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ABSTRACT Accurate short- and mid-term blood glucose predictions are crucial for patients with diabetes
struggling to maintain healthy glucose levels, as well as for individuals at risk of developing the disease.
Consequently, numerous efforts from the scientific community have focused on developing predictive models
for glucose levels. This study harnesses physiological data collected from wearable sensors to construct a
series of data-driven models based on deep learning approaches. We systematically compare these models
to offer insights for practitioners and researchers venturing into glucose prediction using deep learning
techniques. Key questions addressed in this work encompass the comparison of various deep learning
architectures for this task, determining the optimal set of input variables for accurate glucose prediction,
comparing population-wide, fine-tuned, and personalized models, and assessing the impact of an individual’s
data volume on model performance. Additionally, as part of our outcomes, we introduce a meticulously
curated dataset inclusive of data from both healthy individuals and those with diabetes, recorded in free-living
conditions. This dataset aims to foster research in this domain and facilitate equitable comparisons among

researchers.

INDEX TERMS Diabetes, Glucose prediction, deep learning, transfer learning.

IMPACT STATEMENT Application of deep learning models to wearable sensor data provides a promising
avenue for accurate blood glucose prediction, offering a practical solution for patients managing diabetes and

those at risk.

I. INTRODUCTION

In the last decades, diabetes has emerged as a significant
global public health concern. The number of individuals liv-
ing with diabetes increased from 108 million in 1980 to 422
million in 2014, and the global prevalence (age-normalized)
nearly doubled from 4.7% to 8.5% among adults during the
same period [1]. As of 2019, an estimated 463 million adults

were living with diabetes, projected to reach 578 by 2030 and
700 million by 2045 [2].

Individuals with diabetes mellitus face the daily challenge
of regulating their blood glucose levels within a healthy
range to avoid severe adverse effects associated with both
hypoglycemia and hyperglycemia events. While the target
range should be personalized to meet each patient’s specific
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needs [3], the standard target for individuals with Type I
Diabetes Mellitus (T1DM) is 70-180 mg/dl. Achieving this
range involves weight management, regular physical activity,
dietary control, and insulin administration. The latter depends
on continuous monitoring of blood glucose levels [4].

Recent technological advances have greatly benefited di-
abetes treatment. Several mechanisms are now available for
supplying exogenous insulin to the body, including insulin sy-
ringes, pens, oral medications, and insulin pumps [5]. Further-
more, the advent of Continuous Glucose Monitors (CGMs)
has ushered in the era of artificial pancreas (AP) systems,
capable of automatically dispensing insulin to enable precise
and soft automatic control [6]. In this context, short- and mid-
term predictions of blood glucose concentration have become
a valuable tool to support individuals with diabetes and those
at risk of developing the condition in their efforts to manage
and regulate their glucose levels. Notably, the most successful
control technique used in AP systems, model-based predictive
control (MPC) [7], relies on predictive models that forecast
future blood glucose values to calculate the optimal amount
of insulin to be supplied.

Several modeling techniques have been assessed for build-
ing predictive models of blood glucose, typically with pre-
diction horizons ranging from 30 to 60 minutes into the fu-
ture [8]. However, this is a challenging task due to the need to
account for various disturbances, such as the glycemic impact
of exercise (which can lower blood sugar levels) and food
intake (which can raise them) [6]. For instance, many com-
mercially available AP systems require user-initiated insulin
bolus administration at mealtime [9]. Moreover, understand-
ing how exercise, circadian rhythms, and dietary intake affect
blood glucose levels in both healthy individuals and those
with TIDM is of utmost importance [10]. This insight may
justify the incorporation of these variables into the models,
potentially increasing their predictive accuracy.

Advances in sensor technologies have greatly simplified the
real-time measurement of a myriad of physiological variables,
which can be employed to estimate individual characteristics
such as circadian phase [11] or directly utilized as inputs for
data-driven models [12]. However, despite the existence of
several open-source glucose prediction datasets and simula-
tors, most of these resources predominantly focus on glucose
levels and insulin administration, disregarding other physio-
logical variables. This omission poses a significant challenge
when attempting to model and gain a deeper understanding
of the role of these variables in the glucose regulatory sys-
tem. Notable examples of open-source datasets incorporat-
ing multiple physiological variables include the OhioT1DM
dataset [13], and the more recent DiaTrend dataset [14]. Nev-
ertheless, there is still a shortage of studies utilizing variables
beyond glucose and insulin levels and attempting to determine
their predictive capabilities, if any, for glucose prediction
tasks in both healthy individuals and those with diabetes.

A rigorous data acquisition protocol and modeling ap-
proach are essential to determine the optimal combination
of physiological variables, model architectures, and training
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strategies for blood glucose predictive modeling. To address
these challenges, our study involves the collection of a novel
dataset and systematic comparisons of several recurrent deep
learning models, recognized for their robust performance
in multi-step ahead glucose prediction, utilizing various
combinations of input variables and diverse training methods.
Our primary objective is to identify the model best suited for
accurate glucose prediction in both healthy individuals and
those with diabetes.

The main contributions of this work are twofold: (i) we pro-
vide the research community with a novel dataset comprising
a diverse set of physiological measurements collected from
individuals with diabetes and those without the condition, all
in real-world, free-living conditions, to promote and facili-
tate research in blood glucose prediction; and (ii) using this
dataset, we conduct a comprehensive evaluation of several re-
current neural network architectures, trained with different ap-
proaches and using different sets of input variables, in order to
address common questions that practitioners and researchers
entering the field may have.

The remainder of the paper is organized as follows: Sec-
tion II details the data collection process, data preprocessing
steps, and the training methodologies employed for the se-
lected models. Section III presents the evaluation results under
various training techniques. Subsequently, Section IV offers a
brief discussion and outlines the broader implications of our
work. Finally, Section V provides concluding remarks.

Il. MATERIALS AND METHODS

A. DATA COLLECTION

We collected ambulatory data from a total of 20 participants,
consisting of both healthy individuals and those with T1DM.
Recruitment was conducted through social media channels
and flyers posted at the University. All participants provided
informed written consent for their involvement in the study.
The Scientific Ethics Committee of the School of Medicine,
Pontificia Universidad Catélica de Chile, granted approval for
this study on May 5th, 2020, under Project 191015032. Each
participant’s involvement spanned seven days, during which
they carried various ambulatory monitoring devices (Fig. 1).
Specifically, we employed the Medtronic’s Guardian Sensor 3
as a continuous glucose monitor and the Fitbit Charge 4 health
and fitness tracker to capture heart rate and activity data.
Additionally, participants maintained records of their dietary
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TABLE 1. Monitored Physiological Variables and Sampling Periods

Time Series ‘ Unit ‘ Device ‘ Sampling period ‘
Glucose mg/dl Guardian sensor 3 5 minutes
Insulin U Report/Insulin pump Variable

Heart rate bpm Fitbit Charge 4 5 seconds
Steps - Fitbit Charge 4 1 minute
Carbohydrates | grams Report Variable

consumption and insulin bolus administration through diary
entries. For individuals with T1DM using insulin pumps, data
on automatic insulin infusion were directly extracted from the
pump reports. Importantly, the study was conducted within
the framework of participants’ normal daily activities, with
no controlled schemes associated with carbohydrate intake or
physical activity.

At the beginning of the study, we documented each vol-
unteer’s age, height, weight and self-reported sex. A health
professional affixed the glucose sensor to either the back of
the non-dominant upper arm or abdomen area of the volunteer.
We verified the Bluetooth connection between the cellphone
and the device and performed the first blood glucose cal-
ibration. Similarly, we conducted connection tests between
the Fitbit band and its corresponding application. To prevent
disruptions, all devices were fully charged before installation.
Upon the study’s conclusion, we extracted the data of interest
and the number of carbohydrates and calories ingested were
determined by an expert based on the participants’ diet diaries.

B. DATA CONDITIONING
Before feeding the measured signals into the models for train-
ing, we standardized the sampling frequency for each signal
to a uniform 5-minute interval, aligning with the highest sam-
pling period among the variables detailed in Table 1. For vari-
ables originally recorded at a higher rate, we implemented a
moving average technique to subsample the respective signal.

In addition, we discovered that better results could be
achieved by smoothing impulsive inputs, namely, ingested
carbohydrates and administered insulin. To this end, we ap-
plied physiological filters based on the Hovorka model [15].
This approach ensured that models received smooth and
meaningful signals rather than the raw, impulsive data.

For carbohydrates, we employed the two-compartment gut
absorption model [16], which characterized the digestion and
absorption of carbohydrates with the following equations:

dDy, D (t)
I = Agc(t) — - (D
dDy _ Dy(t) — Da(1) @)
dt G
D,
IGAR(1) = =2 3)
G

Here, D| [mmol] and D, [mmol] represent the amount of
glucose in compartments 1 and 2, respectively. A, is an uti-
lization factor of the absorption of carbohydrate to glucose,
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FIGURE 2. Processed signals of a representative subject with TIDM:
(a) CGM; (b) IGAR and Plasma Insulin, and (c) Heart Rate and Number of
Steps.

c(t) [mmol /min] is the amount of oral carbohydrate intake at
any time expressed as glucose equivalents, and tg [min] is
the time of maximum appearance rate. /GAR(t) [mmol/min]
is the intestinal glucose absorption rate and is the signal fed
into the models. In our study, we set A, = 0.8, ¢ = 40[min],
and assume that all carbohydrates from a given meal were
uniformly ingested over a five-minutes period.

For insulin, we applied the Hovorka two-compartment
model for insulin absorption, which is defined by the follow-
ing equations:

81 S0

e u(t) — o “)
S Si1(1) = $2(0) 5)
dr T7
al. SOV
P kel (1) (6)

In these equations, u(t) represents the administered insulin
rate (combining bolus and basal) in [mU /min], t; is the time
of maximum appearance rate in [min], V; denotes the insulin
distribution volume in [L], k. stands for the insulin elimination
rate in [1/min], and I corresponds to the plasma insulin con-
centration in [mU /L]. The plasma insulin concentration signal
is fed into the models. For our study, we utilized t; = 55[min],
ke = 0.138[1/min] and V; = 0.12 x BW[L], where BW is the
individual’s body weight in kilograms.

Finally, in cases of missing values due to glucose sensor
failure or the volunteer removing the health tracker, we lim-
ited our interpolations to gaps no longer than 12 samples
(equivalent to one hour when 7 = 5 minutes). We observed
that longer interpolations tended to produce unrealistic results.
Fig. 2 displays all the processed signals for a representative
individual with diabetes.

C. MODELING DETAILS

For modeling purposes, we conducted a comparative analysis
of several recurrent neural network architectures. The imple-
mented models vary in complexity, input signal combinations,
and training methodology (population, personalized training,
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FIGURE 3. Inference process common to all models. The architecture
depicted includes all the available variables, which can vary based on the
selected group (see Table 2). Within each n-dimensional sliding window of
length =, input variables are normalized across the time dimension. A
preprocessing step involving the feature extraction layer ¢ is applied to the
inputs, which are then processed by the primary network to produce a
one-step-ahead prediction. This prediction is added to the moving window
as if it were a new measurement. Exogenous variables are propagated as
described in Section II-C. This iterative process is repeated until the
requested p predictions are generated. The predicted sequence is then
denormalized using parameters j.cgm, and ocgm,, obtained during the
normalization.

and fine-tuning). This exploration aims to identify the most
suitable architecture, input variable combination, and train-
ing approach for multi-step ahead glucose prediction in both
healthy individuals and those with diabetes.

For each model, with parameters denoted as 6, we em-
ploy a recursive prediction strategy, as shown in Fig. 3. An
n-dimensional sliding window of length 7, comprising past
measurements, serves as input to generate a one-step-ahead
prediction. This prediction is then integrated into the sliding
window as if it were a new glucose measurement, facilitating
the generation of the next prediction. This iterative process
continues until the desired p predictions are obtained.

The handling of exogenous variables (when used) varies de-
pending on their nature. Specifically, the last measured values
of heart rate and the number of steps are propagated as esti-
mates of their future values. Conversely, for IGAR and plasma
insulin, we apply Hovorka’s model equations, as described
earlier, to extrapolate their values over the prediction horizon.

Additionally, for each model, we incorporate a feature ex-
traction layer ¢ preceding any recurrent layers. We also con-
duct a min-max normalization across the time dimension of
all the input sequences, applying a linear transformation to the
original data and mapping it to the range (0, 1) before feeding
it into the network. This practice has been observed to enhance
overall performance in this task.

The selected evaluation metric for all the models is the root
mean squared error (RMSE), which is assessed at the last
point of the predicted sequence. Specifically, it measures the
accuracy of the predicted glucose value p minutes ahead:

1 n
RMSE = |~ Y (Glucosecu.i — Glucosepreai)’.  (7)
n

i=1
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where Glucosecgy,i denotes the experimental glucose level
measured by the CGM system at time i, and Glucoseeq. i
represents the glucose predicted by the model for time i. It
is important to note that predictions are projected 30 minutes
into the future, utilizing only information from the past. In
our context, RMSE is expressed in glucose units (mg/l), with
the optimal value being zero, signifying a perfect prediction.
This metric selection enables relevant comparisons with other
studies, given that RMSE is a widely reported metric in this
field.

In all experiments, both training and evaluation were con-
ducted with a prediction horizon of p = 30 minutes, using
information from the past t = 2 hours. This setup aligns with
the standards commonly used in the field and ensures consis-
tency for comparative purposes.

To obtain robust and reliable results, a cross-validation
procedure with 5-folds was employed. This approach helps
mitigate the impact of data variability. The data was split into
training, validation, and testing sets with a ratio of 70-15-15,
respectively, for each individual participant.

The results reported in this study are presented as the av-
erage values, along with their corresponding standard devi-
ations, obtained from the five folds of the cross-validation
process. This practice ensures that the reported outcomes ac-
curately represent the performance of the predictive models
under varying conditions.

Statistical comparisons were made using Friedman’s test
and Tukey’s test for post-hoc analysis to evaluate the perfor-
mance differences among the various recurrent neural network
architectures, groups of variables, and training methodologies,
considering a significance level of 0.05.

D. NEURAL ARCHITECTURES

The neural architectures were chosen due to their proven
effectiveness in modeling time series data and their state-of-
the-art performance in glucose prediction [17], [18]. In the
following, brief descriptions of all the implemented neural
architectures are provided:

1) LONG SHORT-TERM MEMORY (LSTM)

The first and simplest implemented architecture comprises a
Long Short-Term Memory (LSTM) layer following the fea-
ture extraction layer, with two additional feed-forward layers
at the end for converting LSTM features into the output space.

2) ENCODER-DECODER (ENC-DEC)

In this configuration, the network consists of an encoder that
takes input features from the feature extraction layer and
transforms them into a latent intermediate vector using an
LSTM layer. Subsequently, the decoder takes these latent vec-
tors and transforms them into the output space using a second
LSTM layer and two feed-forward layers on top of it.
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TABLE 2. Groups of Variables Used for Training the Neural Networks

[ Variable | Gl [ G2 [ G3 [ G4 [ G5 |

CGM X X X X X
IGAR X X X

P. Insulin X X X
HR. X X X
Steps X X

Insulin is Only Considered for TDM Subjects.

3) BIDIRECTIONAL ENCODER-DECODER (Bl ENC-DEC)

This network shares the same architecture as the Encoder-
Decoder configuration but includes a bidirectional LSTM
layer [19] at the encoder, which processes the input sequences
in both forward and backward directions.

4) ENCODER-DECODER WITH DOUBLE ATTENTION
(ENC-DEC DATTN)

This architecture, initially introduced in [20] for multivariable
time series prediction tasks, features an Encoder-Decoder de-
sign equipped with variable attention in the encoder and tem-
poral attention in the decoder. The variable attention mecha-
nism assigns weights to each input variable or feature based on
its contribution to the prediction. Subsequently, the temporal
attention dynamically weights the produced hidden states of
the encoder LSTM layer, enabling the network to focus on
different temporal segments of the input sequences that are
relevant for the prediction. This design provides greater flexi-
bility to the network, making it more effective, especially for
longer input sequences.

E. GROUPS OF VARIABLES

For each of the model architectures described above, we con-
sidered five groups of variables to train multiple glucose pre-
diction models. This approach enables us to compare the per-
formance of these models when different sets of variables are
available. For individuals with T1DM, insulin was considered
alongside IGAR because both data sources are derived from
self-reports or the insulin pump when available. Therefore, it
appears reasonable that if a subject can report food consump-
tion, they should also be able to register insulin infusion. The
composition of each variable group is detailed in Table 2.

F. MODELING APPROACHES

Additionally, all model architectures, using the various com-
binations of input variables, were trained using different ap-
proaches: population training, personalized training, and fine-
tuning training. A detailed overview of these methodologies
is presented below:

1) POPULATION TRAINING

We initiated our evaluation by assessing the performance of
population-based models in predicting future glucose val-
ues for individuals within their respective populations. These
models were trained using the complete training data for ei-
ther the healthy or TIDM populations. Subsequently, they
were tested on individual test sets of each participant. This
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experiments were conducted with a learning rate of 1 x 1073
and a prediction horizon of 30 minutes. In a clinical context,
this approach would imply employing the same set of model
weights to predict future glucose values for all patients. In the
event of incorporating a new individual, their data would be
integrated into the training dataset, prompting the retraining
and updating of the population model, which would then be
applied to all individuals.

2) PERSONALIZED TRAINING

In contrast, personalized training encompasses the training
a different model for each individual within the population,
followed by an evaluation on the respective individual’s test
set. This approach has the evident advantage of insulating
model performance from the inter-subject variability of the
population. However, as we will delve into later, the perfor-
mance of this approach is highly dependent on the amount
and quality of the data available for a specific individual.

3) FINE-TUNING TRAINING

Finally, we assessed the performance of models fine-tuned to
a particular individual. In this approach, a population-based
model trained with all the data of n — 1 individuals (where
n signifies the population size) is subject to fine-tuning using
the training data of the target individual. The model’s perfor-
mance is subsequently evaluated using the individual’s test-
ing data. During the fine-tuning (as well as the personalized)
training process, the learning rate is reduced to 1 x 1074,

G. PERFORMANCE ASSESSMENT

In addition to RMSE, we employ the Clarke Error Grid to
evaluate the clinical significance of discrepancies between
predicted and actual glucose values. This grid is segmented
into five distinct zones, each indicating varying levels of clin-
ical relevance. Zone A represents clinically accurate predic-
tions, where the predicted values falling within £20% of the
actual values would lead to similar clinical outcomes if used
for decision-making. Predictions in Zone B, though less accu-
rate, remain within a safe margin. Falling outside the £20%
range, they do not prompt opposite clinical decisions but may
warrant further investigation or action. Zone C signifies pre-
dictions with discrepancies that could potentially lead to over-
or under-treatment if solely relied upon for clinical decisions.
Zone D indicates predictions with dangerous discrepancies.
Despite falling within the normal range, reliance on these
values could result in significant errors in clinical actions. Pre-
dictions falling into Zone E display values entirely opposite
to the actual ones, suggesting errors that would likely prompt
opposite clinical actions.

The use of the Clarke Error Grid enables the visual assess-
ment of a glucose monitoring system or prediction model.
This tool evaluates not only the predictions’ accuracy but also
discerns the potential clinical implications of any inaccura-
cies. It aids in identifying the predominant zones where data
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TABLE 3. Characteristics of the Dataset Obtained From the Clinical Trial

‘ Characteristic ‘ Value
Participants (n) 20
Age (mean/SD) 27.2 (4.0)
BMI (mean/SD) 26.1 (5.9)

Women (%) 50.0

T1DM (%) 45.0 (9 individuals)
Steps/day (mean/SD) 8,579 (4,050)
CV g (mean/SD) 0.15 (0.02)
CVripnm (mean/SD) 0.34 (0.09)
[5th-95th] CGM Percentiles gy (mg/dl) [70.9, 117.1]
[5th-95th] CGM Percentiles71 p s (mg/dl) [66.0, 248.4]

BMI stands for body mass index, and CV represents the coefficient of variation
[22], a measurement of glycemic variability. All averages and standard deviations
are computed across the participant population.

points fall, providing insights into the overall accuracy and
clinical relevance of the system.

I1l. RESULTS

Study participants were divided into two groups: healthy in-
dividuals (estimated glycosylated hemoglobin (HbAlc) [21]
between 4.39% and 4.94%) and those with TIDM (estimated
HbA 1c between 6.05% and 8.21%). The inclusion of healthy
subjects in this study aimed to identify the most relevant vari-
ables for predicting glycemia, not only for individuals with
diabetes but also for those at risk of developing the disease.
Table 3 provides key characteristics of the participants.

An interesting initial finding in our dataset is that the en-
ergy intake obtained from the food diaries was approximately
15% lower than the resting energy expenditure estimated from
the Mifflin-St Jeor Equation [23]. This observation may be
attributed to the systematic under-reporting of energy intake,
a phenomenon often observed with self-reported dietary in-
struments under free-living conditions [24].

The dataset, named UCHTT1DM, includes data collected
from 20 participants, comprising information on glucose,
heart rate, IGAR, steps, consumed carbohydrates, and insulin
(provided only for subjects with TIDM). This dataset is made
available to the community,! offering comprehensive physio-
logical information from both healthy individuals and those
with TIDM.

A. EFFECT OF MODEL ARCHITECTURES, INPUT VARIABLES
AND MODELING APPROACHES

The results are summarized in Fig. 4 for both healthy indi-
viduals and patients with TIDM. From this figure, it becomes
evident that the predictive performance of models for healthy
individuals is considerably better than for individuals with
diabetes. This discrepancy is likely due to the lower glycemic
variability and fewer extreme values observed in the healthy
population (as indicated in Table 3), which are easier to pre-
dict with data-driven models.

![Online]. Available: https:/github.com/fisiologiacuantitativauc/UC_HT_
T1DM
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FIGURE 4. Results for the healthy and T1DM population. Here pop, pers,

and fine, stand for the population, personalized, and fine-tuning training
approaches, respectively.

TABLE 4. RMSE [mg/dL] At 30 Minutes Ahead Predictions for the
Population Training Approach

Healthy Subjects

Group\Model LSTM Enc-Dec Bi Enc-Dec Enc-Dec DAttn
Gl 12.010 (0.92) 11.861 (0.86) 11.917 (0.93) 11.89 (0.85)
G2 12.131 (1.00) 11.858 (0.92) 11.795 (0.88) 11.949 (0.91)
G3 12.029 (0.96) 11.773 (0.94) 11.801 (0.97) 11.803 (0.88)
G4 12.237 (1.07) 11.809 (0.98) 11.714 (0.92)** 11.885 (0.90)
G5 12.097 (1.05) 11.839 (0.89) 11.868 (0.95) 11.943 (0.91)

Subjects with TIDM

Group\Model LSTM Enc-Dec Bi Enc-Dec Enc-Dec Attn
Gl 23.460 (2.08) 22.130 (1.99) 22.255 (1.87) 22.128 (1.82)
G2 24.550 (2.62) 22.151 (2.15) 22.240 (2.09) 22.219 (1.92)
G3 25.602 (3.22) 22.345 (2.15) 22.702 (2.47) 22.188 (1.89)
G4 25.398 (3.31) | 22.008 (1.99)** 22.378 (2.12) 22.324 (1.77)
G5 24.078 (2.43) 22.055 (1.85) 22.032 (1.91) 22.154 (1.84)

The best results across the different model architectures for the same group of
input variables are shown in bold. The best result in the table is indicated with
two asterisks (**).

1) POPULATION TRAINING

The results of population training, are summarized in
Table 4. Despite minimal differences in prediction among the
different groups of input variables, we can observe slightly
superior results for Group 4 (G4) in healthy individuals. The
best-performing model within this group is the Bidirectional
Encoder-Decoder architecture. For individuals with diabetes,
the differences between input variable groups are even less
pronounced, suggesting that the contribution of exogenous
variables, at least with the selected model architectures, has an
almost negligible impact on predicting future glucose values
for this population.

When comparing various model architectures, all Encoder-
Decoder architectures exhibit similar performance, signifi-
cantly outperforming the LSTM architecture, which consis-
tently delivers poorer results across all the input variables
groups, both for the healthy and diabetic populations. No-
tably, the Encoder-Decoder with Double Attention displays
less variation in performance across individuals, resulting in a
smaller standard deviation. This consistency may be attributed
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TABLE 5. RMSE [mg/dL] At 30 Minutes Ahead Predictions for the
Personalized Training Approach

TABLE 6. RMSE [mg/dL] At 30 Minutes Ahead Predictions for the
Fine-Tuning Training Approach

Healthy Subjects

Group\Model LSTM Enc-Dec Bi Enc-Dec Enc-Dec Attn
Gl 12.484 (1.14) | 12.183 (0.92) | 12.150 (0.91) 12.189 (0.98)
G2 12.719 (1.29) | 12.339 (1.02) | 12.284 (0.80) 12.215 (1.01)
G3 12,651 (1.12) | 12.156 (0.98) | 12.346 (1.01) | 12.131 (0.97)**
G4 12.905 (1.40) | 12.255 (0.96) | 12.511 (0.92) 12.227 (1.02)
G5 12.776 (1.28) | 12.309 (0.93) | 12.316 (0.81) 12.193 (0.98)

Subjects with TIDM

Group\Model LSTM Enc-Dec Bi Enc-Dec Enc-Dec Attn
Gl 30.159 (5.35) | 28.185 (6.02) | 28.588 (5.65) 28.812 (6.30)
G2 31.715 (5.64) | 29.695 (5.24) | 29.043 (6.44) | 27.898 (6.84)**
G3 32.946 (5.89) | 28.429 (6.19) | 28.466 (5.71) 28.583 (6.16)
G4 31.664 (6.22) | 28.650 (5.71) | 28.903 (5.76) 28.334 (5.87)
G5 30.519 (6.49) | 28.948 (5.16) | 29.020 (6.39) 29.388 (5.14)

The best results across the different model architectures for the same group of
input variables are shown in bold. The best result in the table is indicated with
two asterisks (¥*).

to the effect of the attention mechanism, which appears to
have learned to compensate for the inter-individual differ-
ences, a phenomenon that warrants further investigation.

2) PERSONALIZED TRAINING

Here, we present the results of personalized training. As
depicted in Table 5, the average performance among the
healthy individuals is only slightly worse than for the other
approaches, owing to the substantial data available for each
subject. Conversely, for individuals with T1DM, the average
performance significantly diminishes due to certain patients
having limited data, notably impacting the overall results (e.g.,
T1DM subject N° 9).

Across various groups, the performance differences are
minimal. Yet, it is notable that the Encoder-Decoder with
Double Attention consistently stands out for both healthy
and diabetic populations. This prominence could be attributed
to the attention mechanism, which, despite not being fully
optimized due to data limitations, aids in compensating for
variations and unmeasured disruptions within the targeted in-
dividuals.

3) FINE-TUNING TRAINING

Table 6 shows the results of the fine-tuning evaluation for the
healthy and diabetic populations. As before, the difference in
performance between the groups of input variables is almost
negligible. However, it can be seen that both the Encoder-
Decoder and the Bidirectional Encoder-Decoder show greater
performance advantages over the Encoder-Decoder with Dou-
ble Attention when compared to the population training re-
sults. This is probably due to the fact that the latter needs more
data of a particular individual to better re-adjust the attention
weights.
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Healthy Subjects
Group\Model LSTM Enc-Dec Bi Enc-Dec Enc-Dec Attn
Gl 12.06 (1.01) 11.903 (0.93) 11.901 (0.93) 11.945 (0.95)
G2 12.139 (0.93) 11.881 (0.97) 11.845 (0.91) 11.888 (0.97)
G3 12.282 (1.08) | 11.780 (0.94)** 11.926 (1.02) 11.919 (0.99)
G4 12.341 (0.98) 11.854 (0.93) 11.998 (0.94) 12.018 (1.02)
G5 12.231 (1.01) 11.888 (0.97) 11.836 (0.81) 11.972 (0.96)
Subjects with TIDM
Group\Model LSTM Enc-Dec Bi Enc-Dec Enc-Dec Attn
Gl 23.713 (2.22) 22.036 (1.88) 22.15 (1.82) 21.987 (1.84)
G2 25.016 (2.41) 22.357 (1.93) 22.428 (1.85) 22.650 (2.03)
G3 25.011 (2.57) 22.461 (2.25) 22.766 (2.13) 22.995 (2.02)
G4 24.545 (2.60) 22.559 (2.40) 22.827 (2.17) 23.490 (2.37)
G5 23.885 (2.52) 22.070 (2.13) 21.929 (1.88)** | 22.408 (2.06)

The best results across the different model architectures for the same group of
input variables are shown in bold. The best result in the table is indicated with
two asterisks (**).

B. COMPARISON OF DIFFERENT TRAINING APPROACHES
Fig. 4 illustrates the variation in RMSE at 30 minutes ahead
predictions across different input variables groups and train-
ing approaches. While the mean values do not exhibit sig-
nificant variation across the groups for the same training ap-
proach, notable differences emerge when comparing the dif-
ferent training approaches.

Firstly, it is evident that, in the case of the T1DM popula-
tion, models using the personalized training approach show a
large variability, as indicated by the long error bars. This vari-
ability is due to the fact that personalized models are highly
sensitive to the amount of data available for each individual.
Subjects with a substantial amount of training data perform
much better than individuals with a modest amount of training
data, leading to significant performance differences. As seen
in Fig. 4, this is not the case for the population or fine-tuning
training approaches. This underscores the critical importance
of avoiding personalized models when dealing with limited
individual data, favoring population or fine-tuned models in
such scenarios.

When comparing population and fine-tuning approaches,
although population models tend to perform slightly better on
average, fine-tuned models exhibit less variability in predic-
tion errors, as indicated by the shorter error bars. This char-
acteristic is of paramount importance in safety-critical appli-
cations like glucose prediction and control, where significant
errors can have severe, even life-threatening consequences.
Therefore, models with reduced variability in prediction er-
rors should be prioritized.

Remarkably, among all groups, models in G1 utilizing the
fine-tuning training approach demonstrate the least variability.
Notably, the database comprises individuals with an average
daily step count of 8,579, falling within the category of “some-
what active” as per the classifications established by Tudor-
Locke and Bassett [25]. This places the cohort within the mod-
erately active lifestyle category defined by the graduated step
index. This observation suggests that incorporating additional
variables, such as step count, might yield more pronounced
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FIGURE 5. Clarke Error Grids representing the clinical significance of
predicted versus actual blood glucose (BG) values, categorized into five
distinct zones A to E, aiding in the visual assessment of glucose prediction
accuracy and potential clinical implications. (a) patients with T1IDM, (b)
healthy subjects.

benefits for individuals with higher activity levels compared
to those who are less active.

C. CLINICAL RELEVANCE OF THE PREDICTIONS

The Clarke Error Grids depicted in Fig. 5 highlight com-
pelling insights derived from the best performing model. The
assessment indicates that the utilization of this model in treat-
ment plans significantly mitigates the risk of encountering
hyperglycemia-associated zones. In the case of patients with
T1DM, the model maintains a reassuring distribution with
80.4% of readings falling within zone A, denoting clinically
accurate predictions, while 18.1% are within zone B, indicat-
ing predictions that, though less accurate, still suggest safe
outcomes. Importantly, less than 2% of the predictions fall
outside these clinically acceptable ranges, demonstrating a
high level of safety and accuracy. Conversely, for healthy indi-
viduals, the model performs even more robustly, with 88.5%
of predictions in zone A, showcasing the accuracy in these
readings, and 9.4% falling within zone B, which still implies
safe outcomes. A minimal 2% of predictions fall within zone
D, representing discrepancies that, while indicating danger,
remain within the normal range, underlining the model’s abil-
ity to maintain a high level of accuracy and safety, particularly
in predicting glucose levels for healthy individuals.

IV. DISCUSSION

The results and comparisons across different modeling axes
(individual condition, model architecture, input variables, and
training size) demonstrate the effectiveness of deep learning
methods in building population-based and personalized mod-
els for glucose prediction using data obtained under free-
living conditions. To the best of our knowledge, this is the
first work to address all these axes and provide insights for
practitioners intending to use deep learning models for glu-
cose prediction.

When comparing the results between the populations of
individuals with diabetes and those without the condition, it
was found that the models for the healthy population sig-
nificantly outperformed all the models for the diabetic pop-
ulation, regardless of the model architecture and groups of
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input variables available. This discrepancy is likely due to the
lower inter-subject variability in the healthy population, lower
glycemic variability for each individual, and the tendency of
healthy subjects to exhibit fewer extreme values (see Table 3),
which are challenging to predict accurately with data-driven
models.

Regarding different model architectures, we observed that
all the Encoder-Decoder models consistently outperformed
the LSTM architecture. Among the Encoder-Decoder archi-
tectures, the simple Encoder-Decoder showed the best results
overall, possibly due to its simplicity and the limited amount
of data available to better train more complex models. How-
ever, the Encoder-Decoder with Double Attention exhibited
interesting features, including less inter-subject variability in
population training and the best performance in personalized
training. We suspect that better performance with this archi-
tecture can be obtained when more training data is available.

Contrary to expectations, no significant improvements were
found when incorporating exogenous inputs for predicting
future glucose values with the tested architectures. Although
Group 4 (which contained all input variables) seemed to have
slightly better performance than other groups, it exhibited
a wider RMSE distribution than Group 1, making it less
suitable for this safety-critical application. For future work,
other architectures more heavily focused on attention, such as
transformer-based architectures [26], [27], which have shown
promising results in multivariate time series forecasting, will
also be evaluated to determine if the information carried in the
exogenous variables can be utilized more effectively.

Finally, when comparing different training approaches, we
found that the personalized approach generally produced the
least favorable results. This is primarily due to its sensitivity
to variations in the amount of data available for each individ-
ual, resulting in wider error distributions and greater perfor-
mance variation across individuals. In contrast, the fine-tuning
approach generally yielded narrower error distributions and
less variation in performance across individuals, even when
the population training approach achieved better average per-
formances. Notably, the fine-tuning approach demonstrated
remarkable robustness to variations in the amount of data
for each individual and effectively transferred knowledge to
new subjects, even with minimal available data. For future
work, exploring other training methods such as meta-learning,
which has shown promising performance in glucose predic-
tion [17], will be a valuable avenue of investigation.

V. CONCLUSION

In this work, we leveraged deep learning methods to develop
personalized data-driven models for blood glucose prediction,
addressing both patients with TIDM and healthy subjects,
while comparing them across several critical dimensions:
model architectures, input variables, training approaches, and
variations in training data size. Our goal was to provide valu-
able insights to practitioners and researchers seeking to apply
deep learning techniques for glucose prediction in diverse
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applications, including but not limited to alarm systems, arti-
ficial pancreas development, and automatic bolus calculators.

Among the various training approaches examined, the
fine-tuning approach emerged as the most effective and ro-
bust method, particularly in scenarios where data availability
varies among individuals. Additionally, across the different
groups of input variables tested, models trained exclusively
on past glucose values exhibited a slight performance edge
and produced narrower error distributions, a crucial factor in
safety-critical applications like blood glucose prediction. Fur-
thermore, the simple Encoder-Decoder architecture demon-
strated its effectiveness, outperforming more complex mod-
els given the limited available data. However, the Encoder-
Decoder with Double Attention displayed competitive results,
suggesting potential improvements in datasets with larger data
volumes.

Future investigation in this domain will encompass the
exploration of alternative model architectures, such as
transformers, which heavily rely on attention mechanisms and
may better utilize exogenous variables [26], [27]. Addition-
ally, exploring and comparing alternative training approaches,
including meta-learning, is a promising avenue given its
demonstrated potential in recent related research [17]. Fur-
thermore, comparative analysis involving other well-known
datasets in the field, such as the OhioT1DM dataset [13],
will provide valuable insights into the generalizability of our
findings.

To foster further research in this area, we have anonymized
and made our curated dataset publicly available.> We encour-
age fellow researchers to access and leverage this resource for
their own investigations and advancements in glucose predic-
tion.
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