(18.10)

106.27

(16.81)

106.72

(16.65)

455 (72) 17.35

(7.76)

111.48

(13.53)

108.17

(13.46)

111.45

(12.55)

VBM ↓

Manes et al. (42) 27 (5) 14.35

(6.80)

/ / / 17 (6) 11.85

(5.00)

/ / / TMA ↓

Piven et al. (43) 35 (9) 18.00

(4.50)

/ 91.00

(19.80)

/ 36 (16) 20.20

(3.80)

/ 102.10

(12.80)

/ TMA ↓

Rice et al. (44) 12 (0) 12.42

(4.32)

106.00

(33.01)

107.83

(17.66)

107.33

(26.06)

8 (0) 12.50

(3.46)

123.25

(10.90)

120.38

(10.08)

124.00

(11.28)

TMA N.S.

Sui et al. (45) 16 (0) 21.38

(2.39)

/ / 108.88

(17.39)

17 (0) 21.71

(2.14)

/ / 116.65

(11.98)

DKI ↓

Vidal et al. (46) 24 (0) 10.00

(3.30)

92.90

(13.30)

99.10

(14.00)

95.90

(11.50)

26 (0) 11.00

(2.50)

105.40

(11.20)

104.10

(14.00)

104.80

(11.70)

TMA ↓

Waiter et al. (47) 15 (0) 15.20

(2.20)

100.60

(24.20)

99.40

(19.50)

100.50

(22.40)

16 (0) 15.50

(1.60)

101.30

(21.10)

98.80

(13.90)

99.70

(18.30)

VBM ↓

Wolff et al. (48) 57 (10) 6.60 (0.7) / / 79.80

(17.60)

108 (42) 6.70 (0.7) / / 110.90

(16.00)

Fourier

contour

model

↑

12.90 (0.8) / / 12.70 (0.7) / / ↑

24.80 (1.2) / / 24.70 (0.8) / / N.S.

Yao et al. (32) 146 (25) 8.48 (1.07) 107.80

(19.37)

107.27

(20.15)

106.03

(19.40)

175 (47) 8.62 (0.84) 115.09

(15.89)

109.35

(15.40)

114.43

(13.40)

VBM N.S.

For age and IQs, mean and standard deviation are reported. N (F): Number of subjects and female subjects; VIQ, Verbal IQ; PIQ, Performance IQ; FIQ, Full IQ; SBM, Surface-based

morphometric analysis; TMA, Traditional morphometric analysis; VBM, Voxel-based morphometric analysis; DKI, diffusional kurtosis imaging; ↑ or ↓, Increased or decreased corpus

callosum volume in autism subjects compared to typically developing subjects; N.S, No significant group difference.

study with intermittent photic stimulation on an older sample
size (mean age = 9.7 ± 2.2) revealed a more general decrease
in inter-hemispheric coherent connections of the 20 highest
connections at all the beta frequencies corresponding to photic
stimulation (31).

ALTERED HOMOTOPIC
INTER-HEMISPHERIC rsFC IN ASD

Homotopic inter-hemispheric rsFC is a component part of
overall interhemispheric rsFC and is an important measure
reflecting activity synchronization between homotopic regions of

the 2 hemispheres (82, 83). Homotopic FC can bemeasured using
voxel-mirrored connectivity analysis on the correlation of fMRI
BOLD signal time series between each voxel in 1 hemisphere
and its mirrored counterpart in the other side (82). Homotopic
inter-hemispheric rsFC abnormalities have been found in a
number of psychiatric disorders including schizophrenia (84),
major depression (85), substance dependence (86), and even
Parkinson’s disease (87).

In the first study examining homotopic inter-hemispheric
rsFC changes in ASD, a moderate sample size (53 high-
functioning ASD males vs. 39 TD controls) was used and found
decreased homotopic rsFC between the bilateral sensorimotor
cortex, anterior insula, and superior parietal lobule in ASD
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TABLE 3 | Overview of the diffusion-weighted imaging studies examining corpus callosum abnormities in ASD patients.

References Autism Control Method Conclusion

N (F) Age VIQ PIQ FIQ N (F) Age VIQ PIQ FIQ FA MD RD AD

Alexander et al.

(49)

43 (0) 16.23

(6.70)

/ 107.49

(13.04)

/ 34 (0) 16.44

(5.97)

/ 112.79

(12.08)

/ ROI ↓ ↑ ↑ N.S.

Ameis et al. (50) 71

(15)

11.40

(3.40)

/ / 95.0

(19.7)

62

(25)

10.80

(2.80)

/ / 112.5

(17.1)

TBSS ↓ N.S. N.S. N.S.

Aoki et al. (51) 567

(81)

14.23

(/)

/ / 106.42

(/)

482

(116)

15.47

(/)

/ / 111.94

(/)

Meta ↓ ↑ / /

Aoki et al. (52) 69 (7) 8.90

(1.70)

108

(16)

110

(19)

109

(17)

50

(12)

9.40

(1.50)

114

(15)

114

(14)

114

(13)

TBSS ↓ ↑ ↑ ↑

Barnea-Goraly

et al. (53)

7 (0) 14.60

(3.40)

84

(17)

121.5

(8)

101

(12.2)

9 (0) 13.40

(2.80)

105.2

(11.4)

107

(10)

107

(8.5)

Voxel based

whole brain

↓ / / /

Barnea-Goraly

et al. (54)

13 (2) 10.50

(2.00)

/ / 85.9

(17.4)

11 (2) 9.60

(2.10)

/ / 119.9

(13.3)

TBSS ↓ / N.S. ↓

Bashat et al.

(55)

17 (/) 1.8–

3.3

/ / / 41

(18)

0.25–

23

/ / / ROI ↑ / / /

Brito et al. (56) 8 (0) 9.53

(1.83)

/ / / 8 (0) 9.57

(1.36)

/ / / ROI ↓ / / /

Di et al. (57) 297

(28)

22.40

(/)

/ / 107.87

(/)

302

(30)

22.2

(/)

/ / 112.50

(/)

Meta ↓ / / /

Groen et al. (58) 17 (3) 14.40

(1.60)

97

(19)

100

(15)

98

(18)

25 (3) 15.50

(1.80)

105

(10)

105

(11)

105

(9)

Voxel based

whole brain

↓ ↑ / /

Hong et al. (59) 18 (0) 8.69

(2.18)

/ / 105.22

(21.12)

16 (0) 9.81

(1.91)

/ / 106.13

(20.13)

ROI N.S. / / /

Keller et al. (60) 34 (0) 18.90

(7.30)

/ / 102.0

(14.8)

31 (0) 18.90

(6.20)

/ / 109.5

(9.0)

Voxel based

whole brain

↓ / / /

Kumar et al.

(61)

32 (3) 5.00 (/) / / / 16 (4) 5.50

(/)

/ / / TBSS ↓ / / /

Nickel et al. (62) 30

(11)

35.40

(9.07)

/ / 124.5

(12.26)

30

(11)

35.53

(8.30)

/ / 123.63

(13.80)

Voxel based

whole brain

↓ N.S. / /

Noriuchi et al.

(63)

7 (1) 13.96

(2.68)

93.7

(7.41)

93.14

(8.07)

92.71

(6.68)

7 (1) 13.36

(2.74)

/ / 116.43

(9.50)

Voxel based

whole brain

↓ / / /

Shukla et al.

(64)

26 (2) 12.70

(0.60)

105.6

(3.6)

109.5

(3.3)

/ 24 (1) 13.00

(0.60)

108.2

(2.6)

110.3

(2.5)

/ ROI ↓ ↑ ↑ N.S

Shukla et al.

(65)

26 (1) 12.80

(0.60)

104.3

(3.4)

108.8

(3.3)

/ 24 (1) 13.00

(0.60)

108.2

(2.6)

110.3

(2.5)

/ TBSS ↓ ↑ ↑ N.S.

Thomas et al.

(66)

12 (0) 28.50

(9.70)

105.08

(10.09)

107.25

(13.9)

106.92

(10.47)

18(0) 22.40

(4.10)

109.8

(12.54)

111

(10.03)

111.6

(9.91)

ROI N.S. / / /

Travers et al.

(67)

100

(0)

18.30

(8.50)

96.3

(21.1)

102.6

(17.9)

100.1

(17.6)

56 (0) 18.90

(7.80)

114.7

(13.2)

116.3

(14.8)

118.2

(13.2)

ROI ↓ ↑ ↑ ↑

Vogan et al. (68) 61

(10)

10.90

(2.00)

/ / 102.2

(14.9)

69

(18)

11.10

(2.40)

/ / 112.7

(11.6)

TBSS ↓ N.S. N.S. ↓

Walker et al.

(69)

39

(11)

4.63

(1.76)

/ / / 39

(13)

4.74

(1.76)

/ / / TBSS ↓ ↑ ↑ ↑

Weinstein et al.

(70)

22 (/) 3.20

(1.10)

/ / / 32 (/) 3.40

(1.30)

/ / / TBSS ↑ N.S. ↓ N.S.

For age and IQs, mean and standard deviation are reported. N (F): Number of subjects and female subjects; VIQ, Verbal IQ; PIQ, Performance IQ; FIQ, Full IQ; TBSS, Tract based spatial statistics; ROI, Region of interest; FA, Fractional

anisotropy; MD, Mean diffusivity; RD, Radial diffusivity; AD, Axial diffusivity; ↑ or ↓, Increased or decreased in autism subjects compared to typically developing subjects; N.S, No significant group difference.
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FIGURE 1 | Regions showing decreased homotopic inter-hemispheric

functional connectivity in ASD relative to matched typically developing controls

using the ABIDE database. Statistic maps were displayed with a p < 0.05 FDR

corrected threshold. Color bar indicates t values of the statistical map. This

figure is adapted from Li et al. (23).

subjects compared to TD controls (22). A further ROI-based
study has also revealed decreased homotopic inter-hemispheric
rsFC between the superior temporal gyrus (STG) and inferior
frontal gyrus (IFG) in naturally sleeping toddlers with autism
relative to TD controls (29 ASD vs. 30 controls), with homotopic
connectivity strengths of the IFG being negatively correlated
with social and communication impairments, as measured by
ADOS (26). However, while decreased homotopic connectivity
was found in the lateral occipital cortex and the postcentral
gyrus in ASD, Hahamy et al. (28) additionally demonstrated
increased homotopic inter-hemispheric rsFC in the ITG and
the middle frontal gyrus in ASD using a moderate sample
size (68 ASD males vs. 73 TD controls) consisting of subjects
from selective sites in ABIDE-I. This study has further revealed
significantly greater individual topographical distortions in the
homotopic rsFC patterns in ASD relative to TD controls (28).
More robust findings have subsequently come from studies using
larger numbers of subjects from the ABIDE database. In the
first study using the ABIDE database, reduced homotopic inter-
hemispheric rsFC has also been found in regions including the
PCC, insula, and thalamus (19). In a further study which included
gender as an additional covariate, Li et al. (23) carried out a
voxel-based whole brain analysis on differences in homotopic
inter-hemispheric rsFC in ASD subjects and further examined
associations between homotopic rsFC and symptom severity.
Results showed decreased homotopic rsFC of regions in large-
scale brain networks including the DMN, salience network,
mirror neuron/motor systems, and auditory and visual systems
in ASD adolescents and adults (Figure 1), with homotopic rsFC
in the PCC, insula and STG showing significant associations with

social impairments as measured by ADOS. Amore recent follow-
up study using independent data from children in ABIDE I and
ABIDE II databases and the same analysis approach has revealed
consistent patterns of reduced homotopic inter-hemispheric
rsFC in ASD children between the ages of 5 and 10 years old,
suggesting that the homotopic alterations can occur at an early
age and remain stable in contrast to other dysregulations which
vary across developmental periods. Moreover, this study has also
demonstrated significant associations between ASD symptom
severity and homotopic inter-hemispheric rsFC changes in
regions of the DMN (the PCC and the precuneus) and the visual
processing networks (inferior and middle temporal gyri and
inferior occipital gyrus) (32). Atypical developmental trajectories
of homotopic rsFC and its association with symptom severity
have also been reported in ASD (88). Note that although a recent
study specifically examining reproducibility across sites has also
demonstrated overall decreased homotopic inter-hemispheric
rsFC in ASD using the whole ABIDE datasets, as consistently
observed in most of the previous studies, the decreased
homotopic rsFC pattern was not generally reproducible across
sites (30), which could be due to decreased statistical power
as a result of smaller sample sizes when individual sites were
examined separately.

INTERHEMISPHERIC rsFC—A MORE
PROMISING BIOMARKER FOR ASD?

In both seed-based and voxel-based rsFC analyses, altered rsFC
in the DMN, particularly the PCC, is one of the most replicated
findings in ASD samples (12, 13, 19, 89–92). As we outlined
above, this is also the case for interhemispheric rsFC, particularly
the homotopic connections (19, 21, 23, 32). Interestingly, the
PCC and precuneus of the DMN, the STG, and the insula which
exhibited associations between their interhemispheric rsFC
(including the homotopic ones) and symptom severity in ASD,
are all regions strongly involved in social and affective processing
(21, 23, 32). These associations have been demonstrated only for
the inter-hemispheric (including the homotopic) rsFC alterations
but not for the intra-hemispheric ones (21, 23, 27). Furthermore,
based on inter-hemispheric, but not only the homotopic rsFC
changes, pattern classification analysis achieved an average
accuracy of 88.70% for distinguishing ASD subjects from TD
controls across sites (23), which is slightly higher than a
previous study (82.87%) using the same pattern classification
approach based on whole brain-wide rsFC changes (namely
more features) (11), although there is no direct statistical
comparison. These findings together suggest that brain regions
implicated in processing of social and affective domains maybe
of greater clinical relevance. Note that although alterations in
homotopic inter-hemispheric rsFC have also been found in
other disorders such as schizophrenia (84), major depression
(85), substance dependence (86), and Parkinson’s disease (87),
a consistent pattern of decreased homotopic interhemispheric
rsFC has only been found in ASD in most of the previous studies
across children, adolescents and adults. In other developmental
disorders, increased rather than decreased homotopic rsFC has
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been observed in children with attention-deficit hyperactivity
disorder (93) and both increased and decreased homotopic
rsFC have been reported in children with Tourette’s syndrome
(94). Thus, although decreased inter-hemispheric rsFC may not
be a biomarker specific for ASD, it may still be a promising
biomarker for ASD diagnosis although probably in conjunction
with other measures.

CORPUS CALLOSUM AND
INTER-HEMISPHERIC rsFC IN ASD

As the major white-matter tract between the 2 brain
hemispheres, CC serves as a bridge for interhemispheric
functional communications. In ASD, CC volume has been
proposed as an important index of interhemispheric functional
connectivity (37, 46). Early findings on CC volume mainly utilize
the traditional morphometric method based on the Witelson
partition [Figure 2; (95)]. While these studies have consistently
demonstrated an overall reduction of CC volume in ASD
subjects with and without intellectual disability (35, 42, 43, 96),
evidence on the main contributing subregions for such a global
reduction effect has tended to be inconsistent with some studies
showing significant decreased volume in the anterior subregions
(40) and others reporting decreases in posterior part (35, 43) or
the CC body (42), although subjects examined in these studies
vary across young children, adolescents and adults (from 3 to 42
years old) and across high and low functioning ASD. Vidal et al.
(46) further confirmed a global reduction in CC volume and the
anterior part of the CC using traditional morphometric methods
and found regional reduction in both the anterior (genu)
and posterior (splenium) part of the CC using computational
mapping methods, reflecting an impact of analysis methods
on revealing which specific CC subregions exhibit alterations
in ASD. Based on a voxel-based morphometric (VBM) whole
brain analysis, a volume reduction has only been found in the
posterior CC in ASD [splenium and isthmus; Waiter et al. (47)].
Another VBM study that specifically focused on the CC, has
also revealed reduced volume in the posterior (splenium) and
additionally in the anterior part (genu and rostrum) of the
CC (34). Thus, the regionally restricted (ROI) approach in the
latter study may be of greater sensitivity compared to analyses
corrected at the whole brain used in the former one. A volume
reduction in the anterior and posterior regions of the CC in ASD
has also been confirmed by a VBM analysis in a more recent
study using the ABIDE database, in which gender, age, IQ, and
total brain volume were controlled as potential confounding
variables (23). However, using a surface-based approach, Haar
et al. (39) did not observe any significant changes in global CC
volume in ASD using the ABIDE database, whereas they did find
decreased volume in the central part of CC with a small effect
size after segmenting the CC into 5 equal parts. Morphometric
CC changes in the middle (midbody) and posterior (isthmus and
splenium) part have also been confirmed by a diffusional kurtosis
imaging study examining axonal density and caliber (45). Finally,
another study using the ABIDE database, found no significant
CC volume changes based on a more complex model-based

FIGURE 2 | Corpus callosum regions (A) and Witelson subdivisions (B)

adapted from Frazier and Hardan (37).

analysis method but that CC scaled non-linearly with brain
volume, as reflected by large brains having a proportionally
smaller CC (41). Meta-analysis studies can provide us with
more comprehensive and robust insight on ASD-associated
CC changes. In one meta-analytic study ASD individuals were
reported to exhibit a general CC volume reduction with the
reduction magnitude decreasing from the anterior to posterior
part (37). A subsequent meta-analysis has also suggested a group
difference in CC volume between the ASD and the TD control
groups, but this effect was highly underpowered due to the small
sample sizes used in the included studies (41).

In addition, diffusion-weighted imaging (DWI) studies have
also revealed CC abnormalities in ASD, as reflected by a general
pattern of reduced fractional anisotropy (FA) and concomitantly
increasedmean diffusivity (MD) or radial diffusivity (RD) in ASD
compared to TD controls. This pattern has been found not only
in the total CC or across all subregions including the anterior
(genu), body, and posterior (splenium) part of CC (49, 52, 58,
64, 65, 67–69), but also in specific CC subregions such as in the
genu and body (49, 53, 62), the genu/rostral body (56, 63), the
posterior midbody and isthmus (60), and the splenium of CC
(50, 57) in high/low-functioning ASD individuals across different
age ranges, including children, adolescents, and adults. This has
also been confirmed by a diffusion tensor imaging meta-analysis
study (51). While having confirmed this pattern of FA changes in
ASD children, Barnea-Goraly et al. (54) further revealed that this
pattern was shared between ASD children and their unaffected
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siblings, indicating that FA changes may represent a neural
marker reflecting an increased genetic risk or generally increased
vulnerability for ASD. Of note very young children with ASD
exhibit a different pattern of alterations, such that increased FA
in genu and splenium of CC have been found in ASD children
aging from 1.8 to 3.3 (55) and an increase in FA but a decrease in
RD in the genu and midbody of CC have been found in a slightly
older sample (mean age 3.2 ± 1.1) with no changes in MD (70).
Moreover, another study did not detect FA changes in adults with
ASD (66). Thus, apart from these latter findings the majority of
studies converge on a decrease in FA but an increase in MD and
RD of CC in ASD. A longitudinal study has further revealed an
atypical developmental trajectory of FA of the genu and body of
CC before the age of 10 in ASD (67). In contrast, examination
of axial diffusivity (AD) revealed somewhat inconsistent results
in ASD, with some studies demonstrating significantly higher
AD (52) or lower AD either across all 3 subregions (68) or
specifically in the body or genu of CC (54, 64) in ASD and others
reporting no significant AD differences (49, 70). With respect
to associations between diffusion tensor imaging alterations and
ASD symptom severity, FA in CC has been found to be negatively
correlated with social impairment in ASD as measured by the
Social Responsiveness Scale completed by Parents (SRS-P), while
alterations in MD and RD have been found to be positively
correlated with SRS-P scores (52). In contrast, no significant
correlations between FA and diffusivity indices and symptom
severity as measured by ADOS have been observed (49, 54, 68).
In addition to lower FA and higher diffusivity (as measured by
apparent diffusion coefficient), longer fiber length, higher fiber
density but a lower fiber number of CC have been reported in
ASD children (59, 61), with the fiber number in the anterior CC
being negatively correlated with scores on the Childhood Autism
Rating Scale (59).

Given that both interhemispheric rsFC and CC volumes
exhibit a decreased pattern in ASD individuals, there are also
a few studies which have investigated possible relationships
between these 2 measures. An absence of significant correlations
between the homotopic interhemispheric rsFC and CC volumes
has been reported both in a study based on a moderate sample
size (53 ASD vs. 39 TDs) (22) and in another larger one
using the ABIDE database (23). However, no studies to date
have explored the associations between overall interhemispheric
rsFC (i.e., not only the homotopic ones) and either CC
volumes or DWI indices. Pattern classification analyses based
on anatomical abnormalities including variations in CC volumes
have reported relatively low classification accuracies of <60%
using the ABIDE database (39), which is much lower than
pattern classification accuracy based on interhemispheric rsFC
changes (23), indicating that anatomical abnormalities measured
by conventional MRI protocols are probably too coarse to be a
sensitive and robust diagnostic biomarker.

Taken together, although there are some studies which have
found no significant CC volume or DWI indices changes in ASD
patients (36, 38, 44, 66, 70), the majority of studies have provided
converging evidence for decreased CC volumes and FA but
increased MD or RD in ASD, particularly those studies based on
the traditional morphometric, VBM andDWImethods, although

findings on the involvement of specific CC subregions have been
less consistent. The heterogeneity of findings on CC volume and
DWI indices could be due to differences in sample size, age
range, gender, and subject phenotypes [e.g., with and without
intellectual disability/high vs. low functioning; cf., (36, 38, 44, 51,
57)]. Differences in analytical approaches and whether potential
confounding covariates (e.g., age, gender, IQ, and total brain
volume) are well-controlled may also have contributed to these
inconsistencies [cf., (34, 40, 43)]. Furthermore, in a longitudinal
study of infants (6–24 months), in which subjects were much
younger than in all of the studies reviewed above, increased CC
area and thickness, particularly robust in the anterior CC, have
been found for ASD infants at 6 and 12 months and associated
with repetitive behaviors shown at the age of 24 months (48).
Similarly, different patterns of FA and RD of CC have been found
in very young children with ASD as reviewed above (55, 70).
Thus, the developmental trajectory of CC, similar to the aberrant
developmental trajectory of the homotopic rsFC (88), should be
taken into consideration when interpreting these findings.

CONCLUSION AND FUTURE DIRECTIONS

In summary, we have reviewed the literature on inter-
hemispheric rsFC and structural CC changes in ASD.
While evidence on these differences are heterogeneous, due
undoubtedly to some extent to variations in sample size,
age range, gender, subject phenotypes and even whether
potential confounding covariates are well-controlled,
there are nevertheless converging findings on reduced
interhemispheric (including homotopic) rsFC in large-scale
brain networks particularly in the posterior hubs in the
DMN, on reduced volumes in the anterior and posterior CC,
and on decreased FA and increased MD or RD across CC
subregions. Correlations between the inter-hemispheric rsFC
changes and symptom severity in social impairments and the
superior classification performance in distinguishing ASD
subjects from TD controls based on the interhemispheric
rsFC changes together suggest that inter-hemispheric rsFC
changes, a typical form of long-distance connection, may
be a more promising biomarker for ASD diagnosis than
whole brain wide rsFC and structural abnormalities. Future
studies will also need to focus on investigating whether
these biomarkers can be applied to other novel samples
with a high generalizability if we are to progress toward
the ultimate goal of such biomarkers having utility at
an individual as opposed to a group level. Additionally,
the specificity of interhemispheric rsFC changes in ASD
compared with other childhood disorders needs to be more
fully established.

More future studies are also required using different
multimodal brain imaging and behavioral approaches to better
establish the functional consequences of dysfunctional inter-
hemispheric connectivity in ASD. Furthermore, given evidence
in both humans and animal models for considerably potential
for functional recovery in interhemispheric rsFC following CC
damage or impaired development it will be important to establish
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if this could be exploited therapeutically. In addition, based on
previous finding that the development or microstructure of CC
can be modulated by factors such as sex hormones (97, 98),
age (99), prenatal inflammation (100) and mutation of specific
genes (101, 102), future studies should aim at disentangling
the potential contributions of these factors to CC alterations
in ASD.

There has also been considerable interest in identifying
sub-types in ASD, as in other disorders, and moving
forward it will clearly be important to do this either based
on brain- or behavioral-based subtyping. Previous research
on brain-based biomarkers has also been focused almost
exclusively on high functioning ASD and on adolescents
and adults and therefore there is an urgent need for more
studies and hopefully databases which include low-functioning
individuals and particularly young children where early
diagnosis and therapeutic interventions are potentially of

greatest importance. Finally, to make findings across studies
and databases more comparable and reproducible, it is also
important for future studies follow standardized data processing
procedures with potential confounding covariates being
well-controlled [cf., (103, 104)].
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