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ABSTRACT

Characterization of individual cell types is fundamen-
tal to the study of multicellular samples. Single-cell
RNAseq techniques, which allow high-throughput
expression profiling of individual cells, have signif-
icantly advanced our ability of this task. Currently,
most of the scRNA-seq data analyses are com-
menced with unsupervised clustering. Clusters are
often assigned to different cell types based on the
enriched canonical markers. However, this process
is inefficient and arbitrary. In this study, we present
a technical framework of training the expandable
supervised-classifier in order to reveal the single-
cell identities as soon as the single-cell expression
profile is input. Using multiple scRNA-seq datasets
we demonstrate the superior accuracy, robustness,
compatibility and expandability of this new solution
compared to the traditional methods. We use two ex-
amples of the model upgrade to demonstrate how
the projected evolution of the cell-type classifier is
realized.

INTRODUCTION

Recent advances in single-cell RNA-seq (scRNA-seq) tech-
niques make it possible to profile the RNA transcript abun-
dance in a single cell, which enables us to reveal its iden-
tity. The mainstream scRNA-seq analytical methods uti-
lize dimensional reduction (DR) and unsupervised cluster-
ing (UC) algorithms to initiate the analyses. UC provides

the mathematical aggregation based on some cell group-
ing measures and DR facilitates the data visualization (DV)
of the clustering result by ‘projection’. The putative sub-
populations of cell types are thus identified with the en-
riched canonical signature signals. Nonetheless, this canon-
ical workflow has its limitations. First, the cell types were
not actually characterized by single-cell but by cluster. For
each cell type in the sample, it always requires a certain
number in order to form a discernable cluster. Second,
the layout of cells by DR and the resultant clustering are
model- and parameter-dependent. For example, the differ-
ent distance/similarity metrics could result in different clus-
tering effects (1–7). Kiselev et al. also have addressed the
challenge of choosing optimal parameters and try to use a
consensus matrix of multiple clustering results to optimize
the final solution (8). Moreover, the cell-type assignment of
these clusters highly relies on the investigator’s familiarity
with its signature molecules. Without sufficient background
knowledge, the cell type, especially the rare types in a sam-
ple will be hard to identify, even though it could play critical
roles. In this study, we aim to develop a new workflow that
bypasses the clustering step and directly assign the cell type
to each individual cell with less hassle on model selection or
cluster interpretation.

Supervised classifier (SC) has been widely used in the au-
tomatic image classification (9–11). Ramo et al. developed
CellClassifier based on the pixel intensities of cell imaging
(12). However, using only morphological information is in-
adequate to find a definite answer because the identity of
a single cell is mostly defined by its functional molecules
rather than by how it looks. The genome-wide mRNA pro-
filing provides more than enough information to discern
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its identity. SC3 method includes Support Vector Machine
(SVM), a supervised learning component, which makes it a
hybrid solution of UC and SC (8). Even though, the use of
SVM is based on the cluster ID of the current dataset rather
than the global learning of the features of the meaningful
cell types. The cell-type classification somewhat resembles
the image recognition in terms of high-dimensional data
transformation and classification. Using a globally trained
SC model, the user may easily solve the cell-type classifica-
tion problem in one single step. Some typical challenges in
scRNA-seq analyses, such as, the signal dropouts are like
the dead pixels of images, won’t necessarily impede from
recognizing them. All these facts make SC model not only
a potential solution for cell-type classification but also an
efficient and robust one.

In order to train the model and characterize cell types in
a more efficient fashion at the user end, we hereby propose
a non-linear SC model to predict cell types. The outper-
formance of the non-linear algorithm such as tSNE in the
scRNA-seq feature space has suggested the non-linearity of
the cell-type classification problem and the potential of non-
linear classifier models such as SVM and Artificial Neural-
Network (ANN). Unlike SC3 using the cells of the cur-
rent study for local supervised training using SVM, we in-
corporate the total Mouse-Cell-Atlas (MCA) datasets (13)
and other large-scale annotated single-cell datasets for the
global training of the ANN model. Moreover, using the
strategy of online learning, the ANN model can continu-
ously optimize the performance and adapt itself to the pre-
diction tasks in a specific sample context using the train-
ing dataset generated from the similar background. By in-
creasing the output nodes and applying the online learning
and the transfer learning, we are able to efficiently expand
the cell-type catalog for a broader scope of characterization
task. These are the extra benefits of the ANN as one of the
SC options. In this paper, we extensively examine the util-
ity, the reliability, the compatibility and the expandability
of the SuperCT framework and demonstrate with a few ex-
plicit examples on how to characterize cell types and gain
unprecedented insights of cell biology.

MATERIALS AND METHODS

Implementation of the SuperCT artificial neural network

The artificial neural-network structures and the learning al-
gorithms are implemented using Keras API. We design a
fully connected ANN model for the cell-type classification.
The inputs are the binary signals of 16 013 genes that are
homologous between human and mouse. We include these
homologous genes to adapt the model to the application
of both human and mouse study in this paper. To enhance
the compatibility across different scRNA-seq platforms, we
convert the digital expression values to the binary values,
which means the genes are either present or absent in the
cells. As seen in most of the flow-cytometry analyses, the
present/absent of the signature gene provides adequate in-
formation to discern most of the known cell types. There-
fore, it is believed that the dominant cell-type information
is preserved after the binary transformation. Also, the bi-
nary signal input is compatible across most of the Unique-

Molecular-Index-based (UMI) scRNA-seq platforms with
the robust performance of the cell-type classification.

The input layer is connected to a hidden dense layer with
200 neurons and the first layer is fully connected to the next
100 neurons, respectively, using ReLU (Rectified Linear
Unit) activation functions. Two random neuron dropouts
(dropout rate at 0.4) occur after each layer in order to con-
trol over-fitting. The number of the output nodes corre-
sponds to the number of the cell types in the catalog, which
is 30+1 for v1m/v1h and 37+1 for v2m respectively. As
the sample sizes of the different cell types vary from hun-
dreds to tens of thousands in MCA dataset, to avoid the
under-representation of the small-sample-size cell types in
the calculation of the accuracy function, we include the
class-weight based on the sample size of each type in the
model training. The loss function is defined as categorical
cross-entropy.

Organization and preprocessing of the training dataset

There are three versions of SuperCT discussed in this pa-
per, v1m (‘m’ stands for mouse), v1h (‘h’ stands for human
cells) and v2m, which are adapt to the different applica-
tion scenarios. We firstly select a total of 176 675 cells in
the 30 categories of known cell types defined in mouse cell
atlas project (MCA). These 30 cell types have more than
1000 counts in MCA. We then selected 4227 cells (4.2k-new-
type-cells) in the seven categories of known cell types other
than the 30 types in MCA. These seven cell types have >500
counts in MCA. We also synthesized 8923 scRNA-seq pro-
files (9k-synthetic-cells) by shuffling the randomly selected
MCA scRNA-seq profiles. Total 189,825 labeled single-cell
expression profiles (referred as the 190k training dataset)
were used for the training of SuperCT v1m and v2m. To
test the robustness of the model expansion from v1m to
v2m, the variable training labels of the two versions are
described as follow. Other than the 9k-synthetic-cells that
are always assigned to ‘unknown’ category, the 4.2k-new-
type-cells were assigned to the ‘unknown’ category in v1m
but assigned to seven specific types in v2m. We are won-
dering whether the extra seven types could be learned from
the ‘unknown’ category in the new training. Other than
the abovementioned MCA and synthesized cells, 8976 ad-
ditional peripheral blood mononuclear cells (PBMCs, 9k-
immune-cells) from 10× Genomics public database are in-
cluded for SuperCT v1h training. In order to make a fair
comparison, the 4.2k-new-type-cells were still assigned to
the unknown category in v1h because v1h is considered as
the optimization of v1m.

Initial training and continual learning of the models

For the SuperCT v1m, we use the batch learning of the en-
tire 190k MCA data. We applied SGD (Stochastic Gradient
Descent) by dividing training data into mini-batches of size
1024. 20% of training dataset was set aside for the train-
ing validation. Numbers of training epochs were manually
determined based on the gap between the training and val-
idation error to control over-fitting (early stopping).

In the two upgrades from v1m to v1h and v1m to v2m,
we took the v1m parameters to initiate the online learning.
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We also took the mini-batches of 1024 from the new train-
ing data and update the model parameters. In order to al-
leviate the ‘Catastrophic Forgetting’, we designed a ‘review
training’ mechanism to ‘refresh’ the memory of the previous
learning in the v1m. Randomly selected 4000 cells from the
previous training dataset are fed again for the model train-
ing after each epoch of learning by the new training dataset.

10-fold cross-validation over the training datasets and the
model

To evaluate the overall performance based on the total
training dataset (190K MCA and 9K human immune cells),
we performed 10-fold validation test. The v1m, v1h and
v2m datasets are randomly divided into 10 equal fractions.
Nine of them are used to perform training and one of them
is held out for testing. The 10 concordance values will show
the robustness of the model and the reliability of the train-
ing datasets.

Transfer learning in the model expansion

In the training of the new cell types using MCA dataset,
we freeze the first hidden layer (200 nodes) and only update
the weights of the second layers and the output layer. This
learning strategy will retain the transformed features resid-
ing in the hidden layer in previous training and use them for
the characterization of more cell types.

Testing datasets from the third party

The first testing dataset is based on the similar study as
MCA, which was performed by the Tabula Muris Consor-
tium (TMC) (14). We used the single-cell expression profiles
from 12 tissues generated on the 10xGenomics Chromium
platform in order to test the overall performance of the
models trained by MCA cells. The MCA and TMC cell
types are defined by two different groups of investigators.
To make a fair comparison, we first identified and selected
the TMC cell types that are corresponding to the 37 known
cell types defined in SuperCT (see the mapping in Sup-
plementary Table S1). The TMC cell types whose MCA-
corresponding type not confirmed are excluded for now. We
have total 25.5k cells in this test.

The second testing dataset was from cord blood mononu-
clear cells (CBMC, total 8005 cells). Stoeckius et al. used a
unique CITE-seq technique that allows to interrogate the
single-cell transcriptome and surface proteins at the same
time (15). The cell identities revealed by CITE-seq tech-
nique are validated by both RNA and surface protein sig-
nals.

The third testing dataset is obtained from an E18 mouse
brain 9k cells generated on the 10× Genomics platform
(16). This dataset will cover some new cell types that are
defined only in the upgraded model. We use this dataset to
test the robustness of the expansion of cell-type catalog.

The fourth testing dataset was a 2.8k-tumor-tissue-
associated-cells dataset obtained from a malignant pan-
creatic tumor tissue that was extracted from a genetically
modified mouse (the KPC model)(17) generated on the

Chromium platform. The study of the third dataset repre-
sents a typical scenario in which researchers seek to exten-
sively interrogate a heterogeneous tissue sample using the
scRNA-seq technique.

scRNA-seq dataset generated from mouse pancreatic tumor
tissue

Freshly harvested tumors from KPC (LSL-KrasG12D/+;
LSL-Trp53R172H/+; Pdx-1-Cre) mice were subjected to
mechanical and enzymatic dissociation using a Miltenyi
gentleMACS Tissue Dissociator to obtain single cells. The
10xGenomics Chromium Single Cell 3′ Solution was em-
ployed for capture, amplification and labeling of mRNA
from single cells and for scRNA-seq library preparation. Se-
quencing of libraries was performed on an Illumina HiSeq
2500 system. Sequencing data (fastq files) was input into
the CellRanger pipeline to align reads and generate gene-
cell digital expression matrices.

Unsupervised clustering, dimensional reduction, and data vi-
sualization

Most of the UC, DR and DV in this paper are accomplished
by a widely used scRNA-seq analytical suite, Seurat (17,18).
The Seurat objects are generated for each dataset with their
digital expression matrices as input. The PCA is performed
by Seurat RunPCA function. The tSNE coordinates are cal-
culated using Seurat RunTSNE function. The putative clus-
ters are defined by Seurat FindClusters function using the
top 10 principle components and other default parameters.
The prediction result is loaded to the Seurat metadata in
order to be shown in reference to the tSNE layout.

Top signature genes for each cell type ranked by information
gain

In order to calculate and rank the information entropy gain,
the following equations are used.

Gain (Type, gene) = Entropy(Type)

−Entropy(Type, Gene) (1)

Entropy (type) = −
∑

i

pi · log (pi ) (2)

Entropy (Type, Gene) = −
∑

i

(pi ·
∑

j

pi j · log(pi j ))

(3)

The binary values of each gene over the binary values as
a certain type for the total cells are utilized to make a con-
tingency table in order to calculate the p in Equations (2)
and (3). Whereas pi denotes the prior probability of cell be-
longing to the cell type i; pij denotes the probability of cell
belonging to the cell type i (yes or no) when gene signal is
in j status (present or absent). The top 50 genes are ranked
based on the value of information gain (Equation 1) in Sup-
plementary Table S2 for each type.
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Search of genes that correlate to the tumor progression

The epithelial tumor cells are characterized from the
scRNA-seq data of the mouse PDAC tumor tissues using
SuperCT v2m. These cells’ digital expression profiles were
pulled out as the input to calculate the pseudo-time order-
ing using Monocle2. The pseudo-time values of each cell
and the gene expression value for that cell were used to fit a
linear model using an R function ‘lm’. The p value of the co-
efficient of each linear model is used to determine whether
the gene expression correlates with the tumor progression
by time.

RESULT

Overview of SuperCT model structure, datasets, training
strategies and usage

The schematic workflow of SuperCT framework is shown
in Figure 1A. The detailed structure of the fully con-
nected ANNs for SuperCT is described in the Materials and
Methods. The training datasets were selected from MCA
project (∼190k cells) and peripheral blood mononuclear
cells (PBMCs, ∼9k cells). More details of the training data
organization are given in the Materials and Methods and
Supplementary Table S3. Other than the training dataset,
in order to further validate the utility of SuperCT classi-
fier in assigning cell types, we tested the performances us-
ing three independent datasets (14,19). More detailed de-
scriptions of these datasets are given in the Materials and
Methods. The overall concordance measure is defined to as-
sess the reliability of the prediction. More precisely, concor-
dance means whether the SuperCT predictions agree with
the manual cluster annotations in the literature, which were
based on the enriched canonical marker of the entire cluster
of a certain sample or the entire cellular sample sorted by
the canonical markers from the specific tissue.

There are three versions of SuperCT classifier discussed
in this paper, v1m, v2m and v1h. v1m and v1h both have
30 ‘known’ and one ‘unknown’ cell type in their catalogs.
v2m has 37 ‘known’ and one ‘unknown’ type. ‘m’ stands
for mouse and ‘h’ stands for human, which indicates on
what species the model works better. Version number in-
crease stands for the upgrade of the cell-type catalog. Figure
1B illustrates the two upgrade protocols that underlie the
typical evolution of SuperCT model. v1m is considered as
the initial model trained from a large training dataset pos-
sibly with some error or insufficiency. In the v1m-to-v1h
upgrade, we aim to test whether the online parameter op-
timization using additional training dataset from the sim-
ilar background will make the classifier perform better in
the target sample. In the v1m-to-v2m upgrade, we aim to
demonstrate the robust expansion of the capability to pre-
dict more cell types with little sacrifice on the concordance
over the predictions of other cell types.

We used another mouse cell study (TMC datasets) to val-
idate the overall performance of v2m model (Figure 1C).
The outperformance of SuperCT classifier over the prior
manual annotation based on UC methods will be compared
and discussed in detail in the following result section (Fig-
ure 2).

Using a 2.3 GHz CPU processor computer, the runtime
of SuperCT training on 190k cells is ∼20 s per epoch. It
usually takes less than 10 epochs to achieve convergent and
concordant result, which means overall training time is less
than 5 minutes. Using the same computational resources,
SuperCT is able to characterize ∼10 000 single-cell expres-
sion profiles in <1 min, whose prediction efficiency is far
superior to traditional UC-methods that requires a lot of
interactive operation and domain knowledge as input.

The initial, optimized and expanded models of SuperCT

We carefully examined the v1m validation results in refer-
ence to the original MCA cluster annotations using the con-
fusion matrix across the defined cell types. The true cell-type
calls go to the diagonal of the matrix. Other than the un-
defined seven cell types that go to ‘Unknown’ category, it
is found that a few known cell types show lower concor-
dance than the others (see confusion matrix in Supplemen-
tary Figure S1A). Low concordance suggests the unsatisfac-
tory performance of discerning these specific known types
in the v1m training, most of which were difficult to an-
notate at the first place because of many shared markers.
Even though the erroneous labels in MCA will compromise
the training effect, it was still difficult to correct the origi-
nal annotation without additional information to reach the
ground truth in such large scale of data as MCA. Besides, in
a testing dataset from human PBMC (CITE-seq), we found
that v1m prediction result is at low concordance (88.3%),
which is yet to improve (Figure 3A). Other than the possi-
ble erroneous labels in the training dataset, the subtle dis-
crepancy of the molecular signatures of immune cell types
between mouse and human may also explain the low perfor-
mance. Altogether, we believe the online optimization using
higher confidence training data is necessary and can tackle
the problem. Given the availability of the datasets for a few
of these types from another public resource (16), we were
able to input more human immune cells from the tissue with
higher confidence on the identity of human immune cells
(peripheral blood) and thus to enhance the feature learn-
ing. This one is called v1m-to-v1h upgrade.

In the model upgrade, instead of redoing the entire
MCA 190k dataset in combination with the new PBMC
9k dataset, we implemented a more efficient ‘online learn-
ing’ strategy in the v1m-to-v1h upgrade. In online learning,
‘Catastrophic Forgetting’ is a tendency of ANN that the
new training could make the model lose the ‘memory’ of the
old training. This issue has been also taken care of using a
‘review training’ mechanism. The details of both strategies
are described in the Materials and Methods. We used the
CITE-seq PBMC dataset whose background is similar to
the feature enhancement training dataset to assess the out-
performance of v1h over v1m whose result is shown in Fig-
ure 3 and explained later.

In the v1m-to-v2m upgrade, we specifically incorporated
the ‘transfer learning’ strategy, which means some of the
model parameters can be re-used in the new categorization
tasks of the expanded reference catalog. It is believed such
a strategy can improve the training efficiency by transfer
knowledge from previous learning tasks (20). More details
of implementation are given in the Materials and Methods.



PAGE 5 OF 12 Nucleic Acids Research, 2019, Vol. 47, No. 8 e48

A

B

C

Figure 1. Overview of SuperCT framework and the high concordance between the original MCA cell-type annotations and the SuperCT predictions. (A)
The workflow of SuperCT training, prediction and upgrade. (B) The two upgrades that lead to the optimized or expanded SuperCT classifier. (C) The
overview of TMC data original labels in comparison with SuperCT v2m predictions.

The high concordance (91.4%) between v2m predictions to
the original TMC annotation shown in the following results
suggests the success of transfer learning in cell-type charac-
terization task.

The v1m-to-v2m upgrade is nontrivial because it demon-
strates how to make the SuperCT characterize more cell
types when more cell types of training datasets are avail-
able. For the 190k MCA dataset, SuperCT v1m achieves
97.3% (171 677 cells) of concordance to the original la-
bels in the 30 ‘known’ type category (176 675 cells). Su-
perCT v2m achieves 96.6% (174 739 cells) of concordance in
the 37 ‘known’ type category (180 888 cells). Although the
concordance rate seems a little bit lower in the v2m, total
3,062 more cells’ identities were accurately revealed (from
unknown to specific known type) in the same dataset by the
v2m. Both v1m and v2m give 100% concordant result to
the MCA cells in the ‘Unknown’ category. In the meantime,
Sankey diagram (Figure 4A and C) shows this upgrade has
limited influence on the characterization of other known
types of v1m in the third party, which suggest the learning
of the new cell types does not make the model ‘confused’

over the other ones. In conclusion, the v2m does accurately
characterize more cell types, thus outperforms v1m.

To ensure the robustness of the three versions of SuperCT
algorithm and the reliability of the training datasets, we per-
formed 10-fold cross-validations on the training datasets
and the average ∼92% of concordances on the 10% hold-
out testing datasets show the satisfactory outcomes (see de-
tailed descriptions in Materials and Methods and in Sup-
plementary Table S4).

To ensure the SuperCT accuracy that is not a result of
over-fitting, we use 25,515 TMC cells independent of the
training datasets for prediction. The corresponding cell-
types in SuperCT v2m for TMC labels are linked and cross-
compared in this dataset. Figure 1C shows the predictions
of SuperCT v2m colored by the cell types, which share the
same color-code as original TMC cluster annotation. The
overall similar color scheme shows the high concordance.
The concordance among the 37 known cell types is as high
as 91.4%, which means SuperCT gives the overall accu-
rate predictions. Moreover, the careful examination on the
markers of some of these clusters indicates the SuperCT ac-
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Figure 2. The outperformance of SuperCT over traditional UC-based methods. (A) Discordant cell labels by TMC and by SuperCT v2m predictions
in spleen tissue: monocyte/macrophage versus dendritic cell. (B) The higher signal of dendritic cell signature genes suggests the SuperCT gives more
convincing labels. (C) Down-sampling makes the minor cell populations lose the power to form discernable cluster but SuperCT can still characterize the
cell type. (D) The separated clusters of the same cell types derived from batch difference can still be correctly characterized by SuperCT.
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D E F
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Figure 3. The upgraded predictions of CITE-seq human PBMC cells that are confirmed by the marker signals of both surface proteins and RNAs. (A) The
original cluster labels on the tSNE layout of CITE-seq PBMC cells. (B) The predictions by SuperCT v1m. (C) The predictions by SuperCT v1h. (D) The
fractions by the original CITE-seq PBMC cell types. (E) The fractions of the SuperCT v1m cell-type predictions. (F) The fractions of SuperCT v1h cell-type
predictions. (G) The signal distributions of the canonical marker genes for the PBMC subpopulations that are concordant to the SuperCT predictions.

curacy is even higher because TMC mislabeled some of the
cells (result shown in the next section). Supplementary Fig-
ure S1D shows the concordance of predictions for each to
the 37 types.

SuperCT solves the limitations of unsupervised clustering
methods

We demonstrate that SuperCT overcomes the three chal-
lenges that are commonly seen when unsupervised cluster-
ing is performed.

Challenge A: the unexpected cell type can be easily mis-
labeled to the similar one due to the lack of familiarity of

the specific markers. Figure 2A shows some of the TMC
macrophage cells in a mouse spleen are labeled as dendritic
cells by SuperCT. Figure 2B shows the signal distribution of
the genes over two cell types predicted by SuperCT, which
suggest SuperCT most likely gives the correct answer on
them. These dendritic-cell markers were probably not ex-
amined by the TMC investigators.

Challenge B: Small number of cells of a certain type won’t
be easily characterized by UC. Figure 2C shows two puta-
tive clusters defined by the default Seurat unsupervised clus-
tering parameters after down-sampling of the same spleen
tissue dataset (randomly selected 300 from 6113 cells). We
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A B C

D E F

Figure 4. The assessment of the v1m-to-v2m upgrade by comparing the SuperCT predictions of different version in both 190k training dataset and E18
mouse brain dataset. (A) The Sankey diagram showing the upgrade of SuperCT v2m (left) labels from SuperCT v1m (right) in 190k training dataset. (B)
The signal of the signature genes indicating the corresponding cell types of different clusters in E18 brain dataset. (C) The Sankey diagram showing the
upgrade of SuperCT v2m (left) labels from SuperCT v1m (right) in the 9k E18 brain dataset. Most of the new cell types are from ‘unknown’ types. Some of
the Microglia are from mono/macrophage type and some are from ‘unknown’ category. (D) Unsupervised clusters of 9k E18 brain dataset. (E) SuperCT
v1m predictions of 9k E18 brain dataset. (F) SuperCT v2m predictions of 9k E18 brain dataset.

compared the original TMC labels, SuperCT predictions,
and the UC result. The tSNE layout shows the distribution
of the minor cell type identified in the original dataset (n =
6113, shown as Figure 2A) cannot form an obvious cluster
in the down-sampled dataset (n = 300, shown as Figure 2C)
that makes the minor cell population very hard to discern.
Nonetheless, the SuperCT can still accurately characterize
the small-population cell types that are concordant to the
TMC labels defined before downsizing, no matter how small
the cell count is or how the tSNE layout looks like.

Challenge C: Figure 2D shows the tSNE layout of the T
cells (originally defined by TMC) extracted from two im-
mune tissues, spleen (sample id: P7 6, n = 1353) and bone
marrow (sample id: P7 2, n = 90). The biological and/or
technical variability leads to observable cluster separations
in two tissues (Figure 2D, left panel). The SuperCT gives

1435 T cells predictions (99.4% concordance) with lease
impact of the cluster separation (Figure 2D, right panel).
Nonetheless, the technical or the biological difference that
drives the cluster separation needs to be figured out.

In summary, the SuperCT prediction is independent of
the result of clustering or human interpretation. Neither
insufficiency of cells nor batch effect impedes the accurate
characterization of the cell types.

Cell-type-specific signature genes defined by SuperCT

As we know, each cell type has multiple signature genes
that dictate its function and reveal its identity. Although Su-
perCT did the classification work in a ‘blackbox’, we were
still able to uncover the signature genes by ranking the infor-
mation gain of each gene’s presence/absence in discerning a
cell type from the other types (More details are given in the
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Materials and Methods). The top 50 genes for each of 37 cell
types are shown as examples in the Supplementary Table S2.
These top-rank genes provide the clue to explore the unique
molecular features that underlie the v2m 37-cell-type cate-
gorization. Some of the top-rank genes, such as CD3D for
T cells, CD79A for B cells, KDR for endothelial etc., are
very familiar to us, though many others have never been re-
ported previously which provides the new insights into these
cell types.

SuperCT predictions on CITE-seq dataset

For the CITE-seq CBMC dataset, Figure 3A–C shows the
layout of four predominant clusters, one minor population
hidden at the lower corner (classical dendritic cells) and one
minor segregated cluster (plasmacytoid dendritic cells). The
original paper defined these five cell clusters based on their
surface marker signals and the signature RNA signals. Fig-
ure 3B shows the characterizations by SuperCT v1m. The
overall concordance is 88.3%. Figure 3C shows the char-
acterizations by SuperCT v1h. The overall concordance is
98.5%. Supplementary Figure S1e gives the details of the
concordance of each predicted cell type on v1h. Figure 3D–
F shows the percentage of the annotated cell types. Figure
3G shows more details of the marker signal of both sur-
face proteins (top row) and RNA transcripts (bottom row)
for the five cell types. The result suggests v1h gives the pre-
dictions with higher concordance than v1m in CITE-seq
PBMC dataset.

SuperCT predictions on E18 mouse brain dataset

In order to specifically validate the expandability of this
SuperCT framework, we carefully examined the change of
the prediction result before and after the model upgrade
in MCA training dataset and E18 mouse brain dataset.
For the 190k training dataset, the Sankey diagram, Fig-
ure 4A shows that the seven new cell types defined by
v2m were mainly derived from the ‘unknown’ types as de-
fined by v1m. In E18 mouse brain dataset, three out of
seven additional cell types, (Radial glia, Microglia, and
Schwann cells) in v2m which are nervous-system-related
were anticipated in the mouse brain tissue. The Sankey di-
agram for this dataset, shown in Figure 4C, provides the
details on how the SuperCT v2m have learned the three
new cell types from the ‘unknown’ classes or the similar
cell types (microglia versus mono./macrophage) from v1m.
This result suggests, by increasing the output nodes of ANN
model and including sufficient new training cells, SuperCT
is able to predict more specific cell types. Interestingly, v1m
made an ‘excusable’ mistake by taking microglia cells as
monocyte/macrophages (Figure 4A, C and E). This ‘mis-
take’ can be explained by the similar roles of microglia to
the nervous system as the macrophage to the other part of
a mammalian body. Figure 4B and Supplementary Table
S2 also shows multiple genes, such as colony-stimulating
factor receptor (CSF1R) and Fc fragment of IgG recep-
tor (FCGR3A), are shared by mono./macrophage and mi-
croglia cells. Figure 4E and F shows the tSNE layout of
the predicted cell types by v1m to v2m, suggesting the suc-
cessful evolution of the model predictions from unknown

to specific cell types that gradually uncover the role of the
unsupervised cell clusters in the Figure 4D.

SuperCT predictions on the KPC mouse tumor dataset

At last, we summarize the SuperCT result of a pancreatic
ductal adenocarcinoma dataset derived from KPC mouse
(mPDAC, dataset #3). Figure 5A shows Seurat FindClus-
ters function yielded 12 putative cell clusters while SuperCT
characterized total 17 cell types (Figure 5C). We were par-
ticularly interested in the primary epithelial tumor cells,
which had been assigned to ‘Epithelial’ type by SuperCT
v2m (Figures 4C and 5B). We then perform the in sil-
ico ‘sorting’ of the predicted 1940 epithelial tumor cells.
The typical mPDAC markers, e.g. EPCAM, cytokeratin 19,
CD133 etc., were indeed enriched in these cells, validating
the tumor cell identity (Supplementary Figure S3). With
the cell identity information brought by SuperCT v2m, we
were able to further explore whether any dynamic change
of the molecular signals could be observed in the predicted
epithelial tumor lineage. The pseudo-temporal analysis was
performed on these ‘sorted’ tumor cells using Monocle 2
method (21). A tumor progression trajectory was thus de-
rived. The order information of the tumor cells in the in-
ferred trajectory was utilized to perform the regression anal-
ysis in order to reveal the relationships between the tumor
progression and the gene expression change. Supplemen-
tary Table S5 shows a list of genes that give significant P-
values for the regression coefficient. (See details in the Ma-
terials and Methods). A number of the correlated genes,
such as N-cadherin, Twist1, Loxl2 etc., that are involved to
the epithelial-mesenchymal-transition (EMT) were identi-
fied. (shown in Figure 5E) Other than the epithelial tumor
population we have extensively discussed as above, the clus-
ters C4+C11, C9+C10 and C12 defined by Seurat Finder-
Clusters function are corresponding to the SuperCT pre-
dictions of monocyte/macrophage, stromal and endothelial
cells (Figure 5A and B). In here, SuperCT gives explicit in-
terpretation on these clusters.

Miscellaneous

In comparison between UC cluster and SC predictions, it
is found many of the unsupervised clusters determined by
multiple top principal components (distance metric imple-
mented in Seurat) can be explained by SuperCT predictions,
which suggests the subpopulations segregated in the high
dimensional space could correlate to the previously defined
cell types. Even though some of the clusters might need to be
further explored (Supplementary Figures S2, S3D–F, S4A,
and B).

It is also notable, the MCA dataset was generated on the
Microwell-seq platform and the 4.2k PBMC dataset was
generated on the Chromium scRNA-seq platform (10× Ge-
nomics). Three testing datasets are generated on the plat-
forms of CITE-seq, and Chromium scRNA-seq platforms,
respectively. All these platforms produce the typical digi-
tal expression matrices based on UMI counts. Moreover,
CITE-seq PBMC dataset was generated from human tis-
sue whereas the MCA, E18 brain and mPDAC datasets
were generated from mouse tissues. The reliable results sug-
gest the compatibility of SuperCT framework is not only
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Figure 5. De-convolution of the signal of the constituent populations of mouse pancreatic tumor tissue. (A) The unsupervised cell clusters of the mPDAC
tissue defined by Seurat FindClusters function. (B) The predicted cell types of the mPDAC tissue. The minor types with less than five cells are not shown
in color legend. (C) The fractions for the cells of the predicted cell types in mPDAC. The epithelial tumor cells in the red box are sorted out for the
downstream analyses. (D) the pseudo-temporal trajectory of the tumor progression based on sorted tumor cells plotted by Monocle 2. (E) The EMT genes
display up-regulations and correlate to the tumor progression.

across different scRNA-seq platform but also across differ-
ent mammalian species, though the online optimization like
v1m-to-v1h upgrade would benefit the application of the
specific scenario.

DISCUSSION

In this study, using training and independent testing
datasets, we have demonstrated the superior performance
of the supervised-learning-based classifiers in the character-
ization of the previously defined cell types in the heteroge-
neous tissue samples. This is the first scRNA-seq analytical
framework that is independent of unsuperversied cluster-
ing. With least requirement of the expertise or the bioinfor-
matics skillset from the individual user, the SuperCT clas-

sifier delivers accurate cell types information for thousands
of single-cells in just a few minutes.

A classifier with good performance is not built overnight.
Neither is it a one-size-fit-all model. It is actually the grow-
ing human knowledge that drives the machine learning,
which means a continual learning mechanism of this frame-
work should be designed at the very beginning. This is also
a big advantage of SuperCT framework over the other exist-
ing solutions. The two successful upgrades described in this
paper have proved that the online-learning and the transfer-
learning algorithm make the model evolution not only pos-
sible but also efficient.

Before the human cell atlas data is generated and re-
leased, we don’t have the comprehensive training dataset re-
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sources to cover too many human cell types. In this study,
we have found that the SC model trained from the mouse
cell types is also applicable to human cells in most of the
predictions. This is not a surprising result because human
and mouse do share many homologous genes and they con-
tribute to the similar functional cells with the overall simi-
lar molecular signatures. It is believed that a general model
trained from a typical mammalian species should be appli-
cable to another mammalian species. This finding will ex-
pand the scope of the application when the training data is
in short for a certain species. Nonetheless, it is intuitively be-
lieved that the cell-type classifier should work better when
the training data is from the same background.

Supervised and unsupervised methods play the comple-
mentary roles in the growing findings facilitated by machine
learning. The classification results from both methods in the
analyses of scRNA-seq data can be the cross-reference to
each other. As it has been observed, many of the cell group-
ing defined by UC can be validated by SC. The cell group-
ing by SC takes the full advantage of the a priori learn-
ing that makes the cell type prediction less subjective but
more efficient. The UC cell grouping is driven by the current
data, whose new information could lead to the new findings.
Three possible scenarios in UC and SC comparison should
be further explored in order to achieve new findings. (i) The
cells form segregated clusters by a UC method with cluster-
specific molecular features but SC characterization may give
only one cell-type. (ii) There is an obvious cluster, which
may be categorized as ‘unknown’ by SC. (iii) There is a cell
type that is characterized in the tissue that may ‘not make
any sense’, such as the ‘monocytes’ were found in mouse
brain by SuperCT v1m.

DATA AVAILABILITY

The web app for different versions of SuperCT can be acces-
sible from the following URL. https://sct.lifegen.com/. The
accession number for the KPC mouse PDAC tumor data
shown in this paper is NCBI GEO: GSE126388. Sample
Y00029 is what has been used in this paper.
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Supplementary Data are available at NAR Online.
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