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ABSTRACT

Motivation: Biological network comparison software largely relies on

the concept of alignment where close matches between the nodes of

two or more networks are sought. These node matches are based on

sequence similarity and/or interaction patterns. However, because of

the incomplete and error-prone datasets currently available, such

methods have had limited success. Moreover, the results of network

alignment are in general not amenable for distance-based evolutionary

analysis of sets of networks. In this article, we describe Netdis, a

topology-based distance measure between networks, which offers

the possibility of network phylogeny reconstruction.

Results: We first demonstrate that Netdis is able to correctly separate

different random graph model types independent of network size and

density. The biological applicability of the method is then shown by its

ability to build the correct phylogenetic tree of species based solely on

the topology of current protein interaction networks. Our results pro-

vide new evidence that the topology of protein interaction networks

contains information about evolutionary processes, despite the lack of

conservation of individual interactions. As Netdis is applicable to all

networks because of its speed and simplicity, we apply it to a large

collection of biological and non-biological networks where it clusters

diverse networks by type.

Availability and implementation: The source code of the program is

freely available at http://www.stats.ox.ac.uk/research/proteins/

resources.

Contact: w.ali@stats.ox.ac.uk

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

The ability to recreate evolutionary relationships between biolo-

gical objects has driven much of our increased biological under-

standing. In particular, the reconstruction of phylogenetic trees

using sequence data is now commonplace and has provided

evidence for evolutionary mechanisms such as mutation, inser-

tion and deletion.

Similar to sequence data, over the past decade, the amount of

available interaction data between proteins has been steadily

increasing. These data are routinely represented as protein–

protein interaction (PPI) networks, with proteins as nodes and

interactions as edges. Despite the abundance of PPI data now

available, there is no tree reconstruction method based purely on

these networks. Yet, it is conjectured (Sharan and Ideker, 2006)

that such trees based on networks may give rise to a step change

in biology, much as tree-building methods from sequences did.

There already are more elegant methods available for construct-

ing species trees, e.g. based on genomic sequences. Trees built

from PPI networks would span a limited species set and are by

themselves perhaps not of interest. In contrast, the methodology

that is able to correctly build a phylogenetic tree from interaction

data would be much of interest, as it should reveal information

about the evolutionary mechanisms at play in biological

networks. Such a method would also be useful in other domains

where alternative means of generating taxonomies are not

available.
There is currently a lack of consensus regarding likelihood-

based statistical models for PPI network evolution (Ratmann

et al., 2009). Moreover, often phylogenetic tree reconstruction

methods based on distances perform better and are more

robust to mis-specification than maximum-likelihood methods

(Gonnet, 2012; Huelsenbeck and Hillis, 1993). Hence, we con-

centrate here on the development of a one-dimensional network

comparison statistic, which can be used to compile a distance

matrix to build trees.
The most tractable methods for network comparison are those

which compare at the level of the entire network using statistics

that describe global properties (e.g. Ratmann et al., 2009), but

these statistics are not sensitive enough to be able to reconstruct

phylogeny or shed light on evolutionary processes. In contrast,

there are several network alignment-based methods that compare

networks using the properties of the individual proteins (nodes)

e.g. local network similarity and/or protein functional or

sequence similarity (Flannick et al., 2009; Phan and Sternberg,

2012; Singh et al., 2008). The aim of these methods is to identify

matching proteins/nodes between networks and use these match-

ing nodes to identify exact or close subnetwork matches. A few

of these methods have been expanded to the multiple network

problems (Flannick et al., 2009; Liao et al., 2009). These methods

are usually computationally intensive and tend to yield an align-

ment that contains only a relatively small proportion of the

network, although this has been alleviated to some extent in

more recent methods (Alkan and Erten, 2014; Hu et al., 2014;

Patro and Kingsford, 2012).
The analysis is further confounded by a large number of false

positives and false negatives thought to be present in current PPI

data. Ali and Deane (2010) studied the effect of errors and in-

completeness in alignments of simulated networks and estimated

that only nearly complete networks (490%) can produce

reliable alignments. Finally, PPI network alignment methods

are all based on the loose premise that the respective orthologs

of two interacting proteins also interact, forming pairs of

so-called interologs, and/or that orthologs will share neighbour-

hood topology. While there is some evidence for the existence of

such conserved interactions across species (Matthews et al.,

2001), particularly in proteins with high sequence similarity,*To whom correspondence should be addressed.
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Lewis et al. (2012) found, taking the noise and incompleteness of
the data into account, that the fraction of correctly transferred
interactions is at most 3%, between reasonably diverese species,

even if orthologs are defined as those proteins matched with a
blast Eval � 10�10 (Altschul et al., 1997). Moreover, current
evidence points to a far larger rate of change in PPIs than ex-

pected; specific interaction matches seem not to be the rule, but
rather the exception (Lewis et al., 2012; Shou et al., 2011).
Thus, we do not follow the network alignment paradigm,

but instead we take our lead from alignment-free sequence
comparison methods that have been used to identify evolution-
ary relationships (Liu et al., 2011a). Alignment-free methods

based on k-tuple counts (also called k-grams or k-words) have
been applied to construct trees from sequence data (Song et al.,
2013). A key feature is the standardization of the counts to

separate the signal from the background noise. Inspired by
alignment-free sequence comparison, we use subgraph counts
instead of sequence homology or functional one-to-one matches

to compare networks. Yet, even when comparing synthetic
networks of the same size, generated from the same model,
their small subgraph content can be volatile (Rito et al., 2010).

Our proposed method, Netdis, compares the subgraph content
not of the networks themselves but instead of the ensemble of
all protein neighbourhoods (ego-networks) in each network,

through an averaging many-to-many approach. The comparison
between these ensembles is summarized in a Netdis value, which
in turn is used as input for phylogenetic tree reconstruction.

The biological intuition for our new approach is based on a
collection of results. The idea of using the subgraph content to
build a distance between networks arises because motifs and

modules have long been identified as important components of
biological networks (Wagner et al., 2007; Zhu et al., 2007) and
have been conjectured to play an important role in evolution

(Liu et al., 2011b); see also Cootes et al. (2007) and Pr�zulj
(2007) for previous explorations of biological network compari-
son based on subgraph counts. A key idea of our article is not to

compare just the subgraph content of two networks, but instead
the ensembles of subgraphs of the two networks, as hinted at in
Rice et al. (2005). This use of subgraph content ensembles means

that Netdis requires only the interaction data and is very differ-
ent in concept from PPI network alignment methods.
Netdis differs from standard subgraph count approaches in

two key aspects: it introduces the ensemble view and applies a
standardization that controls for background noise.
We first use our method on simulated networks using several

random graph models and show that it correctly classifies
networks by model type even when confounded by varying
network density and size. We then use it to successfully recon-

struct the correct phylogenetic tree for the set of organisms for
which significant PPI data are currently available. Our ability to
reconstruct correct phylogenies adds evidence that PPI

data retain evolutionary information, despite the lack of conser-
vation of individual interactions.
We have also investigated our method’s ability to separate

by type a large set of networks from several biological and
non-biological domains. The resulting tree is found to be
highly clustered by domain type, outperforming a recent and

far more computationally intensive community-detection
approach.

2 APPROACH

2.1 Neighbourhoods: ego-networks

Our method for network comparison is based on the core

concept that similar networks will, on average, contain similar

local neighbourhoods. We count the occurrence of subgraph

shapes in the local neighbourhoods of all nodes in a network.

This method was chosen rather than just counting the number of

subgraphs in the entire network, as the latter will be strongly

influenced by factors such as network size and density and, there-

fore, may be too coarse for many network comparisons.
Our notion of the neighbourhood of a protein is that of a

two-step ego-network, also called ego-network of radius two

(see, for example, Pattison, 1993). The two-step ego-network of

a protein/node p is the (sub) network consisting of all nodes

within two edges of p, also including all the edges between

those nodes. In general, r-step ego networks could be used

based on the application area. The radius should be chosen so

that the set of ego-networks displays reasonable variability. Here

we choose radius two, as the average shortest path length in

protein interaction networks tend to be of the order four,

and hence ego-networks with larger radii often contain a large

proportion of the overall network. For very dense networks, ego-

networks of radius one may be more appropriate.

2.2 An overview of the Netdis measure

Our algorithm starts by extracting for each query network the set

of two-step ego-networks of all nodes. For each two-step

ego-network, we count the number of occurrences of all 3 to

5-node induced subgraphs, or graphlets (Pr�zulj, 2007). The

counting algorithm uses a combinatorial subgraph enumeration

approach (Hoevar and Demar, 2014). Counting induced sub-

graphs on k vertices as opposed to any subgraphs on k vertices

means that all the edges between the k vertices in the subgraph

must be present in the larger graph, and absent edges in the

subgraph must also be absent in the larger graph.
Every node in the network is hence associated with a k-nodes

subgraph count vector (k=3, 4 or 5) for its corresponding two-

step ego-network (see Fig. 1). One could also use k=6

and above, but the counts of larger subgraphs can be extremely

low in many networks and also computationally expensive to

enumerate. Once the ego-network of a node has been associated

with a count vector for all subgraphs contained in it, these counts

are centred according to the size and density of the ego-network.
While ideally the counts would be centred using a suitable

null model, currently no good probabilistic model for PPI net-

works is available that replicates the k-subgraph content of a

network (Rito et al., 2012). Instead we use the counts from a

gold-standard network as a proxy for the expected counts, where

the size and the graph density of the size-two ego-network are

taken into account.

For each k-node subgraph, we sum the centred counts of all

two-step ego-networks in the query network. The final sum

vectors have length 2 for k=3, length 6 for k=4 and length

21 for k=5. These sum vectors are then used as input to a self-

standardizing statistic, which we call netdS2 ðkÞ. In a final step, we

calculate a symmetric matrix containing the netdS2 ðkÞ values for

pair of networks in the set. The resulting matrix can be used to
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cluster the candidate networks and the clustering represented by
dendrograms.

2.3 Expectation of subgraph counts in neighbourhoods

In alignment-free sequence comparison, centering the counts by

subtracting their means is crucial to avoid measuring back-
ground noise instead of signal (Reinert et al., 2009). For

Netdis, we are faced with the problem that there is no good
probabilistic model for subgraph counts in PPI networks avail-

able (Rito et al., 2012). Exploratory data analysis shows that the
subgraph counts depend on the graph density, which is the

fraction of observed edges over all potential edges.
To gauge the expected number of subgraph occurrences in an

ego-network of a given graph density, we first create a histogram
of the graph densities of all ego-networks in the gold-standard

network. While the ideal comparison would be between ego-
networks of the exact same density, there is not enough variabil-

ity in the data for every possible density; hence, we use an
adaptive binning approach. The ego-networks of the gold stand-

ard are binned according to density, where the number and
size of bins is automatically adapted to ensure that each bin

contains at least five samples. We then estimate the expectation
per ego-network of each subgraph in a given graph density bin as
follows.

Let Q represent a gold-standard network with q nodes and
hence q ego-networks. The ego-network of node i contains,

say, ni nodes, ei edges and has graph density di=ei
ni

2

 !�1
.

For an ego-network of Q with graph density di, we write di �

� if di is in the graph density bin �=�ðQÞ. Let w denote
a particular induced subgraph with k nodes and Nw;iðQÞ

its number of occurrences in the ego-network of node i, with ni

nodes, in Q. We scale these counts by the
ni

k

 !
possible choices

of k nodes in the ego-network of node i. The average of the

scaled Nw;iðQÞ for all q ego-networks in the graph density bin

is given by

EwðQ; �Þ=
1

jfi 2 f1; :::; qg : di � �gj

X
i=1:::q :

di � �

Nw;iðQÞ

ni

k

 ! :

For a query network G and a given subgraph w on k nodes,

we estimate the expected count of w in the ego-network of

node i 2 G, with di � �ðQÞ and ni edges, as

Ei
wðG; �Þ=

ni

k

 !
EwðQ; �Þ: ð1Þ

This estimated expected count serves as our background

expectation.

Now, let A(k) be the set of all w subgraphs with k number

of nodes; here k=3, 4 or 5. For a particular induced subgraph w

with k nodes, let Nw;iðGÞ denote its number of occurrences in

the ego-network of i 2 G. We proceed as follows:

(1) For each node i in G,

(a) Build an ego-network of radius 2 around and includ-

ing i.

(b) Calculate for the ego-network of node i, the number of

nodes ni, graph density di and the subgraph count

vector, Nw;iðGÞ, for each k, with k=3; 4 and 5.

(c) If di � �=�ðiÞ, calculate Ei
wðG; �ðiÞÞ.

(2) Calculate,

SwðGÞ=
X
i

ðNw;iðGÞ � Ei
wðG; �ðiÞÞÞ: ð2Þ

To compare two networks, G and H, we define three netDS
2 ðkÞ

statistics by

netDS
2 ðkÞ=

1ffiffiffiffiffiffiffiffiffiffiffi
MðkÞ

p X
w2AðkÞ

SwðGÞSwðHÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SwðGÞ

2+SwðHÞ
2

q
0
B@

1
CA; k=3; 4; 5;

where

MðkÞ=
X

w2AðkÞ

SwðGÞ
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SwðGÞ
2+SwðHÞ

2
q

0
B@

1
CA X

w2AðkÞ

SwðHÞ
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SwðGÞ
2+SwðHÞ

2
q

0
B@

1
CA

is a normalizing constant so that netDS
2 ðkÞ 2 ½�1; 1� by

the Cauchy–Schwarz inequality. The corresponding Netdis

statistic is defined as,

netdS2 ðkÞ=
1

2
ð1� netDS

2 ðkÞÞ 2 ½0; 1�: ð3Þ

The pairwise Netdis values from Equation 3 are then used to

build a distance matrix for all query networks. Note that three

different distance matrices are defined, based on k=3, 4 or 5.

We then use Unweighted Pair Group Method with Arithmetic

Mean (UPGMA; Sokal and Michener, 1958) for building trees

from the Netdis distance matrices. UPGMA is a heuristic greedy

Fig. 1. Overview of the Netdis method on a pair of networks (G, H).

Each network is associated with vectors of subgraph counts, calculated

from all its two-step ego-networks (this figure shows counts for only

subgraphs of three nodes). These count vectors, normalized by a back-

ground expectation, are then used to calculate the distance measure

between the pair of input networks. See Supplementary Section S3 for

a detailed calculation
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method that creates one cluster per network and sequentially

merges the nearest pair of clusters by directly using the distance

matrix until only two clusters remain. We ignore any branch

lengths, as they would be difficult to interpret without a statis-

tical model and before understanding the effect of errors. We

used the phangorn package (Schliep, 2011) in R (R Core Team,

2013) to generate trees.

3 DATA

3.1 Synthetic networks from random graph models

We initially tested Netdis on simulated networks, namely,

Erd€os–R�enyi (ER) random graphs (Erd€os and R�enyi, 1961),

Erd€os–R�enyi graphs with fixed degree distribution (ERDD)

(Newman, 2010), geometric random graphs (Penrose, 2003), geo-

metric with gene duplication (Pr�zulj et al., 2010), Chung–Lu

model (Chung and Lu, 2002) and the duplication–divergence

growth model (Middendorf et al., 2005).
The particular ER model, which we use here, has n labelled

nodes connected by m edges, which are randomly chosen from

the nðn�1Þ
2 possible edges. The fixed distribution variant (ERDD)

is constructed to have not just the same number of nodes and

edges as a reference network, but also the same degree distribu-

tion. Geometric 3-dimensional random graphs (GEO3D) with

parameter r are constructed by assigning each node random co-

ordinates in a 3-dimensional box of unit volume. Two nodes are

connected by an edge if the Euclidean distance between them is

at most r. A variant of this, incorporating biological intuition is

the geometric with gene duplication model (GeoGD). The

Chung–Lu (or Sticky) model constructs networks by assigning

an index �i to every node i for all n nodes where �i=
degðiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j=1
degðjÞ

q ;

here deg(i) is the degree of node i. Each possible edge i, j is then

formed with probability �i�j. Finally, the duplication divergence

model (DD) grows a network at each iteration t by selecting a

node random and duplicating it with all its edges. We use a

variant of this model that specifies a symmetric node duplication

model so that edges can be lost from both parent and child nodes

on divergence.

3.2 Protein interaction data

To test Netdis on experimental data, we downloaded species-

specific PPI data from the Database of Interacting Proteins

(DIP; Salwinski et al., 2004) and Human Protein Reference

Database (HPRD; Keshava Prasad et al., 2009). Only species

having at least 500 physical interactions and 415% coverage

were considered. Coverage is here a rough estimate of how

many proteins have been probed for interactions given the

expected proteome of the organism. We define it as a percentage

by taking the number of nodes in the network divided by the

estimated number of genes in the genome of the organism at

hand. In total, we analyse five species: Saccharomyces cerevisiae

(yeast), Drosophila melanogaster (fly), Homo sapiens (human),

Escherichia coli (E.coli) and Helicobacter pylori (H.pylori).

Human data came from HPRD (dated: September 2012)

while the other four datasets were downloaded from DIP

(dated: February 28, 2012). Table 1 summarizes the five PPI

datasets used in the study.

3.3 Networks from multiple disciplines

In a recent paper (Onnela et al., 2012), the authors constructed a

taxonomy of a large collection of networks obtained from a

variety of sources. Their method is based on first probing the

community structure within each network and then using sum-

maries of the community structures to identify similar networks.

The original dataset used by the authors contains 746 networks.

We used all unweighted and undirected networks from this set,

resulting in a total of 151 networks. These come from across the

biological and social domains as well as model simulations (see

Supplementary Section S3 for full details).

4 RESULTS

In all of the results that follow, unless stated otherwise, Netdis

was calculated using k=4 and the DIP core yeast interaction

dataset (Deane et al., 2002) as the gold standard. To test the

robustness of the method, we also used a simulated gold-stand-

ard network using the ER model with 5000 nodes and 20 000

edges (see Supplementary Fig. S8 for results). While using Netdis

with k=5 is expected to increase the sensitivity of the method,

preliminary analysis of the datasets used for this study indicated

little benefit of the latter, at the cost of substantially more com-

puting time spent in induced subgraph counting.

4.1 Netdis can separate different random graph model

types

We simulated five networks for each of the six models described

in Section 3.1, giving a total of 30 networks. The parameters for

all of these simulated networks were chosen to have the number

of nodes and edges match those of the DIP yeast network, al-

though some models create self-loops and disconnected nodes,

which lead to slight discrepancies. A pairwise distance matrix

was then constructed between these networks and the resulting

tree is shown in Figure 2. We observe a perfect clustering of the

networks according to model type.
In the above analysis, all networks had the same or similar

number of nodes and graph density. We also investigated the

effect of varying network size and density on Netdis’s ability to

resolve the different models. For three models (ER, DD and

Geo3D), we generated samples with either 1000 or 5000 nodes.

We also varied the densities, using values of 0.003, 0.005 and

Table 1. Network summaries for PPI data

Species Genes Nodes Edges Coverage �� � 1000

Human 21 224 9223 36 631 43.9 0.8

Fly 13 917 7565 22 800 54.3 0.8

Yeast 6692 5078 22 103 86.2 1.7

E.coli 4303 2968 11 604 68.9 2.6

H.pylori 1553 714 1,361 45.9 5.3

��—network density.

i433

Alignment-free protein interaction network comparison

which
:
-
-
-
-
-
,
which
up
z
ecoli
-02-28
the 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu447/-/DC1
-
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu447/-/DC1
in order 
s
-


0.007. As shown in Figure 3, even with such varying sizes and

densities, the correct clustering was achieved.
The simulated networks discussed so far are error-free.

Introduction of error should make it harder to distinguish

between networks from the different models. We introduced

false negatives and false positives in the simulated networks

(see Supplementary Section S2) and observed that for the

simple case when all networks have the same size and density,

Netdis can recover the correct grouping even with an error rate

of 50% (Supplementary Fig. S11a). However, error has a larger

adverse impact when the networks are already harder to cluster

because of varying size and density (Supplementary Fig. S11b).

The sensitivity of the method to errors is likely to be dependent

on the dataset as well as error characteristics.
Our results on random graph models suggest that the different

model types differ substantially from each other, and thus are

perhaps not a rigorous test of the sensitivity of the method. This

intuition was borne out when we reanalysed the dataset using

modified versions of Netdis with the expectation in Equation 2

set to 0 (Netdis_ ne), or replacing the summation over all ego-

networks in Equation 2 with just the subgraph count of the

whole network (Netdis_ gc) and no correction for background

expectation. Even these non-centred measures successfully gen-

erate the correct tree in all of the above cases (see Supplementary

Figs S1 and S2).

Instead of ego-network subgraph counts, networks could also

be grouped based on simpler properties such as the distribution

of the node degrees or local clustering coefficients. To compare

Netdis with such baseline measures, we defined Ddis and Cdis as

the values of the Kolmogorov–Smirnov test statistic between the

empirical distribution of nodes degrees and local clustering coef-

ficients, respectively, for a given pair of networks. These values,

serving as proxies for pairwise network distance were then used

to generate phylogenetic trees for the simulated networks

discussed above. The results (see Supplementary Figs S9 and

S10) show that while these methods generate the correct cluster-

ing in the simplest case, they fail when the networks are variable

in size and density, indicating the need for richer measures like

Netdis in realistic settings.
While Netdis is completely different in approach to traditional

network alignment, it is tempting to compare the results to such

methods. Network alignment-based methods typically return re-

sults in the form of node or edge mappings and not a distance

matrix for a given set of networks. However, one such method,

MI-GRAAL (Kuchaiev and Pr�zulj, 2011) has been used in the

literature to generate a phylogenetic tree of small viral PPI net-

works. MI-GRAAL is capable of solely topological network

alignment and its edge correctness score was used as a proxy

for network similarity measure to generate the distance matrix

for the phylogenetic tree. We therefore tested MI-GRAAL on all

of the above simulated datasets. For all simulated networks with

5000 or more nodes, we were unable to successfully finish align-

ment using MI-GRAAL. We therefore used only the networks of

1000 nodes and densities 0.003, 0.005 and 0.007 and the resulting

tree is presented in Supplementary Figure S3. While the tree

generated by MI-GRAAL is generally correct, two networks

(ER_1000_0.003 and DD_1000_0.007) are wrongly clustered.

The tree generated by Netdis for the same dataset, giving perfect

clustering, is also given for comparison (Supplementary Fig. S4).

4.2 Phylogenies from protein interaction data

The currently accepted phylogeny between the species of Table 1

is depicted by the tree in Supplementary Figure S5. The tree is

based on the NCBI taxonomy database (Sayers et al., 2009),

which incorporates a variety of phylogenetic resources including

molecular and morphological characters. The tree generated by

Netdis is depicted in Figure 4.
Out of the many possible rooted trees with five leaves, the

correct clustering is obtained with fly next to human and yeast,

and the two bacterial networks in a separate clade. This is despite

the significant differences in number of nodes and edges, cover-

age and graph density. Moreover, Supplementary Figure S11c

shows that even when introducing high levels of error in the PPI

networks, the correct tree topology is reproduced by Netdis. The

DD 3

DD 2

DD 5

DD 1

DD 4

ERDD 1

ERDD 3

ERDD 2

ERDD 5

ERDD 4

Sticky 3

Sticky 1

Sticky 2

Sticky 5

Sticky 4

GEO3D 1

GEO3D 3

GEO3D 4

GEO3D 2

GEO3D 5

ER 2

ER 4

ER 3

ER 1

ER 5

GeoGD 5

GeoGD 1

GeoGD 3

GeoGD 4

GeoGD 2

Fig. 2. Phylogenetic tree of simulated networks generated by Netdis. The

method perfectly clusters together samples from the same model

DD 1000 0.005

DD 5000 0.003

DD 5000 0.007

ER 1000 0.005

ER 5000 0.003

ER 5000 0.007

GEO3D 5000 0.003

GEO3D 5000 0.007

GEO3D 1000 0.005

Fig. 3. Phylogenetic tree generated by Netdis for simulated networks of

varying size and density. The model name is followed by number of nodes

and network density
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importance of the background expectation in Netdis becomes

apparent when the tree is generated using Netdis_ ne instead

(Supplementary Fig. S6a). In this case, the method does not re-

create the correct phylogeny, and places fly next to H.pylori. The

same is true when Netdis_ gc is used (Supplementary Fig. S6b).

The simple network statistics based methods, Ddis and Cdis, also

fail to generate the correct tree (Supplementary Figs S9c and

S10c). When executing MI-GRAAL using only network top-

ology on these data, the program failed during the alignment

of the yeast and human network. We therefore only used the

other four species (fly, yeast, H.pylori and E.coli) to generate

the tree. In this case, MI-GRAAL recreates a generally correct

tree with yeast and fly in a single clade (Supplementary Fig. S7a),

but the bacterial species are split into two clades. The tree gen-

erated by Netdis for these four species is given in Supplementary

Figure S7b. For PPI networks, as a baseline, one could also

create phylogenies based on the number of orthologous inter-

actions shared by a pair of networks. The results for such an

approach are shown in Supplementary Figure S6c (see caption

for method details). The tree is generally correct, although the

approach is not applicable to other types of networks.

4.3 Classification of diverse empirical networks

As a systematic representation of data amenable to rigorous

analysis and visualization, networks have become ubiquitous in

recent years across many scientific and social disciplines. While

these networks vary enormously in their detailed properties,

methods that can group similar networks together could prove

to be highly useful. We therefore compared the ability of Netdis

with group networks by domain, against the method used by

Onnela et al. on the data described in Section 3.3. As there is

no agreed true dendogram available for these data, we first

manually created a taxonomy by simply grouping the data

based on type and assuming no further branching within

groups. In total, we identify 13 groups, such as protein inter-

action, congressional voting, metabolic networks, ER random

graphs, etc. Supplementary Figure S12 presents the complete

manual taxonomy. We then created taxonomic trees for these

networks using Netdis and Onnela et al.’s method. The resulting

trees were split using the cutree function in R to give 13 groups

(cutree can interpret a given tree as a cluster hierarchy that can

then be merged/split using the underlying distance matrix to give

the desired number of clusters). Finally, we compared the 13

groups from each of the methods with the manually created

groups using the adjusted Rand index (RI) for cluster similarity

(Hubert and Arabie, 1985). We also generated Monte-Carlo

P-values for the similarity values by generating 50 000 samples

from the null distribution as follows: each null sample was gen-
erated by creating a random tree topology with the same number
of leaves as the dataset, and we then calculated the cluster

similarity with the manual grouping. The P-value for an obser-
vation is then the fraction of null samples equal to or greater
than the observed similarity. The best performing method is

Netdis, with similarity index 0.011 (P-value: 0). Even without
using background expectation (Netdis_ ne), a better grouping
is achieved (RI: 0.01, P-value: 2� 10�5) than Onnela et al.’s

method, which has a similarity index of 0.006 (P-value: 0.001).
The clustered taxonomies generated by Onnela et al.’s method
and Netdis are given in Supplementary Figures S13 and S14. Of

particular interest is the fact that Netdis separates most of the
metabolic and protein interaction networks into two distinct

groups. The complete analysis for the 151 networks using
Netdis consumed around 10h of computing time on a standard
desktop computer, while Onnela et al.’s method consumed 18h

on the same computer. The analysis could not be replicated using
MI-GRAAL, as the program failed to provide alignment results
for a large fraction of the dataset. We note that alignment-based

methods are perhaps inherently ill-suited to the task of classify-
ing large sets, which may include dense networks, as generating
all possible pairwise network alignments is a computationally

prohibitive task.

5 DISCUSSION

In this article, we add evidence to the idea that the topology of
protein interaction networks alone contains evolutionary infor-

mation without any additional biological data. Our results reveal
that current PPI data are sufficiently abundant to derive correct
phylogenetic relationships, at least between the model species.

From PPI data with genome coverage of at least 15%, our
method, Netdis, is able to deduce correct phylogenies between
species without resorting to sequence homology.

We emphasize that Netdis is not proposed as a competitive
method for the generation of phylogenetic trees for biological
species; existing techniques based on molecular sequences

already address this particular problem comprehensively. Our
main result is that from the topology of protein interaction
networks alone, it is possible to generate a correct phylogenetic

tree. It is therefore worth considering the underlying assumptions
of Netdis explore what they may reveal about protein interaction

network evolution. The core principle of this work is that species
that are more related will on average share more PPI network
neighbourhoods that are topologically similar than unrelated

species do. It is tempting to assign a biological interpretation
to the Netdis algorithm: a given biological function is normally
credited to a community of interacting proteins that act together

to perform that function in the cell. Closely related species will
have, on average, more of these communities in common. Our
method detects this phenomenon by comparing ensembles of

ego-networks derived from the PPI networks.
Netdis could also be used to consider the similarities between

biological networks during a cellular or adaptive response, where

it is thought that understanding the differences between these
networks is key (Ideker and Krogan, 2012). Obtaining phyloge-
nies of cell-states based on network data would provide a biolo-

gical perspective on these phylogenies, which would be both new

yeast

ecoli

human

hpylori

fly

Fig. 4. Phylogenetic tree of PPI networks generated by Netdis
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and completely free from sequence data. This perspective

would further complement phylogenies derived from
phenotypic traits with another type of molecular data. The

method could be refined by adding information on the proteins,

such as protein function, structure, subcellular location or age

(Liu et al., 2011b; Rito et al., 2012); we would expect that includ-

ing such information would increase the sensitivity of the

method.

One particular focus of our ongoing and future research

efforts will be the derivation of theoretically well-founded

background expectations of subgraph counts used in Netdis.

At present, the method relies on specifying a gold-standard
dataset to estimate these expectations. While our results so

far indicate that the method is robust to the choice of gold stand-

ard, it seems feasible that derivation of exact expectation for-

mulas may increase method sensitivity and/or remove potential

bias.

We conclude with noting that, as no other data besides net-

work data are used as input to the method, many types of net-

work data can be analysed together. This makes the method

inherently different from the network alignment paradigm. As
a proof of concept, we presented some results indicating its abil-

ity to correctly classify simulated networks from random graph

models as well creating a reasonable taxonomy for a diverse

mixture of empirical networks. The ability to highlight relation-

ships between networks from different sources in a systematic

way may help researchers across different fields to identify em-

pirical analyses or theoretical models which are applicable to

their specific problem.
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