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Abstract: Time-series generated by complex systems (CS) are often characterized by phenomena
such as chaoticity, fractality and memory effects, which pose difficulties in their analysis. The paper
explores the dynamics of multidimensional data generated by a CS. The Dow Jones Industrial Average
(DJIA) index is selected as a test-bed. The DJIA time-series is normalized and segmented into several
time window vectors. These vectors are treated as objects that characterize the DJIA dynamical
behavior. The objects are then compared by means of different distances to generate proper inputs to
dimensionality reduction and information visualization algorithms. These computational techniques
produce meaningful representations of the original dataset according to the (dis)similarities between
the objects. The time is displayed as a parametric variable and the non-locality can be visualized by
the corresponding evolution of points and the formation of clusters. The generated portraits reveal a
complex nature, which is further analyzed in terms of the emerging patterns. The results show that
the adoption of dimensionality reduction and visualization tools for processing complex data is a key
modeling option with the current computational resources.

Keywords: dimensionality reduction; data visualization; clustering; time-series; complex systems

1. Introduction

Complex systems (CS) are composed of several autonomous entities, described by
simple rules, that interact with each other and their environment. The CS give rise to a col-
lective behavior that exhibits a much richer dynamical phenomena than the one presented
by the individual elements. Often, CS exhibit evolution, adaptation, self-organization,
emergence of new orders and structures, long-range correlations in the time–space domain,
chaoticity, fractality, and memory effects [1–4]. The CS are not only pervasive in nature,
but also in human-related activities, and include molecular dynamics, living organisms,
ecosystems, celestial mechanics, financial markets, computational systems, transportation
and social networks, and world and country economies, as well as many others [5–8].

Time-series analysis has been successfully adopted to study CS [9,10]. The CS outputs
are measured over time and the data collected are interpreted as manifestations of the
CS dynamics. Therefore, the study of the time-series allows for conclusions about the CS
behavior to be reached [11,12]. Nonetheless, real-word time-series may be affected by noise,
distortion and incompleteness, requiring advanced processing methods for the extraction
of significant information from the data [13]. Information visualization plays a key role
in time-series analysis, as it provides an insight into the data characteristics. Information
visualization corresponds to the computer generation of dataset visual representations. Its
main goal is to expose features hidden in the data, in order to understand the system that
generated such data [14,15]. Dimensionality reduction [16] plays a key role in informa-
tion visualization, since the numerical data are often multidimensional. Dimensionality
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reduction-based schemes try to preserve, in lower-dimensional representations, the in-
formation present in the original datasets. They include linear methods, such as classic
multidimensional scaling (MDS) [17], principal component [18], canonical correlation [19],
linear discriminant [20] and factor analysis [21], as well as nonlinear approaches, such
as non-classic MDS, or Sammon’s projection [22], isomap [23], Laplacian eigenmap [24],
diffusion map [25], t-distributed stochastic neighbor embedding (t-SNE) [26] and uniform
manifold approximation and projection (UMAP) [27].

Financial time series have a complex nature and their dynamic characterization is
challenging. The Dow Jones Industrial Average (DJIA) is an important financial index and
is adopted in this paper as a dataset generated by a CS. The paper explores an alternative
strategy to the classical time-domain analysis, by combining the concepts of distance and
dimensionality reduction with computational visualization tools. The DJIA time-series
of daily close values is normalized and segmented, yielding a number of objects that
characterize the DJIA dynamics. These objects are vectors, whose time-length and partial
time-overlap represent a compromise between time resolution and memory length. The ob-
jects are compared using various distances and their dissimilarities are used as the input to
different dimensionality reduction and information visualization algorithms, namely hier-
archical clustering (HC), MDS, t-SNE and UMAP. The aforementioned algorithms construct
representations of the original dataset, where time is a parametric variable. The structure
of the plots is further analyzed in terms of the emerging patterns. The formation of clusters
and the evolution of the patterns over time maps a dynamical behavior with discontinuities
for periods where the memory is somehow lost. Numerical experiments illustrate the
feasibility and effectiveness of the method for the processing of complex data.

The paper organization is summarized as follows. Section 2 reviews mathematical
fundamental concepts, namely the distances and the algorithms adopted in the study for
processing and visualizing data. Section 3 introduces the DJIA dataset. Section 4 analyses
the data and interprets the results in the light of the distances used. Section 5 assesses
the effect of the time-length and overlap of the segmenting window. Section 6 presents
the conclusions.

2. Mathematical Concepts and Tools
2.1. Distances

Given two points vi and vj in a set X , the function d(vi, vj) : X × X → [0,+∞]
represents a distance between the points if, and only if, it satisfies the conditions: identity
of indiscernibles, symmetry and triangle inequality [28].

In this paper, the distances {Arccosine, Canberra, Dice, Divergence, Euclidean, Jaccard,
Lorentzian, Manhattan, Sørenson, Generalized} = {d1, . . . , d10} are considered. Therefore,
given vi = (vi1, · · · , viP) and vj = (vj1, · · · , vjP) in a P-dimensional space, P , the 10
distances are given by [28]:

Arccosine : d1(vi, vj) = arccos

 ∑P
k=1 vik · vjk√

∑P
k=1 v2

ik

√
∑P

k=1 v2
jk

, (1)

Canberra : d2(vi, vj) =
P

∑
k=1

|vik − vjk|
|vik|+ |vjk|

, (2)

Dice : d3(vi, vj) =
∑P

k=1(vik − vjk)
2

∑P
k=1 v2

ik + ∑P
k=1 v2

jk

, (3)

Divergence : d4(vi, vj) = 2
P

∑
k=1

(vik − vjk)
2

(vik + vjk)2 , (4)
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Euclidean : d5(vi, vj) =

√√√√ P

∑
k=1

(vik − vjk)2, (5)

Jaccard : d6(vi, vj) =
∑P

k=1(vik − vjk)
2

∑P
k=1 v2

ik + ∑P
k=1 v2

jk −∑P
k=1 vikvjk

, (6)

Lorentzian : d7(vi, vj) =
P

∑
k=1

ln
(

1 + |vik − vjk|
)

, (7)

Manhattan : d8(vi, vj) =
P

∑
k=1
|vik − vjk|, (8)

Sørenson : d9(vi, vj) =
∑P

k=1 |vik − vjk|
∑P

k=1 |vik|+ |vjk|
, (9)

Generalized : d10(vi, vj) =
9

∑
r=1

λr
dr(vi, vj)

max[dr(vi, vj)]
, (10)

where λr ∈ R, ∑9
i=1 λr = 1.

The distances (1)–(9) have advantages and disadvantages, meaning that they unravel
specific features embedded in the data, while neglecting others. Therefore, the ‘generalized’
distance d10 may eventually capture a multi-perspective information by combining (1)–(9)
in a complementary form.

Other techniques [29] and distances [28] can also be adopted to compare the data.
However, a more extensive overview and utilization of a larger number of alternatives is
out of the scope of the paper.

2.2. Dimensionality Reduction and Visualization

In the next subsections, the dimensionality reduction and visualization techniques that
are adopted for data processing are presented, namely the HC, MDS, t-SNE and UMAP.

Given a set of N objects, vi, i = 1, . . . , N, in space P , all methods require the definition
of a distance d(vi, vj), i, j = 1, . . . , N, between the objects i and j.

2.2.1. The Hierarchical Clustering

The HC groups similar objects and represents them in a 2-dim locus. The algo-
rithm involves two main steps [30]. In the first, the HC constructs a matrix of distances,
D = [d(vi, vj)], of dimension N × N, where d(vi, vj) = d(vj, vi). In the second step, the al-
gorithm arranges the objects in a hierarchical structure and depicts them in a graphical
portrait, namely, a hierarchical tree or a dendrogram. This is achieved by means of two
alternative techniques: the divisive and the agglomerative procedures. In the divisive
scheme, all objects start in one single cluster and end in separate clusters. This is done by
iteratively removing the ‘outsiders’ from the least cohesive cluster. In the agglomerative
scheme, each object starts in its own cluster and all end in one single cluster. This is
accomplished by successive iterations that join the most similar clusters. The HC requires
the specification of a linkage criterion for measuring the dissimilarity between clusters.
Often, the average-linkage, dav(R, S), is adopted [31], where R and S represent two clusters.
Therefore, denoting d(vR, vS) the distance between a pair of objects vR ∈ R and vS ∈ S,
in the clusters R and S, respectively, we have:

dav(R, S) =
1

‖R‖‖S‖ ∑
vR∈R,vS∈S

d(vR, vS). (11)
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The reliability of the clustering can be assessed by the cophenetic coefficient cc [32]

cc =

∑
i<j

[
d(vi, vj)− av

(
d(vi, vj)

)][
d̂(ti, tj)− av

(
d̂(ti, tj)

)]
√√√√[∑

i<j

[
d(vi, vj)− av

(
d(vi, vj)

)]2][∑
i<j

[
d̂(ti, tj)− av

(
d̂(ti, tj)

)]2
] , (12)

where {vi, vj} and {ti, tj} stand for the original objects and their HC representations,
respectively, av(·) denotes the average of the input argument, and d̂(ti, tj) represents
the cophenetic distance between ti and tj. We always obtain 0 ≤ cc ≤ 1, with the limits
corresponding to bad and good clustering, respectively. Additionally, the original and
the cophenetic distances can be represented in a scatter plot denoted by Shepard diagram.
A good clustering corresponds to points located close to a 45◦ line.

2.2.2. The Multidimensional Scaling

The MDS includes a class of methods that represent high-dimensional data in a lower
dimensional space, while preserving the inter-point distances as much as possible. The
matrix D = [d(vi, vj)] feeds the MDS dimensionality reduction and visualization algorithm.
The MDS tries to find the positions of Q-dimensional objects, ti, with i = 1, . . . , N,
represented by points in space Q, so that Q ≤ P, while producing a matrix T = [d̂(ti, tj)]
that approximates D. This is accomplished by means of an optimization procedure that
tries to minimize a fitness function. Usually, the stress cost function, S , is adopted

S =

[
∑
i<j

[
d(vi, vj)− d̂(ti, tj)

]2
] 1

2

. (13)

The Sammon criterion is an alternative, yielding

S =


∑
i<j

[
d(vi, vj)− d̂(ti, tj)

]2

∑
i<j

[
d(vi, vj)

]2


1
2

. (14)

The ‘quality’ of the MDS is assessed by comparing the original and the reproduced
information. This can be accomplished by means of the Shepard diagram, which depicts
d(vi, vj) versus d̂(ti, tj). Additionally, since the stress S decreases monotonically with the
dimension Q, the user can establish a compromise between the two variables. Often,
the practical choice is Q = 2 or Q = 3, since those values yield a direct graphical represen-
tation in the embedding space. Nevertheless, if the MDS locus is unclear, then the user
must adopt another measure d(vi, vj) until a suitable representation is obtained.

2.2.3. The t-Distributed Stochastic Neighbor Embedding

The t-SNE [26] is a technique for visualizing high-dimensional datasets, with applica-
tions including computer security [33], music analysis [34], bioinformatics [35] and other
areas [36,37].

The algorithm comprises two main stages. In the first, for each pair of objects (vi, vj),
i, j = 1, . . . , N, the t-SNE constructs a joint probability distribution pij measuring the
similarity between vi and vj, in such a way that similar (dissimilar) objects are assigned a
higher (lower) probability

pij =
pj|i + pi|j

2N
, (15)
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pj|i =


exp[−d(vi, vj)

2/(2σ2
i )]

∑
k 6=i

exp[−d(vi, vk)
2/(2σ2

i )]
, j 6= i

0, j = i

, (16)

where pij = pji, pii = 0, ∑i,j pij = 1 and ∑j pj|i = 1, ∀i, j. The parameter σ2
i represents the

variance of the Gaussian kernel that is centered on vi. A particular value of σi induces a
probability distribution Pi, over all of the other datapoints. In other words, Pi represents
the conditional probability distribution over all other datapoints given the datapoint vi.
The t-SNE searches for the value of σi that generates a distribution Pi with the value of
perplexity specified by

perplexity(Pi) = 2H(Pi), (17)

where H(Pi) is the Shannon entropy of Pi

H(Pi) = ∑
j

pj|i log2(pj|i). (18)

As a result, the variation in the Gaussian kernel is adapted to the density of the data,
meaning that smaller (larger) values of σi are used in denser (sparser) parts of the data
space. The perplexity can be interpreted as a smooth measure of the effective number of vi
neighbors. Typical values of perplexity(Pi) are in the interval [5, 50].

In the second stage, the t-SNE calculates the similarities between pairs of points in Q

qij =
qj|i + qi|j

2N
, (19)

qij =


(1 + ||ti − tj||2)−1

∑
k 6=l

(1 + ||tk − tl ||2)−1 , j 6= i

0, j = i

, (20)

where the symbol || · || denotes the 2-norm of the argument, qij = qji, qii = 0, ∑i,j qij = 1
and ∑j qj|i = 1, ∀i, j.

The t-SNE performs an optimization, while attempting to minimize the Kullback–
Leibler (KL) divergence between the Gaussian distribution of the points in space P and the
Student t-distribution of the points in the embedding space Q:

KL = ∑
i 6=j

pij ln
pij

qij
. (21)

The minimization scheme starts with a given initial set of points in Q, and the algo-
rithm uses the gradient descent

∂KL
∂ti

= 4 ∑
j
(pij − qij)(ti − tj)(1 + ||ti − tj||2)−1. (22)

The KL divergence between the modeled input and output distributions is often used
as a measure of the quality of the results.

2.2.4. The Uniform Manifold Approximation and Projection

The UMAP is a recent technique [27] for clustering and visualizing high-dimensional
datasets, which seeks to accurately represent both the local and global structures embedded
in the data [38,39].

Given a distance, d(vi, vj), between pairs of objects vi and vj, i, j = 1, . . . , N, and the
number of neighbors to consider, k, the UMAP starts by computing the k-nearest neighbors
of vi, Ni, with respect to d(vi, vj). Then, the algorithm calculates the parameters ρi and σi,
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for each datapoint vi. The parameter ρi represents a nonzero distance from vi to its nearest
neighbor and is given by

ρi = min
j∈Ni
{d(vi, vj)|d(vi, vj) > 0}. (23)

The parameter ρi is important to ensure the local connectivity of the manifold. This
means that it yields a locally adaptive exponential kernel for each point.

The constant σi must satisfy the condition

log2 k = ∑
j∈Ni

exp
[−max(0, d(vi, vj)− ρi)

σi

]
, (24)

determined using binary search.
The algorithm constructs a joint probability distribution pij measuring the similarity

between vi and vj, in such a way that similar (dissimilar) objects are assigned a higher
(lower) probability

pij = pj|i + pi|j − pj|i pi|j, (25)

pj|i =

 exp
[−max(0, d(vi, vj)− ρi)

σi

]
, j 6= i

0, j = i
, (26)

where pij = pji, pii = 0, ∑i,j pij = 1 and ∑j pj|i = 1, ∀i, j.
In the second stage, the UMAP computes the similarities between each pair of points

in the space Q
qij = qj|i + qi|j − qj|iqi|j, (27)

qij =

{ [
1 + a||ti − tj||2b

]−1
, j 6= i

0, j = i
, (28)

where qij = qji, qii = 0, ∑i,j qij = 1 and ∑j qj|i = 1, ∀i, j. The constants a, b ∈ R are either
user-defined or are determined by the algorithm given the desired separation between
close points, δ ∈ R+, in the embedding space Q[

1 + a||ti − tj||2b
]−1
≈
{

1, ti − tj ≤ δ

exp[−(ti − tj)− δ], ti − tj > δ
. (29)

The UMAP performs an optimization while attempting to minimize the cross-entropy
CE between the distribution of points in P and Q

CE = ∑
i 6=j

[
pij ln

pij

qij
− (1− pij) ln

1− pij

1− qij

]
. (30)

The minimization scheme starts with a given initial set of points in Q. The UMAP
uses the Graph Laplacian to assign initial low-dimensional coordinates, and then proceeds
with the optimization using the gradient descent

∂CE
∂ti

= ∑
j

[
2ab[d(ti, tj)]

2(b−1)

1 + a[d(ti, tj)]2b pij −
2b

[d(ti, tj)]2(1 + a[d(ti, tj)]2b)
(1− pij)

]
(ti − tj). (31)

3. Description of the Dataset

The prototype dataset representative of a given CS corresponds to the DJIA daily
closing values from 28 December 1959 up to 12 March 2021. Each week includes 5 working
days. Occasional missing data are obtained by means of linear interpolation. The resulting
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time series x = {xk : k = 1, . . . , L} comprises L = 15970 values, xk, covering approximately
half a century.

Often, we pre-process x in order to reduce the sensitivity to a high variation in the
numerical values, yielding x̃ = {Φq(xk) : k = 1, . . . , L}. Functions Φq(·), which are
commonly adopted, are the logarithm of the values, the logarithm of the returns and the
normalization by the arithmetic mean, av(x), and the standard deviation, σ(x), given by

Φ1(xk) = ln xk, (32)

Φ2(xk) =

{
ln xk+1

xk
, k = 1, . . . , L− 1

0, k = L
, (33)

Φ3(xk) =
xk − av(x)

σ(x)
. (34)

Figure 1 depicts the evolution of x, as well as the logarithm of the returns x̃ = {Φ2(xk) :
k = 1, . . . , L}, which reveals a fractal nature. We verify the existence of 13 main periods
denoted from A toM. For k ∈ [1, 640], corresponding to the periods A and B, the values
of xk are small, starting with a decrease, followed by a recovering trend. This behavior is
followed by a sustainable increase in the DJIA during k ∈ [640, 1555], period C. The interval
k ∈ [1555, 5890] corresponds to the periods D, E and F , which are characterized by an
overall stagnation in the between of severe crises. For k ∈ [5890, 7237], that is, period G,
we have an important rising trend, interrupted abruptly, but rapidly recovered, marking
the beginning of periodH for k ∈ [7237, 10,340]. For k ∈ [10,340, 11,240], corresponding to
period I , the DJIA reveals a decreasing trend. This behavior is followed by the period J ,
during the interval k ∈ [11,240, 12,500], characterized by a sustained increase in the DJIA
values. For k ∈ [12,500, 12,840], the period K reveals a strong falling trend. Then, recovery
initiates and a rising trend is verified during the period L, that is, for k ∈ [12,840, 15,690].
This period is interrupted suddenly, but rapidly, recovered, signaling the beginning ofM,
corresponding to k ∈ [15,690, 15,970]. Table 1 summarizes the DJIA main periods and some
historical events occurred during 28 December 1959 up to 12 March 2021.

0 2000 4000 6000 8000 10000 12000 14000 16000

10
3

10
4

0 2000 4000 6000 8000 10000 12000 14000 16000

-0.3

-0.2

-0.1

0

0.1

Figure 1. The evolution of the time-series x and x̃ = {Φ2(xk) : k = 1, . . . , L}, in the period from 28 December 1959 up to
12 March 2021.
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Table 1. The DJIA main periods and some historical events occurred during 28 December 1959 up to 12 March 2021.

Period Interval, k Start Date End Date Main Events

A [1, 200] 28 December 1959 30 September 1960 1961 Berlin Wall; Bay of Pigs
B [200, 640] 30 September 1960 8 June 1962

C [640, 1555] 8 June 1962 10 December 1965 1962 Cuban Missile Crisis; 1963 John F. Kennedy Assassination;
1964 Vietnam War Begins; 1965 The Great Inflation Begins

D [1555, 2720] 10 December 1965 29 May 1970 1967 The Six Day War

E [2720, 3878] 29 May 1970 6 November 1974
1972 Watergate; Munich Olympics Massacre;

1973 U.S. Involvement in Vietnam Ends;
Arab Oil Embargo; 1974 President Nixon Resigns

F [3878, 5890] 6 November 1974 23 July 1982
1977 Panama Canal Treaty; 1979 Iran Hostage Crisis;

1980 Iraq - Iran War; 1981 President Reagan Shot;
1982 Falkland Islands War

G [5890, 7237] 23 July 1982 22 September 1987
1983 Grenada Invasion; 1986 U.S. Attacks Libya;

Chernobyl Accident; 1987 Financial Panic;
Stock Market Crash

H [7237, 10,340] 22 September 1987 13 August 1999

1989 U.S. Invades Panama; German Unification;
1991 The Golf War; Soviet Union Collapse;

1992 Civil War in Bosnia; 1993 World Trade Center
Terrorist Attack; 1995 Oklahoma Terrorist Attack; 1997 Asian

Currency Crisis; Global Stock Market Rout

I [10,340, 11,240] 13 August 1999 24 January 2003
2000 Bush - Gore Election Crisis; 2001 Terrorist Attack

on World Trade Center & Pentagon; Enron Crisis;
2003 War in Iraq

J [11,240, 12,500] 24 January 2003 23 November 2007 2004 Global War on Terror; 2005 Record High Oil Prices;
2007 Subprime Mortgage; Credit Debacle

K [12,500, 12,840] 23 November 2007 13 March 2009 2008 Credit Crisis;
Financial institution Failures

L [12,840, 15,690] 13 March 2009 14 February 2020

2010 European Union Crisis; Massive Debt;
2011 U.S. Credit Downgrade; 2012 European Debt;

2013 U.S. Government Shutdown; 2014 Oil Price Decline;
2015 Refugee Crisis; 2016 Brexit Referendum;

2017 Trump Administration; 2018 Warnings About Climate
Change; U.S. - China Trade War;

President Trump Impeachment Process

M [15,690, 15,970] 14 February 2020 12 March 2021 2020 COVID19 Pandemics; Black Lives Matter

To assess the dynamics of the DJIA, the time-series x̃ is segmented into N = b1 +
L−W

(1−α)W c, where W is the window length, α ∈ [0, 1] stands for the window overlapping
factor, and b·c denotes the floor function. Therefore, the ith, i = 1, . . . , N, window consists
of the vector vi = {Φq(xp) : p = (i− 1)(1− α)W + 1, . . . , (i− 1)(1− α)W + W}.

Figure 2 portraits the histogram of x̃ = {Φ2(xk) : k = 1, . . . , L} for consecutive
disjoint windows (α = 0) and W = 60. We verify the existence of fat tails in the statistical
distribution, as well as a ‘noisy’ behavior, which are also verified for other functions Φq
and values of α and W.
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Figure 2. The histogram of x̃ = {Φ2(xk) : k = 1, . . . , L} for consecutive disjoint time windows (α = 0)
and W = 60.

4. Analysis and Visualization of the DJIA

The DJIA time-series x is normalized using expression (34), yielding x̃ = {Φ3(xk) :
k = 1, . . . , L}. Naturally, other types of pre-processing are possible, but the linear transform
(34) is common in signal processing [40] and several experiments showed that it yields
good results.

In the next subsections, x̃ is segmented using consecutive disjoint (α = 0) time
windows of length W = 60 days, which yield N = 266 objects, vi, with i = 1, . . . , N. These
objects are processed by the dimensionality reduction and visualization methods, while
adopting different distances (1)–(9) to quantify the dissimilarities between objects. For the
generalized distance d10, given by expression (10), since no a priori preference for a given
formula is set, we adopt identical weights, that is, λr =

1
9 , r = 1, . . . , 9. The values of α and

W were chosen experimentally. Obviously, other values could have been adopted, but those
used lead to a good compromise between time resolution and suitable visualization.

4.1. The HC Analysis and Visualization of the DJIA

The neighbor-joining method [41] and the successive (agglomerative) clustering using
average-linkage are adopted, as implemented by the software Phylip [42] with the option
neighbor. Figure 3 depicts the HC trees with the distances d2, d3, d5 and d10. The circular
marks correspond to objects (window vectors) and the colormap represents the arrow of
time. We verify that the HC has difficulty in separating the periods A-F and, for distance
d5, this difficulty is also observed for the periodsH-J . For other distances, we obtain loci
of the same type.
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Figure 3. The hierarchical trees obtained by the HC for α = 0 and W = 60 (N = 266) with four distances: (a) d2; (b) d3;
(c) d5; (d) d10. The circular marks correspond to objects (window vectors) and the colormap represents the arrow of time.

The HC loci reflect the relationships between objects, but the interpretation of such
loci is difficult due to the presence of many objects and because we are constrained to 2-dim
visual representations. The reliability of the clustering, that is, how well the hierarchical
trees reproduce the original dissimilarities of the original objects in the dataset, was verified.
Nevertheless, we do not include the Shepard diagrams for the sake of parsimony.

4.2. The MDS Analysis and Visualization of the DJIA

We now visualize the DJIA behavior using the MDS. The Matlab function mdscale
with the Sammon nonlinear mapping criterion is adopted. Figure 4 depicts the 3-dim loci
obtained for α = 0 and W = 60 (N = 266) with the distances d2, d3, d5 and d10.

The reliability of the 3-dim loci was verified through the standard Shepard and stress
plots, which showed that the objects in the embedding space Q reproduce those in the
original space P . Those diagrams are not depicted for the sake of parsimony. We verify
that the MDS unravels patterns compatible with the DJIA 13 periods A-M. However,
the algorithm cannot discriminate between them. The patterns are composed by two
‘segments’ formed by objects that reveal an almost continuous and smooth evolution in
time. Each segment translates into a DJIA dynamics exhibiting strong memory effects
that are captured by the visualization technique with the adopted distance. The transition
between segments corresponds to some discontinuity where the memory of past values is
somehow lost.
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Figure 4. The 3-dim loci obtained by the MDS for α = 0 and W = 60 (N = 266) with four distances: (a) d2; (b) d3; (c) d5;
(d) d10. The circular marks correspond to objects (window vectors) and the colormap represents the arrow of time.

For other distances, we obtain loci of several types. However, it should be noted that
often the definition of an adequate distance (in the sense of assessing the dynamical effects)
necessitates some numerical trials. Different distances can lead to valid visual representa-
tions, but may be unable to capture the features of interest. For example, the correlation
distance, d11, given by

correlation : d12(vi, vj) =

1−

P

∑
k=1

[vik − av(vi)][vjk − av(vj)]√√√√ P

∑
k=1

[vik − av(vi)]
2

√√√√ P

∑
k=1

[vjk − av(vj)]
2



1
2

, (35)

leads to the loci shown in Figure 5, revealing that neither the HC nor the MDS can capture
the memory effects embedded in the dataset.

4.3. The t-SNE Analysis and Visualization of the DJIA

The Matlab function tsne was adopted to visualize the dataset x̃ = {Φ3(xk) : k =
1, . . . , L}. The algorithm was set to exact and the value 5 was given to the Exaggeration
and the Perplexity. These values were adjusted by trial in order to obtain good visu-
alization. The Exaggeration corresponds to the size of natural clusters in data. A large
exaggeration creates relatively more space between clusters in the embedding space Q.
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The Perplexity is related to the number of local neighbors of each point. All other param-
eters kept their default values. Figure 6 depicts the 3-dim loci obtained for the distances
d2, d3, d5 and d10. The loci reveal that the t-SNE can arrange objects according to their the
periods A-M and that the plots generated with the different distances are similar.
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Figure 5. The loci obtained for α = 0 and W = 60 (N = 266) with the correlation distance d11: (a) hierarchical tree;
(b) MDS locus.
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Figure 6. The 3-dim maps obtained by the t-SNE for α = 0 and W = 60 (N = 266) with four distances: (a) d2; (b) d3; (c) d5;
(d) d10. The circular marks correspond to objects (window vectors) and the colormap represents the arrow of time.
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4.4. The UMAP Analysis and Visualization of the DJIA

For implementing the UMAP dimensionality reduction and visualization, we adopted
the Matlab UMAP code, version 2.1.3, developed by Stephen Meehan et al. [43]. The func-
tion run_umap was used with parameters n_neighbors and min_dist set to 5 and 0.2,
respectively, adjusted by trial and error in order to obtain good visualization. These param-
eters correspond directly to k and δ introduced in Section 2.2.4. All other parameters are
set to their default values. Figure 7 depicts the 3-dim loci obtained for the distances d2, d3,
d5 and d10.
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Figure 7. The 3-dim loci obtained by the UMAP for α = 0 and W = 60 (N = 266) with four distances: (a) d2; (b) d3; (c) d5;
(d) d10. The circular marks correspond to objects (window vectors) and the colormap represents the arrow of time.

The UMAP can organize objects in Q according to their characteristics, identifying
well the periods A-M, independently of the adopted distance. Therefore, we conclude
that both the t-SNE and the UMAP perform better than the MDS in representing the
DJIA dynamics. The visualization has only slight variations with the distance adopted to
compare objects.
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5. Assessing the Effect of W and α in the Visualization of the DJIA Dynamics

The window width and overlap, W and α, represent a compromise between time
resolution and memory length. In this section, we study the effect of these parameters on
the patterns generated by the HC, MDS, t-SNE and UMAP. The analysis was performed
for all distances and several combinations of W and α. The results are presented for the
Canberra distance, d2, and the cases summarized in Table 2, where W = {90, 60, 30, 10}
and α = {0, 0.2, 0.5}. For other distances, we obtain similar conclusions.

Table 2. List of experiments varying W and α.

W α N W α N

E1 90 0 177 E7 30 0 532
E2 90 0.2 221 E8 30 0.2 665
E3 90 0.5 353 E9 30 0.5 1063

E4 60 0 266 E10 10 0 1597
E5 60 0.2 332 E11 10 0.2 1996
E6 60 0.5 531 E12 10 0.5 3193

Figures 8–11 depict the loci generated. Regarding the HC, we verify that the loci
are quite insensitive to the parameter W, with the exception of W = 10. For this value
of window length, the HC can discriminate objects in the periods A-F , despite the fact
that capability depends on the overlap α. For W = 10 and α = 0.5, the objects in A-F
spread out in space, but their clusters are still unclear. Concerning the MDS, besides the
density of objects, which, naturally, varies with N, the 3-dim loci are almost invariant with
respect to the parameters W and α. The t-SNE and UMAP reveal a superior ability to
generate patterns that correspond to dissimilarities between objects and, therefore, are able
to identify the 13 periods A-M. However, for the t-SNE, this ability is weakened as the
number of objects increases, N, meaning small values of W and high values of α. For such
cases, the generated loci are difficult to interpret. The UMAP reveals the 13 periods A-M
for all combinations of W and α. Moreover, for small values of W several sub-periods are
unraveled, which directly relate to the time evolution of the DJIA.
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Figure 8. The 3-dim loci obtained for d2 and W = 90: (a) HC and α = 0 (E1); (b) HC and α = 0.2 (E2); (c) HC and α = 0.5
(E3); (d) MDS and α = 0 (E1); (e) MDS and α = 0.2 (E2); (f) MDS and α = 0.5 (E3); (g) t-SNE and α = 0 (E1); (h) t-SNE and
α = 0.2 (E2); (i) t-SNE and α = 0.5 (E3); (j) UMAP and α = 0 (E1); (k) UMAP and α = 0.2 (E2); (l) UMAP and α = 0.5 (E3).
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Figure 9. The 3-dim loci obtained for d2 and W = 60: (a) HC and α = 0 (E4); (b) HC and α = 0.2 (E5); (c) HC and α = 0.5
(E6); (d) MDS and α = 0 (E4); (e) MDS and α = 0.2 (E5); (f) MDS and α = 0.5 (E6); (g) t-SNE and α = 0 (E4); (h) t-SNE and
α = 0.2 (E5); (i) t-SNE and α = 0.5 (E6); (j) UMAP and α = 0 (E4); (k) UMAP and α = 0.2 (E5); (l) UMAP and α = 0.5 (E6).
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Figure 10. The 3-dim loci obtained for d2 and W = 30: (a) HC and α = 0 (E7); (b) HC and α = 0.2 (E8); (c) HC and α = 0.5
(E9); (d) MDS and α = 0 (E7); (e) MDS and α = 0.2 (E8); (f) MDS and α = 0.5 (E9); (g) t-SNE and α = 0 (E7); (h) t-SNE and
α = 0.2 (E8); (i) t-SNE and α = 0.5 (E9); (j) UMAP and α = 0 (E7); (k) UMAP and α = 0.2 (E8); (l) UMAP and α = 0.5 (E9).
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Figure 11. The 3-dim loci obtained for d2 and W = 10: (a) HC and α = 0 (E10); (b) HC and α = 0.2 (E11); (c) HC and α = 0.5
(E12); (d) MDS and α = 0 (E10); (e) MDS and α = 0.2 (E11); (f) MDS and α = 0.5 (E12); (g) t-SNE and α = 0 (E10); (h) t-SNE and
α = 0.2 (E11); (i) t-SNE and α = 0.5 (E12); (j) UMAP and α = 0 (E10); (k) UMAP and α = 0.2 (E11); (l) UMAP and α = 0.5 (E12).

6. Conclusions

This paper explored a strategy representing an alternative to the classical time analysis
in the study multidimensional data generated by CS. The DJIA index of daily closing values
from 28 December 1959 up to 12 March 2021 was adopted for the numerical experiments.
In the proposed scheme, the original time-series was normalized and segmented, yielding
a number of objects. These objects are vectors, whose dimension and overlap represent
a compromise between time resolution and memory length. The objects were compared
using various distances and their dissimilarities are used as the input to the four dimen-
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sionality reduction and information visualization algorithms, namely, HC, MDS, t-SNE
and UMAP. These algorithms construct representations of the original dataset, where time
is a parametric variable, with no a priori requirements. The algorithms are based on the
minimization of the difference between the original and approximated data. The plots
were analyzed in terms of the emerging patterns. Those graphical representations are
composed of a number of ‘segments’, formed by objects with an almost continuous evolu-
tion in time, interlaid, eventually, by some discontinuities. This translates into the DJIA
dynamics that depicts phases with visible correlation. Consequently, memory effects and
transitions corresponding to some discontinuities where the memory of past values is not
present. Numerical experiments illustrated the feasibility and effectiveness of the method
for processing complex data. The approach can be easily extended to deal with more
features and richer descriptions of the data involving a higher number of dimensions.
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