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In this paper, some exact traveling wave solutions to the integrable Gardner equation are reported. $e ansatz method is devoted
for deriving some exact solutions in terms of Jacobi andWeierstrass elliptic functions.$e obtained analytic solutions recover the
solitary waves, shock waves, and cnoidal waves. Also, the relation between the Jacobi andWeierstrass elliptic functions is obtained.
In the second part of this work, we derive some approximate analytic and numeric solutions to the nonintegrable forced damped
Gardner equation. For the approximate analytic solutions, the ansatz method is considered. With respect to the numerical
solutions, the evolution equation is solved using both the finite different method (FDM) and cubic B-splines method. A
comparison between different approximations is reported.

1. Introduction

Partial differential equations (PDEs) and ordinary differential
equations (ODEs) have received the attention of many re-
searchers of applied mathematics and theoretical physics due
to their great role in modeling many natural and engineering
phenomena [1–16]. $e investigation of the traveling wave
solutions (TWSs) to the differential equations plays an im-
portant role in the study of nonlinear physical phenomena in
different branches of science specially in fluid mechanics,
optical fiber, plasma physics, ocean, and sea [1, 2, 7–16]. $e
following Gardner equation (or combined Korteweg–De
Vries (KdV)-modified KdV (mKdV) equation or Extended
KdV equation (EKdV)) is one of the most famous equations
that was widely used in modeling many physical problems in
general and in the physics of plasmas in particular [2, 17–19].

R1 ≡
zu

zt
+ au

2
+ bu 

zu

zx
+ c

z
3
u

zx
3 � 0, (1)

where u ≡ u(x, t) and (a, b, c) represent the coefficients of
the nonlinear and dispersion terms which are function of
physical parameters related to the system under study. $e
Gardner equation (GE) has two nonlinear terms in the
quadratic and cubic forms and the dissipative term is of
third-order derivative. $e GE is an integrable system and
Miura transformation connects it to the KdV equation. $e
GE is a useful model to understand the propagation of
acoustic waves in different plasma models [17–19]. $is
equation can be used for describing the small but finite
amplitude of the nonlinear structures that can propagate
with phase velocity. However, this equation and some re-
lated equations such as KdV equation and modified KdV
equation can be used indirectly to describe waves that
propagate with the group velocity such as rogue waves and
dark and bright solitons. For example, there are many re-
searchers interested in studying waves in plasma physics
who used this equation to describe the rouge waves in
different plasma models [20–23].
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Exact solutions to the GE and some related equations are
set up by using various methods [24–45]. Some solutions
containing tanh and coth functions are proposed by the ex-
tended form of the tanhmethod [1]. Solitary wave and periodic
solutions are constructed by aid of the projective Riccati
equations. $ese solutions have various terms including trig-
onometric or hyperbolic functions in rational forms. In most
published papers, the authors focused on the integrable GE.
However, in many physical models there are many effects
cannot be ignored such as the collisions between the charged
and neutral particles in plasma physics as well as the collisions
between the charged particles themselves. Also, some of the
external periodic forces can be impacted on the physical model
under consideration. If these effects are considered in this case,
we can get a nonintegrable evolution equation (forced damped
GE). In this paper, we shall proceed to obtain some approx-
imations to the following forced damped GE:

R2 ≡
zu

zt
+ au

2
+ bu 

zu

zx
+ c

z
3
u

zx
3 + c(t)u − F(t) � 0, (2)

where c(t) gives the coefficient of the damping term which
arises due to different collisions that take place in plasma
physics and F(t) indicates the external forces. To our knowl-
edge there is no one attempt for studying this equation. $us,
the main goal of this work is to find some approximations for
this equation using different analytical and numerical methods.

2. Novel Exact Solutions to the Integrable
Gardner Equation

In order to obtain some traveling wave solutions (TWSs) to
(1), wemake the traveling wave transformation u � v(ξ) ≡ v,
(ξ � kx + λt + ξ0) which leads to

v′ akv
2

+ bkv + λ  + ck
3
v

(3)
� 0. (3)

Integrating (3) once over ξ and denoting the constant of
integration by d, we finally get the following Helm-
holtz–Duffing equation:

v″ +
d

ck
3 +

λ
ck

3 v +
b

2ck
2v

2
+

a

3ck
2v

3
� 0. (4)

Introducing the following ansatz,

v(ξ) � A + Bcn(ξ, m), (5)

into (4) and after direct calculations, we obtain



3

j�0
Fjcn

j
(ξ, m) � 0, (6)

where the coefficients Fj are given by

F0 � 2aA
3
k + 3A

2
bk + 6Aλ + 6 d ,

F1 � 6B aA
2
k + Abk + 2ck

3
m − ck

3
+ λ ,

F2 � 3B
2
k(2aA + b),

F3 � 2Bk aB
2

− 6ck
2
m .

(7)

Solving the system Sj � 0 will give us the values of
(A, B, d, λ) as

A � −
b

2a
,

B � ±
����
6cm

a



k,

d �
b
3
k − 12abck

3
(2m − 1)

24a
2 ,

λ �
b
2
k − 4ack

3
(2m − 1)

4a
.

(8)

$us, the cnoidal wave solution to GE (1) reads

u(x, t) � −
b

2a

± k

����
6cm

a



cn kx +
b
2
k − 4ack

3
(2m − 1)

4a
t + ξ0, m .

(9)

For letting m⟶ 1, the soliton solution is recovered.

u(x, t) � −
b

2a
± k

��
6c

a



sec h kx +
b
2
k − 4ack

3

4a
t + ξ0 . (10)

It is easy verified that the following solution is a rational
solution:

u(x, t) � −
b

2a
+

k

1 + kx + b
2
kt/4a 

���
− 6c

a



. (11)

To obtain a traveling wave solution in terms of sn (ξ, m)

and tanh(ξ), we make the following substitution:

u(x, t) � A + Bsn(ξ, m). (12)

Inserting the ansatz (12) into GE (1) will give us

R1 �
1

Bcndn


2

j�0
Sjsn

j
(ξ, m) � 0, (13)

where the coefficients Sj (j � 0, 1, 2) are defined by

S0 � aA
2
k + Abk − ck

3
− ck

3
m + λ,

S1 � (2aABk + bBk),

S2 � aB
2
k + 6ck

3
m .

(14)

$e solution of the algebraic system Sj � 0 (j � 0, 1, 2)

gives the values of coefficients (A, B, λ):

A � −
b

2a
,

B � ± k

�����

−
6cm

a



,

λ �
b
2
k

4a
+ ck

3
(m + 1).

(15)
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Inserting the values (A, B, λ) given in (15) into ansatz
(12), the solution in the form of Jacobi elliptic function sn
(ξ, m) is obtained:

u(x, t) � −
b

2a
± k

�����

−
6cm

a



sn kx +
b
2
k

4a
+ ck

3
(m + 1) t + ξ0, m .

(16)

Moreover, for m⟶ 1, the shock wave solution is
obtained:

u(x, t) � −
b

2a
± k

���

−
6c

a



tanh kx +
b
2
k

4a
+ 2ck

3
 t + ξ0 .

(17)

Remark 1. Equation (4) can be written in the following
form:

v″ + r0 + r1v + r2v
2

+ r3v
3

� 0. (18)

$e general solution to (18) can be expressed in the terms
of Weierstrass elliptic function as following:

v(ξ) � A +
B

1 + C℘ ξ + ξ0; g2, g3( 
. (19)

By substituting ansatz solution (19) into the Helm-
holtz–Duffing equation (18) and after tedious calculations,
we get,

B � −
6 A

3
r3 + A

2
r2 + Ar1 + r0 

3A
2
r3 + 2Ar2 + r1

,

C �
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3A
2
r3 + 2Ar2 + r1

,

g2 �
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4
r
2
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3
r2r3 − 6A

2
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2
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1
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4
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2
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4
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3
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2
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2
r
2
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2
2 + 36Ar0r1r3

+r
3
1 − 6r0r1r2 + 27r

2
0r3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(20)

$e constants A and ξ0 are determined from the initial
conditions v(0) � v0 and v′(0) � _v0. In particular, this gives
the general solution to both Duffing and Helmholtz equa-
tions, respectively

v″(ξ) + r1v(ξ) + r3v(ξ)
3

� 0,

v″(ξ) + r1v(ξ) + r2v(ξ)
2

� 0.
(21)

We see that the GE (1) admits solutions in terms of the
Weierstrass elliptic function. In general, any partial differ-
ential equation (pde) can be converted to the ode (18) via the
traveling wave transformation, admits TWSs in terms of

Weierstrass elliptic function ℘. Also, Weierstrass function ℘
may be expressed in terms of the Jacobian cn function, which
leads to cnoidal wave solutions to GE (1).

$e relation between the Jacobian and Weierstrass el-
liptic functions reads

cn(x, m) � 1 −
6

(4m + 1) (12/(4m + 1))℘ x; g2, g3(  + 1( 
,

(22)

with

g2 �
1
12

16m
2

− 16m + 1 ,

g3 �
1
216

(2m − 1) 32m
2

− 32m − 1 .

(23)

On the other hand,

℘ t; g2, g3(  � A + B
1

1 − cn
�
2

√ ������������������������
3g2/ 16m

2
− 16m + 1  t, m4



 

,

(24)

with

A � −

��
g2

√
(4m + 1)

2
�������������
48m

2
− 48m + 3

 ,

B �

�������������
3g2

16m
2

− 16m + 1



,

m �
1
4

(2 −
����
ζ + 3


),

(25)

where ζ is the least in magnitude root of the following cubic
equation:

4 g
3
2 − 27g

2
3 z

3
− 27g

3
2z + 23g

3
2 + 112g

2
3  � 0. (26)

Note that for g3
2 − 27g2

3 � 0, we have only one real root,

z �
733g

2
3

27g
3
2

. (27)

$en,

m �
1
2

−
1
54

���
730

√
≈ − 3.4282 × 10− 4

. (28)

Let g3
2 − 27g2

3 ≠ 0, the discriminant of the cubic (26)
reads

Δ � 432 g
3
2 − 27g

2
3  200g

9
2 + 9131g

2
3g

6
2 + 126560g

4
3g

3
2 + 338688g

6
3 .

(29)

In this case, our analysis depends on the sign of dis-
criminant (29). Below, we will discuss three cases which
depends on the sign of Δ.

2.1. First Case: Δ> 0. For Δ> 0, the cubic (26) has three real
roots in the following compact form:
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3g
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2��������

g
3
2 − 27g

2
3

 cos
1
3

2πk[

+ cos− 1
−

��������

g
3
2 − 27g

2
3



23g
3
2 + 112g

2
3 

27g
9/2
2

⎛⎜⎜⎝ ⎞⎟⎟⎠⎤⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎬

⎪⎭
,

(30)

where k � − 1, 0, 1.

2.2. SecondCase:Δ< 0. ForΔ< 0, the cubic (26) has only one
real root:

ζ �

��
Δ

√
− g

3
2 − 27g

2
3 

2
23g

3
2 + 112g

2
3  

2/3
+ 9g

6
2 − 243g

2
3g

3
2

2 g
3
2 − 27g

2
3 

������������������������������
Δ

√
− g

3
2 − 27g

2
3 

2
23g

3
2 + 112g

2
3 

3
 . (31)

2.3.9ird Case:Δ � 0. Here, suppose that g3
2 − 27g2

3 � 0, we
have two real roots for cubic (26):

z1 �
1
2

�����������

23g
3
2 + 112g

2
3

g
3
2 − 27g

2
3

3




,

z2 � −

�����������

23g
3
2 + 112g

2
3

g
3
2 − 27g

2
3

3




.

(32)

It follows from (24) that the period ofWeierstrass elliptic
function reads

T � 2
+∞

a

dx
�������������

4x
3

− g2 x − g3



� 2
�
2

√
�������������������
ζ
3g2

K
1
4

(2 −
����
ζ + 3


) 

4



,

(33)

where a is the greatest real root to the following cubic
equation:

4x
3

− g2x − g3 � 0. (34)

Using the identity (24) and the approximation (37), the
following approximation is obtained:

℘ t; g2, g3(  ≈ −

��
g2

√
(4m + 1)

2
�������������
48m

2
− 48m + 3

 +

���
3g2



�������������
16m

2
− 16m + 1


1 − cosm

�
2

√ ��������������������

3g2/ 16m
2

− 16m + 1  
4



t  

, (35)

where m is given by (25) and cosm(t):

cosm(t) �

����
1 + λ

√
cos(

����
1 + λ

√
t)

�����������������

1 + λ cos2(
����
1 + λ

√
t)

 , (36)

where λ � (1/14)(
��������������
m2 − 144m + 144

√
− m − 12).

$e Jacobian elliptic functions cn and sn may be ap-
proximated by means of the following expressions:

cn(t, m) ≈ cosm(t) ≔
����
1 + λ

√
cos(

����
1 + λ

√
t)

�����������������

1 + λ cos2(
����
1 + λ

√
t)

 , (37)

sn(t, m) ≈ sinm(t) ≔
sin(

����
1 + λ

√
t)

�����������������

1 + λ cos2(
����
1 + λ

√
t)

 , (38)

dn(t, m) ≈ dnm(t) ≔
�����������

1 − msin2m(t)



. (39)

In the following Table 1, we can check the accuracy of the
above obtained approximations.

We now give approximate expressions for inverse elliptic
cosine and inverse elliptic cosine as follows:

cn− 1
(t, m) ≈ cos− 1

m (t) �
1

����
λ + 1

√ cos− 1 t
���������
λ − λt

2
+ 1

 ,

(40)

sn− 1
(t, m) ≈ sin− 1

m (t) �
sgn(t)

����
λ + 1

√ cos− 1

�����
1 − t

2


������
1 + λt

2
⎛⎝ ⎞⎠, (41)

where − 1≤ t≤ 1.
In Table 2, the numerical values of approximations (40)

and (41) are displayed.

3. Approximate Analytical Solution to the
Forced Damped Gardner Equation

Let us suppose that u � v ≡ v(x, t) is a solution to the GE (1):

zv

zt
+ av

2
+ bv 

zv

zx
+ c

z
3

v

zx
3 � 0. (42)

We seek for approximate solution to the forced damped
GE (2) in the ansatz form:

u � f(t)v(xg(t), h(t)) + φ(t). (43)
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$e functions f, g, h, and φ are to be determined later.
Plugging ansatz (43) into (2) and taking the following value
of zv/zt into account:

zv

zt
� − av

2zv

zx
− bv

zv

zx
− c

z
3
v

zx
3,

(44)

we finally obtain

R2 � φ′(t) + c(t)φ(t) − F(t)( 

+ f(t)vx g(t)φ(t)(b + aφ(t)) + xg′(t)( 

+ av
2
f(t) f(t)

2
g(t) − h′(t) vx

+ cf(t) g(t)
3

− h′(t) vxxx

+ f(t)c(t) + f′(t)( v

+ f(t)g(t)(b + 2aφ(t)) − bh′(t)( vf(t)vx.

(45)

$e last expression suggests the choices:

φ′ + c(t)φ − F � 0,

f
2
g − h′ � 0,

fc(t) + f′ � 0,

g � f.

(46)

We will choose the functions f, g, h, and φ so that

f(0) � g(0) � 1,

h(0) � φ(0) � 0.
(47)

Solving system (46) and (47), we obtain the following
solutions:

f(t) � g(t) � exp − 
t

0
c(τ)dτ . (48)

h(t) � 
t

0
exp − 3

η

0
c(τ)dτ dη. (49)

Table 1: Numerical values of approximations (37) and (38).

m max− T≤t≤T|cn(t, m) − cosm(t)| max− T≤t≤T|sn(t, m) − sinm(t)|

− 1 0.00663668 0.00397374
− 0.9 0.00561563 0.00337397
− 0.8 0.00463848 0.00280023
− 0.7 0.00371582 0.0022567
− 0.6 0.00285937 0.00174918
− 0.5 0.0020823 0.00128479
− 0.4 0.00139952 0.000872175
− 0.3 0.000828108 0.00052203
− 0.2 0.000387927 0.000247775
− 0.1 0.000102461 0.0000664333
0 0 0
0.1 0.000115401 0.0000775637
0.2 0.00049276 0.000338399
0.3 0.00118967 0.000837207
0.4 0.00228433 0.0016531
0.5 0.00388836 0.00290054
0.6 0.0061719 0.00474848
0.7 0.00941955 0.00748209
0.8 0.0141814 0.0116506
0.9 0.0218477 0.018634

Table 2: Numerical values of approximations (40) and (41).

m max− 1≤t≤1|cn− 1(t, m) − cos− 1
m (t)| max− 1≤t≤1|sn− 1(t, m) − sin− 1

m (t)|

0. 0 0
0.1 0.000186339 0.000156673
0.2 0.000858447 0.000722853
0.3 0.00225528 0.00190314
0.4 0.00476205 0.00403892
0.5 0.0090332 0.00771515
0.6 0.0162603 0.0140741
0.7 0.0288284 0.0255169
0.8 0.0521858 0.0482857
0.9 0.105981 0.105797
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φ(t) � exp 
t

0
− c(τ)dτ  

t

0
exp − 

η

0
− c(τ)dτ F(η)dη.

(50)

$us, an approximate analytical solution to the damped
and forced GE will be

u(x, t) � exp − 
t

0
c(τ)dτ V x exp − 

t

0
c(τ)dτ , 

t

0
exp − 3

η

0
c(τ)dτ dη  + φ(t), (51)

where φ � φ(t) can found from (50) and V(x, t) � v(x, t) is
any analytic solution to the integrable GE (42).

4. FDM for Analyzing the Forced Damped
Gardner Equation

To apply FDM for analyzing (2), we first write this equation
in the following initial value problem (i.v.p.):

R2 � 0,

u(x, 0) � f(x),
 (52)

where Xi ≤x≤Xf and 0≤ t≤Tf.
$e space-time domain are divided into subintervals

with uniform size as

xi � Xi + iΔx, Δx �
Xf − Xi

m
,

tj � jΔt, Δt �
Tf

n
,

(53)

where m and n are integer numbers.
According to the FDM, the following derivatives for-

mulas are introduced:
zu

zt
xi, tj  �

ui,j− 2 − 8ui,j− 1 + 8ui,j+1 − ui,j+2

12Δt
,

zu

zx
xi, tj  �

ui− 2,j − 8ui− 1,j + 8ui+1,j − ui+2,j

12Δx
,

z
3
u

zx
3 xi, tj  �

ui− 3,j − 8ui− 2,j + 13ui− 1,j − 13ui+1,j + 8ui+2,j − ui+3,j

8Δx3 .

(54)

In the case, when i< 0 or i>m or j< 0 or j> n, we define
ui,j � u(xi, tj) � u(xi, tj), where u � u(x, t) is the analytical
approximation defined in Section 3.

Now, we solve the following system of the nonlinear
algebraic equations:

ui,j− 2 − 8ui,j− 1 + 8ui,j+1 − ui,j+2

12Δt
+ au

2
i,j + bui,j 

ui− 2,j − 8ui− 1,j + 8ui+1,j − ui+2,j

12Δx

+ c
ui− 3,j − 8ui− 2,j + 13ui− 1,j − 13ui+1,j + 8ui+2,j − ui+3,j

8Δx3 + c tj ui,j � F tj ,

(55)

with ui,0 � f(xi) and i � 0, 1, 2, . . . , m and j � 0, 1, 2, . . . , n.
If we already solved system (55), then, we may construct

an interpolation function with the data (xi, tj, ui,j) for i �

0, 1, 2, . . . , m and j � 0, 1, 2, . . . , n. $is interpolation func-
tion will represent the approximate numerical solution to
the evolution equation. Another numerical solution may be
obtained using the NDSolve Mathematica command.

5. Cubic Splines (Odd-order B-splines) for
Analyzing the Forced Damped
Gardner Equation

$e general odd B-splines of (2r − 1)− order are defined as

φi �

1
h

(2r− 1)


r− 1

j�0


j

k�0
(− 1)

k
2r

k

⎛⎝ ⎞⎠ x − ξi− (r− k) 
2r− 1⎛⎝ ⎞⎠χi− (r− j)

+ 

r− 1

j�0


j

k�0
(− 1)

k
2r

k

⎛⎝ ⎞⎠ ξi+r− k − x( 
2r− 1⎛⎝ ⎞⎠χi+(r− j)− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(56)

with h � (b − a)/n, ξi � a + ih, and
χs ≡ χs(x) � χ[a+sh,a+(s+1)h). Here, χs(x) � 1 for
a + sh≤ x< a + (s + 1)h and 0 otherwise and φi ≡ φi(x).

Note that for r � 2, we obtain the so-called cubic
B-splines as follows:

6 $e Scientific World Journal



φi �
1
h
3

Z0χi− 2(x) + Z1χi− 1(x)

+Z2χi(x) + Z3χi+1(x)

⎛⎝ ⎞⎠, (57)

with

Z0 � x − ξi− 2( 
3
,

Z1 � x − ξi− 2( 
3

− 4 x − ξi− 1( 
3

 ,

Z2 � ξi+2 − x( 
3

− 4 ξi+1 − x( 
3

 ,

Z3 � ξi+2 − x( 
3
,

(58)

Assuming that u(x, t) � 
n+1
k�i− 1δk(t)φk(x) and with the

help of Table 3, we get,

ut ξi, t(  � h
− 6 δi− 1′(t) + 4δi

′(t) + δi+1′(t)( ,

u ξi, t(  � h
− 6 δi− 1(t) + 4δi(t) + δi+1(t)( ,

ux ξi, t(  � 3h
− 5 δi+1(t) − δi− 1(t)( ,

uxx ξi, t(  � 6h
− 4 δi− 1(t) − 2δi(t) + δi+1(t)( ,

uxxx ξi, t(  � 6h
− 3

− δi− 1(t) + 3δi(t) − 3δi+1(t) + δi+2(t)( .

(59)

$ese formulas may be employed for solving PDEs like
KdV, KdV-Burgers, MKdV, Gardner, and many third-order
PDEs arising in different branches of science specially
plasma physics.

Now, in order to solve the i.v.p. (52), we must solve the
following system of nonlinear odes:

Table 3: Formulas for cubic splines at nodes.

∗ φi φi
′ φi

″ φ(3)
i

ξi− 2 0 0 0 6/h3

ξi− 1 1 3/h 6/h2 − (18/h3)

ξi 4 0 − (12/h2) 18/h3

ξi+1 1 − (3/h) 6/h2 − (6/h3)

X

0.0

–10

0

0

5

10

t

u

10

0.5
1.0

1.5

(a)

X

0.0
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0

0
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t

u
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0.5
1.0

1.5

(b)

X

0.0

–10

0

0
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t

u
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1.0

1.5

(c)

X
–15

0.0

0.2

u

0.4

0.6

0.8

1.0

–10 –5

Approximate Anly.
Cubic Spline

0 5 10 15

(d)

Figure 1: Profile of the approximate analytic soliton solution and the cubic B-splines soliton solution to the forced damped Gardner
equation (2) is presented.
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δi− 1′(t) + 4δi
′(t) + δi+1′(t) −

6c δi− 1(t) − 3δi(t) + 3δi+1(t) − δi+2(t)( 

h
3 −

·
3
h

δi− 1(t) − δi+1(t)(  δi− 1(t) + 4δi(t) + δi+1(t)( 

α + β δi− 1(t) + 4δi(t) + δi+1(t)( ( 

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ � F0 cos(ωt),

(60)

where i � − 1, 0, . . . , n, n + 1, δj(t) � 0 for j< − 1 or
j> n + 1.Wemust choose the value of h � (b − a)/n in order
to get the least residual error as possible.

6. Analysis and Discussion

We have obtained some analytical and numerical ap-
proximations the integrable GE (1) and nonintegrable
forced damped GE (2). For analyzing the obtained so-
lutions, we start by an exact solution to integrable GE (1).
Some exact solutions to GE (1) such as the cnoidal wave
solution given in (8) and the soliton solution given in (9)
are introduced during the analysis the approximate so-
lutions to the nonintegrable forced damped GE (2). Also,
the following exact soliton solution is introduced to an-
alyze (2).

u �
6ck

2

b +
���������
b
2

+ 6ack
2


cosh kx − ck

3
t 

. (61)

Now, based on soliton solution (61) and according to the
values (a, b, c, c(t), F0,ω, k) � (1, 1, 1, 0.2, 0.1, 4, 1), the
profile of the approximate analytic soliton solution and the
cubic B-splines soliton solution to the forced damped GE (2)
is, respectively, presented in Figure 1. Also, the global re-
sidual errors in the whole domain for both approximate
analytic solution and the numerical approximation using
cubic B-splines for n � 20 are, respectively, estimated as Lr �

0.630565 and Lr � 0.757672. Note that the accuracy of the
approximations depends on the values of physical param-
eters and the chosen exact solution.

7. Conclusion

In this work, some novel exact solutions to the integrable
Gardner equation (GE) and approximations to the non-
integrable forced damped Gardner equations have been
obtained. $e most important obtained results can be briefly
summarized in the following points:

(1) In the first part, the integrable GE was reduced to the
Helmholtz–Duffing equation using traveling wave
transformation. After that, some exact solutions have
been derived using the ansatz method. $e obtained
solutions have been derived in the form of Jacobi and
Weierstrass elliptic functions. Moreover, the relation

between Jacobi andWeierstrass elliptic functions has
been presented. $e obtained solutions can be re-
covered cnoidal waves, solitary waves, and shock
waves to the GE.

(2) In the second part, general formula for the ap-
proximate analytical solution to the forced damped
GE has been derived in detail. $is solution can be
recovered frommany nonlinear solutions that can be
created and propagated in plasma physics. Based on
this formula, the characteristics of many nonlinear
structures in plasma physics such as solitary waves,
shock waves, and cnoidal waves can be investigated.

(3) In the third part, the evolution equation (the forced
damped GE) has been analyzed using FDM in order
to obtain an approximate numerical solution.

(4) In the fourth-part, the cubic splines (Odd-order
B-splines) were employed for analyzing the forced
damped GE numerically.

Finally, the obtained solutions can help all researchers
who are interested by studying the nonlinear structures in
fluid mechanics, optical fiber, physics of plasmas, ocean and
seas, and water tank waves.

Appendix

A. Appendix I. The
coefficients Wj (j= � 0, 1, . . . , 8)

W0 � − 6gfxgx aA
2
f
2
gx + Abf

3
+ Abfg

2
− 18cf

2
gx + 6cg

2
gx ,

W1 � 3f
2
x 2aA

2
fg

2
gx + Abf

2
g
2

+ Abg
4

+ 12cf
3
gx − 36cfg

2
gx ,

W2 � − 2gf
3
x aA

2
g
2

+ 18cf
2

− 6cg
2

 ,

W3 � +2fg
3
x aA

2
f
2

− 6cf
2

+ 18cg
2

 ,

W4 � 3Abf
2

f
2

+ g
2

 g
2
x,

W5 � − 18c f
2

+ g
2

 fxx f
2
gx − 2fgfx − g

2
gx ,

W6 � − 18c f
2

+ g
2

 gxx f
2
fx − g

2
fx + 2fggx ,

W7 � − 6cg f
2

+ g
2

 
2
fxxx + 6cf f

2
+ g

2
 

2
gxxx,

W8 � − 6g f
2

+ g
2

 
2
ft + 6f f

2
+ g

2
 

2
gt.

(A.1)
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B.Appendix II: The coefficientsYj (j= � 0, 1, 2)

Y0 � 2 aA
2

− 24c Dx(f · g)
3

− 3Ab f
2

+ g
2

 Dx(f · g)
2
,

Y1 � − 18c f
2

+ g
2

 Dx(f · g) Dxx(f · f) + Dxx(g · g)( ,

Y2 � 6c f
2

+ g
2

 
2
Dxxx(f · g) + 6 f

2
+ g

2
 

2
Dt(f · g).

(B.1)
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